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Motivation

How is brain working?

> Novel experiments are revealing the mystery of how brain is
working.

» Imaging techniques: fMRI, EEG, Chemical imaging, etc.

» Multi-electrode recording of parallel spiking of population of
neurons.

a Position b
, o
™ } Placa recaptive fakds
£
s
E ) s
Bacading
5 % 35 70 . "W"""g i
temi —F
= kS
Splkes Va

Dacoding analysis

I L (] 5 kL]
T T e N,
i i T | el o ]
tnh n
i R 1 | E
— \ NS — Encading analysi ===
o 45" kg 135° 180°

C.-Y. Liu, DAM NUK Models of Neuronal Networks



Motivation

How is brain working?

» How do underlying neuronal networks perform computations?

» How can we reveal the role of network connectivity?
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Motivation

Theoretical approach

» One possible way of tracking principles or mechanisms is to
propose mathematical models of neural activity at different
space and time scales.

» From analyzing or simulating models to extract new ideas that
can be tested in real experiments.
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Mean-field models

Coarse graining

» Basic assumption for mean-field models
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Mean-field models

Wilson-Cowan models

> Neural field model
» Ad hoc averaging approach

> Invalid predictions for synchrony
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Mean-field models

Population density models

» Spike-density approach
» Quick simulation of spiking networks
» Capturing the reset mechanism of neurons
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KT models

Why kinetic theory models?

» Multielectrode recording reveals the importance of
cross-correlation among population activity in the encoding
and decoding aspects of neural systems.

» To improve mean-field models so that they can capture higher
order dynamics of neural systems.
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KT models

Distill connectivity patterns

» To develop kinetic theory models to capture cross-correlation,
we need to distill connectivity patterns down to second order
features.

» Unfortunately, it is still not clear what these key second order
features should be.
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KT models

Distill connectivity patterns in Feedforward networks

For the first try, we have considered feedforward networks.
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KT models

Distill connectivity from common input idea

» Two connectivity statistics
» W1 the average number of presynaptic neurons that project

onto a postsynaptic neuron
» W?: the average number of presynaptic neurons that
simultaneously project onto a pair of postsynaptic neurons

» Distill connectivity down to 2-parameter space
(Wt 6= w?/wt)
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KT models

Kinetic theory model of feed-forward networks

» Assume the input for any pair of neurons as correlated
Poisson process (CPP).

» Impose conditional independence structure for CPP. In this
way, we have a 2-parameter statistical model of CPP with first
and second order population activity as parameters.

» Compute the first and second order activity by population
density equations.

» Derivation of output-input coupling equation from above
model of CPP and two distilled connectivity statistics.
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KT models

Kinetic theory model of feed-forward networks

Population density equations:
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KT models

Test connectivity hypothesis and validity of kinetic theory
model

» Evidence from Monte Carlo simulation
» The performance of kinetic theory model

Kinetic Theory

® Monte Carlo Random

4 Monte Carlo Power Law

» Monte Carlo Power Law 100
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CC peak area (spikes/second)
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SONETs

Recurrent networks of homogeneous population of neurons

Question: Is common input idea sufficient for recurrent networks?

Answer: Noll
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SONETs

More second order connectivity motifs

Extend common input motif to more second order motifs with

shared neurons.
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SONETs

Selection of directed graph model with given network
parameters

Network parameters: N, p, Qrecips Qconv s Adiv, Xchain

Problem: There are many such probability distribution with given
second order statistics.

Solutions:

1. The right way
Choose the probability distribution with least structure, i.e.,
the maximum entropy solution. (Ising model.)
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SONETs

Selection of directed graph model with given network
parameters

Network parameters: N, p, Qrecips Qconv s Adiv, Xchain

Problem: There are many such probability distribution with given
second order statistics.

Solutions:

1. The right way
Choose the probability distribution with least structure, i.e.,
the maximum entropy solution. (Ising model.)

2. The wrong way
Use a joint Gaussian distribution to define W,-j and let W; =1
if Wj; > 6 for some threshold 0.
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SONETs

Selection of directed graph model with given network
parameters

Network parameters: N, p, Qrecips Qconv s Adiv, Xchain

Problem: There are many such probability distribution with given
second order statistics.

Solutions:

1. The right way
Choose the probability distribution with least structure, i.e.,
the maximum entropy solution. (Ising model.)
2. The wrong way
Use a joint Gaussian distribution to define W,-j and let W; =1
if Wj; > 6 for some threshold 0.
As matter of principle, choose the wrong way.
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SONETs

Influence of network structure on synchrony

Simulate network of excitatory phase response curve neurons.
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%:w, F(0) Y0 Wy 3 6(t— TH) + 0€(1)

J#i k

Measure steady state synchrony with order parameter.
1 N synchrony = 0 = asynchrony
_ - i0; _ ~
synchrony = N Z e'’i synchrony 1 = complete syn

j=1 chrony

f = phase response curve, Tj" = time of kth spike of neuron j, S =
coupling strength, w = intrinsic frequency, £(t) = white noise
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SONETs

Does common input influence synchrony?

One idea: common input connections should encourage synchrony.

O

Intuition from feedforward networks:

common input
= correlated input
= correlated output
= more correlated input downstream
= development of synchrony

Test for recurrent networks through simulations of second order

networks model.
C.-Y. Liu, DAM NUK Models of Neuronal Networks



SONETs

Simulation with divergence

If fix aothers, Synchrony doesn'’t appears to be a function of the
frequency of divergences even increasing the coupling strength J.

1

Synchrony

Don't see evidence for strong effect of divergence.
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Simulation with chains

If fix aothers, Synchrony appears to be a function of the coupling
strength J and the frequency of chains.
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Chains, not common input, highly influence synchrony.
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SIS

» Mechanism? Why the effects of divergence on feed-forward
and recurrent networks are so different?

> Kinetic theory model for recurrent? How to develop models to
capture the effect of chain on synchrony?
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SOFFNETs

In the same framework, we can construct second order structures
in Feed-forward networks. (No reciprocal)

b X,
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SOFFNETSs: Formalism

Pr(WE"" =1)=»p
Pr(W; ™ =1, W3 ™ = 1) = p*(qtconv + 1)
Pr(WR" = 1L, W= = 1) = p*(agy + 1)
Pr(W;> =1, W 72 =1) = p*(achain + 1)

Comparing this formalism to old connectivity statistics, we have

Wt = pN
W? = p*(agi, + 1)N
B = P(]- + adiv)
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SONETs

Effect of convergence and divergence on FF networks

Effect on firing rate

Firing rate
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Both convergences and divergences can influence the transmission
of firing rate.
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SONETs

Effect of convergence and divergence on FF networks

Effect on cross-correlation

cross correlation
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Both convergences and divergences can influence the transmission

of cross-correlation.
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Kinetic Theory Model?

In the case of uncorrelated in- and out-degree (i.e. achain = 0), the
idea is the maximum entropy distribution P(Ny, Na, N3)

S(Py=— > P(Ny, No, Ns)inP(Ni, Nz, N3)
Ni+Ny+Ns<N
maximized under the following constraint,
ENy = N[p — p*(1 + cai)]
ENz = Np*(1 + agi)
ENs = N[p — p*(1 + aqiv)]
E(N1 + No)? = Np(1 — p) + N(N — 1)p*acon, + N?p?
E(Ny + N3)? = Np(1 — p) + N(N — 1)p*acon, + N?p?
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Simulations with chain

(aconw Qdiy achain) = (1-07 1.0, 0'0)(blaCk)
(aconw Qdiy achain) = (1-07 1.0, 0'05)(red)
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Chains highly influence the transmission of firing rate and

cross-correlation
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SIS

» Mechanism of the effect from chains? It shows that chain
plays an important role in information processing.

» Kinetic theory model or other models to capture the effect of
chains?
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Conclusion

>

Kinetic theory model for feedforward networks with simple
structure

Second order networks

v

v

The important role of chain motif
A challenge for kinetic theory model in SONETSs

v
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Ongoing works

» Simple models to investigate the mechanism of chains
» Application of SONETSs to brain functions
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SONETs

Thanks for your attention

Any comment or suggestion is
welcome!!

C.-Y. Liu, DAM NUK Models of Neuronal Networks



	Motivation
	Review of mean-field models
	Kinetic theory models 
	Second order networks

