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How is brain working?

I Novel experiments are revealing the mystery of how brain is
working.

I Imaging techniques: fMRI, EEG, Chemical imaging, etc.

I Multi-electrode recording of parallel spiking of population of
neurons.
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How is brain working?

I How do underlying neuronal networks perform computations?

I How can we reveal the role of network connectivity?
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Theoretical approach

I One possible way of tracking principles or mechanisms is to
propose mathematical models of neural activity at different
space and time scales.

I From analyzing or simulating models to extract new ideas that
can be tested in real experiments.
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Coarse graining

I Basic assumption for mean-field models
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Wilson-Cowan models

I Neural field model

I Ad hoc averaging approach

I Invalid predictions for synchrony

τe
dE

dt
+ E = σeSe(WEEE −WEI I + PE )

τi
dI

dt
+ I = σiSi (WIEE −WII I + PI )

Se/i (x) =
1

1 + exp(
(θe/i−x)
Ke/i
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Population density models

I Spike-density approach
I Quick simulation of spiking networks
I Capturing the reset mechanism of neurons

∂ρk

∂t
= −

∂Jk

∂v
+ δ(v − vreset)J

k (vth, t − τref )

Jk (v , t) = Jkl (v , t) + Jke (v , t) + Jki (v , t)

Jkl (v , t) = −
1

τ
(v − Er )ρ

k (v , t)

Jke (v , t) = νke (t)

∫ v

Ei

Fe(
v − v ′

Ee − v ′
)ρk (v ′, t)dv ′

Jki (v , t) = νki (t)

∫ vth

v
Fi (

v − v ′

Ei − v ′
)ρk (v ′, t)dv ′

rk (t) = Jk (vth, t)

νke/i (t) = νke/i,o(t) +
∑

j∈PE/I

Wjk

∫ ∞
0

αjk (t
′)r j (t − t′)dt′
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Why kinetic theory models?

I Multielectrode recording reveals the importance of
cross-correlation among population activity in the encoding
and decoding aspects of neural systems.

I To improve mean-field models so that they can capture higher
order dynamics of neural systems.
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Distill connectivity patterns

I To develop kinetic theory models to capture cross-correlation,
we need to distill connectivity patterns down to second order
features.

I Unfortunately, it is still not clear what these key second order
features should be.
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Distill connectivity patterns in Feedforward networks

For the first try, we have considered feedforward networks.
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Distill connectivity from common input idea

I Two connectivity statistics
I W 1: the average number of presynaptic neurons that project

onto a postsynaptic neuron
I W 2: the average number of presynaptic neurons that

simultaneously project onto a pair of postsynaptic neurons
I Distill connectivity down to 2-parameter space

(W 1, β = W 2/W 1)

C.-Y. Liu, DAM NUK Models of Neuronal Networks
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Kinetic theory model of feed-forward networks

I Assume the input for any pair of neurons as correlated
Poisson process (CPP).

I Impose conditional independence structure for CPP. In this
way, we have a 2-parameter statistical model of CPP with first
and second order population activity as parameters.

I Compute the first and second order activity by population
density equations.

I Derivation of output-input coupling equation from above
model of CPP and two distilled connectivity statistics.
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Kinetic theory model of feed-forward networks

Population density equations:

∂ρk

∂t
(v1, v2, t) =

1

τ

∂

∂v1

[
(v1 − Er )ρ

k (v1, v2, t)
]
+

1

τ

∂

∂v2

[
(v2 − Er )ρ

k (v1, v2, t)
]

+
∑
m

νm,0(t)

[∫ v1

vreset

fmA(v1 − θ1)ρk (θ1, v2, t)dθ1 − ρk (v1, v2, t)
]

+
∑
m

ν0,m(t)

[∫ v2

vreset

fmA(v2 − θ2)ρk (v1, θ2, t)dθ2 − ρk (v1, v2, t)
]

+
∑
m,n
m≥1
n≥1

νm,n(t)

[ ∫ v1

vreset

∫ v2

vreset

fmA(v1 − θ1)fnA(v2 − θ2)ρk (θ1, θ2, t)dθ2dθ1

− ρk (v1, v2, t)
]

+ δ(v1 − vreset)J
k
reset,1(v2, t) + δ(v2 − vreset)J

k
reset,2(v1, t)

+ δ(v1 − vreset)δ(v2 − vreset)J
k
reset,3(t).
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Test connectivity hypothesis and validity of kinetic theory
model

I Evidence from Monte Carlo simulation
I The performance of kinetic theory model

C.-Y. Liu, DAM NUK Models of Neuronal Networks
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Recurrent networks of homogeneous population of neurons

Question: Is common input idea sufficient for recurrent networks?

Answer: No!!

C.-Y. Liu, DAM NUK Models of Neuronal Networks
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More second order connectivity motifs

Extend common input motif to more second order motifs with
shared neurons.

Pr(Wij = 1) = E (Wij) = p ij

αrecip =
cov(Wij ,Wji )

p2

j i

reciprocal
connection

αconv =
cov(Wij ,Wik )

p2 i

kj

convergent
connection

αdiv =
cov(Wij ,Wkj )

p2

j

ki

divergent
connection

αchain =
cov(Wij ,Wjk )

p2

k

j

i

chain
connection
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Selection of directed graph model with given network
parameters

Network parameters: N, p, αrecip, αconv , αdiv , αchain

Problem: There are many such probability distribution with given
second order statistics.

Solutions:

1. The right way
Choose the probability distribution with least structure, i.e.,
the maximum entropy solution. (Ising model.)

2. The wrong way
Use a joint Gaussian distribution to define W̃ij and let Wij = 1
if W̃ij > θ for some threshold θ.

As matter of principle, choose the wrong way.

C.-Y. Liu, DAM NUK Models of Neuronal Networks
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Selection of directed graph model with given network
parameters

Network parameters: N, p, αrecip, αconv , αdiv , αchain

Problem: There are many such probability distribution with given
second order statistics.

Solutions:

1. The right way
Choose the probability distribution with least structure, i.e.,
the maximum entropy solution. (Ising model.)

2. The wrong way
Use a joint Gaussian distribution to define W̃ij and let Wij = 1
if W̃ij > θ for some threshold θ.

As matter of principle, choose the wrong way.
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Influence of network structure on synchrony

Simulate network of excitatory phase response curve neurons.

dθi
dt

= ωi +
J

pN
f (θi )

∑
j 6=i

Wij

∑
k

δ(t − T k
j ) + σξ(t)

Measure steady state synchrony with order parameter.

synchrony =
1

N

∣∣∣∣∣∣
N∑
j=1

e iθj

∣∣∣∣∣∣
synchrony = 0 ⇒ asynchrony
synchrony = 1 ⇒ complete syn-
chrony

f = phase response curve, T k
j = time of kth spike of neuron j , S =

coupling strength, ω = intrinsic frequency, ξ(t) = white noise

C.-Y. Liu, DAM NUK Models of Neuronal Networks
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Does common input influence synchrony?

One idea: common input connections should encourage synchrony.

Intuition from feedforward networks:

common input
⇒ correlated input
⇒ correlated output
⇒ more correlated input downstream
⇒ development of synchrony

Test for recurrent networks through simulations of second order
networks model.

C.-Y. Liu, DAM NUK Models of Neuronal Networks
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Simulation with divergence

If fix αothers, synchrony doesn’t appears to be a function of the
frequency of divergences even increasing the coupling strength J.
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Don’t see evidence for strong effect of divergence.
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Simulation with chains

If fix αothers, synchrony appears to be a function of the coupling
strength J and the frequency of chains.
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Chains, not common input, highly influence synchrony.
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Issues

I Mechanism? Why the effects of divergence on feed-forward
and recurrent networks are so different?

I Kinetic theory model for recurrent? How to develop models to
capture the effect of chain on synchrony?

C.-Y. Liu, DAM NUK Models of Neuronal Networks
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SOFFNETs

In the same framework, we can construct second order structures
in Feed-forward networks. (No reciprocal)

C.-Y. Liu, DAM NUK Models of Neuronal Networks
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SOFFNETs: Formalism

Pr(W s,s−1
jk = 1) = p

Pr(W s,s−1
jk = 1,W s,s−1

ji = 1) = p2(αconv + 1)

Pr(W s,s−1
jk = 1,W s,s−1

ik = 1) = p2(αdiv + 1)

Pr(W s,s−1
jk = 1,W s−1,s−2

ki = 1) = p2(αchain + 1)

Comparing this formalism to old connectivity statistics, we have

W 1 = pN

W 2 = p2(αdiv + 1)N

β = p(1 + αdiv )

C.-Y. Liu, DAM NUK Models of Neuronal Networks
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Effect of convergence and divergence on FF networks

Effect on firing rate

Both convergences and divergences can influence the transmission
of firing rate.

C.-Y. Liu, DAM NUK Models of Neuronal Networks
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Effect of convergence and divergence on FF networks

Effect on cross-correlation

Both convergences and divergences can influence the transmission
of cross-correlation.

C.-Y. Liu, DAM NUK Models of Neuronal Networks
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Kinetic Theory Model?

In the case of uncorrelated in- and out-degree (i.e. αchain = 0), the
idea is the maximum entropy distribution P(N1,N2,N3)

S(P) = −
∑

N1+N2+N3≤N
P(N1,N2,N3)lnP(N1,N2,N3)

maximized under the following constraint,

EN1 = N[p − p2(1 + αdiv )]

EN2 = Np2(1 + αdiv )

EN3 = N[p − p2(1 + αdiv )]

E (N1 + N2)2 = Np(1− p) + N(N − 1)p2αconv + N2p2

E (N2 + N3)2 = Np(1− p) + N(N − 1)p2αconv + N2p2

C.-Y. Liu, DAM NUK Models of Neuronal Networks
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Simulations with chain

(αconv , αdiv , αchain) = (1.0, 1.0, 0.0)(black)

(αconv , αdiv , αchain) = (1.0, 1.0, 0.05)(red)

Chains highly influence the transmission of firing rate and
cross-correlation

C.-Y. Liu, DAM NUK Models of Neuronal Networks
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Issues

I Mechanism of the effect from chains? It shows that chain
plays an important role in information processing.

I Kinetic theory model or other models to capture the effect of
chains?

C.-Y. Liu, DAM NUK Models of Neuronal Networks
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Conclusion

I Kinetic theory model for feedforward networks with simple
structure

I Second order networks

I The important role of chain motif

I A challenge for kinetic theory model in SONETs

C.-Y. Liu, DAM NUK Models of Neuronal Networks



Outline
Motivation

Mean-field models
KT models

SONETs

Ongoing works

I Simple models to investigate the mechanism of chains

I Application of SONETs to brain functions

C.-Y. Liu, DAM NUK Models of Neuronal Networks
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Thanks for your attention

Any comment or suggestion is
welcome!!

C.-Y. Liu, DAM NUK Models of Neuronal Networks
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