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Traditionally, we consider treatment effect as fixed and estimate   

sample size of a trial to reach desired power. 

 

In this presentation, assuming Phase II data are available, we try 

different ways to evaluate sample size for a Phase III trial under 

various random treatment effects.   
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“Sample size and probability of a successful trial”  

by Chuang-Stein C  (Pharmaceutical Statistics 2006) 

  

This paper describes the distinction between the concept of 

statistical power and the probability of getting a successful 

trial. .... discusses a framework to calculate the „average success 

probability‟ and demonstrates how uncertainty about the 

treatment effect could affect the average success probability for a 

confirmatory trial. ...........Computer codes (R and SAS) to 

calculate the average success probability are included.  
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Outline: 

1. Review the use of conditional power/average power in     

a Phase III trial. 

2. Extend the same idea to Phase III trial sample size 

evaluation under a normal prior distribution based upon 

the Phase II data. 

3. Consider other prior distributions. 
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A brief review of CP in a Phase III trial 

 

Consider the distribution theory for a one-sample problem. 

  

The mathematics behind a one-sample problem is very 

straightforward and easy to understand.  Extension of the 

idea (not the mathematics) to the two-sample case needs only 

slight modifications. 
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Compare a new treatment T with a control treatment C. 

 

Suppose YT ~ N(μT, σ
2
) and YC ~ N(μC, σ

2
), then  

X= (YT - YC)/2 ~ N(Δ,1), where Δ = (μT - μT)/ 2.   

 

In other words, if we pair responses YT and YC, and 

“standardized” the difference by X= (YT - YC)/2, then 

the 2-sample problem becomes an 1-sample problem. 
 

 

X has mean  and variance 1. A positive response  favors 

the new treatment. To simplify our discussion, we assume the 

X‟s are normally distributed.  The theory applies to responses 

different from normal if the sample size is “LARGE”. 
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“Trend of the data” – The partial sum process 

 

Let X1, X2, …., Xn ,….be iid N(,1). Define Sn = X1+ X2+ ….+ Xn.   

 

Then ESn = n Δ and Var(Sn) = n.  

 

The expectation is a linear function of the variance. 

 

Good news: This linear relationship gives us an easy tool to “predict” the 

future outcome conditional on accumulating data.  

 

Bad news: The prediction depends on the treatment effect Δ which is 

unknown to us.  

 

n

In clinical trials, we do not report the partial sums.

The interim test sta Z(n)tisti  = Sc is / n.  
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Example: To design a clinical trial, we test the hypothesis  

H0: Δ = 0 versus Ha: Δ > 0. 

 

If we take an one-sided α = 1.96 and 85% power (β = 0.15), 

how many patients do we need to reach a 85% power? 

 

NZ(N) = S / N.

EZ(N) = NΔ/ N  = NΔ.
 

 

Let us assume that the treatment effect Δ = Δ1 = 0.2.  

Solve for N from the equation: 

1 α β = 1.96+1.EZ(N) = NΔ  04 = 3, N == z +z   225.  
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1 1

1 α β

For a given  = , the drift parameter is θ = E(Z) N .

To evaluate sample size N, solve N from  

θ = E(Z) N =  z  + z   1.96  1.04  3.0.(85% power)

   

    
  

 

1 = 0.5   0.2     0.1      0.05     0.01      0 

 

N  =  36   225   900     3600   90000     

 

 

A fundamental equation for sample size evaluation for a fixed design: 

 = EZ = z + z. 

 

(Change zβ to 0.84 for 80% and 1.28 for 90%.)  
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For a sequential design, the drift parameter  required for power 1- will 

be slightly larger than zα+z. To find the value  in the sequential setting, 

use software (free) created by Professor DeMets of University of 

Wisconsin – Madison.  

 

http://www.biostat.wisc.edu/People/faculty/demets.htm 

 

http://www.biostat.wisc.edu/People/faculty/demets.htm
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The trend of the data = Δ 

(Partial sums) 
                       X1, X2, …., Xn,   Xn+1,….. XN 

Unconditional   random   random 

 Conditional    fixed   random 
 

        

     SN            =      Sn     +    (SN – Sn) 

 Unconditional ESN    =      nΔ +    (N-n)Δ 

 Variance            Var(SN)    =      n       +    (N-n) 

Conditional     EC(SN)    =      Sn      +    (N-n)Δ   (Δ=?) 

 Variance            VarC(SN) =      N-n 

 

Interim analysis 
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The trend of the data = θ  (B-values) 

 

 

1N Δ θ 3   

n N 0    1    2    3    
... 

EZ(n) 

n  

 

 

(n, Z(n) )(  ,  Z)(  ,  B)   where =n/N  & B = Z . 
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Example:  
 

 

.4

1 .4

τ

Δ=0.2 ,  = NΔ=3  N=225.

when  n=90  ,  Z =2.846

CP(θ) = P(Z 1.96 Z =2.846, θ) = ?

τ = 90/225 = 0.4; B  = 2.846 τ .

θ

=1.8




 

 

Note that Z1 = B1. To evaluate CP(θ): 

1. Find EC(Z1).  VarC(Z1) = 1-. 

2. Find PC(Z1≥1.96). 
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From conditional power (CP) to predictive power (PP) 
 

=0.4, Z=1.6. 
 

-2.0 SD 0.0433 

-1.5 SD 0.1353 

-1.0 SD 0.3124 

-0.5 SD 0.5491 

Empirical 0.7690 

+0.5 SD 0.9112 

+1.0 SD 0.9750 

+1.5 SD 0.9950 

+2.0 SD 0.9993 
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Weighted average of CP (=0.4, Z=1.6) 

 

 

 

 

 

 

 

 

 

 

 
0.1x0.3124+0.2x0.5491+0.4x0.7690+0.2x0.9112 

+0.1x0.9750 = 0.7284 

-2.0 SD 0.0433 0 

-1.5 SD 0.1353 0 

-1.0 SD 0.3124 0.1 

-0.5 SD 0.5491 0.2 

Empirical 0.7690 0.4 

+0.5 SD 0.9112 0.2 

+1.0 SD 0.9750 0.1 

+1.5 SD 0.9950 0 

+2.0 SD 0.9993 0 
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Predictive power (considers  as random) 
 

Note that E = B/ is a point estimate of  . If we  

consider  as random with distribution function G  

 

PP = PP[, B, G()] =  CP(, B, ) dG()  

= CP(, B, ) g() d   

 

(Note that we did not introduce a prior distribution and 

went directly to the posterior distribution of .) 
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A reasonable choice of G (for a fixed n) 

 

n

n

E

Since X  is N( , 1/n) ,

let us consider  to be N(X , 1/n).

This is equivalent θ = N  is N(θ ,  t 1o / ).






 

 

n

Conceptually, this is similar to calling 

[X 1.96 1/n ] a 95% c.i. for .  
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If G* is taken to be N(E, 1/), then 

E

E
E

( 1.96)
PP( , B , G*) = [  ].

1

Compare this expression with

1.96
CP( , B , ) = [  ].

1










 
















 

 

Reference:  
Lan KKG, Hu P, Proschan MA (2009) “A conditional power approach to the 

evaluation of predictive power.” Statistics in Biopharmaceutical Research;  1: 

131-136.  



LAN (Joint2011) Page 22 

 

Two-sample comparisons,  Comparison of two means 

 

ο x y a x y

2

1 2 M X

2

1 2 M Y

M M M

M M i i i i1 1 1
(N)

x y x y

(N)

H :μ = μ       vs     H :μ  > μ  

X ,X ,...,X    iid  N(μ ,σ )
          N=M+M=2M

 Y , Y ,... ,Y    iid  N(μ ,σ )

X - Y (X -Y )X -Y
Z = = =

1 1 σ M+M σ Nσ +
M M

μ -μ μ -μN 1 1
θ=EZ = = N ×

σ 4 σ 2 2

  

 

 

 

 

 

 

treatment 

difference 

sample 

size 

two-

sample 

factor 
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1 1
 EZ = SS/4 = SS x  =  SS two-sample factor.

2 2
  

 

 

For a given Δ=Δ1, From the equation:  

EZ = Δ1 √(SS/4) = zα + zβ = 1.96 + zβ.           

 

We may solve for sample size SS (for desired power 1 - ) OR,  

Solve for power 1 -  for given sample size SS.  

         

I will use notations SS = M for a Phase II study and SS = N for Phase III. 
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Use average power to design a Phase III trial  

 

 

 

 

 

 

 

 

0  1 

  (, B) 

B/τ 

Z1 = B1 = B + (B1 - B). 

 is the drift parameter 

Slope =  

Phase II Phase III 
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To design a Phase II trial, we may not have a good estimate of Δ. 

Sample size m may depend on the budget, or, we might just pick a 

“reasonable” value of m. 

At the end of Phase II, we observed  

II
II II II T C

Δ
Z =  = Δ M/4 .   {Δ =(X  - X )/σ}                  (Eq 2)

4/M  

(1.1) If ZII < 0, stop the program. 

(1.2) If ZII > 0  and statistically significant, ????????? 

(1.3) If ZII > 0 and ΔII looks “promising”, use ΔII to design Phase III. 

Note that ZII may not be statistically significant. 
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We consider case (1.3) only for determination of N in Phase III. 

Two different approaches (fixed and random): 

A fixed treatment effect approach 

Consider Δ = ΔII (observed in Phase II) as fixed.  

Let α = one-sided 0.025 and power = 1-β. 

Solve for sample size N from  

EZ(N) = ΔII√(N/4) = 1.96 + zβ.    

The fixed approach has been used extensively in Phase III sample 

size evaluation. Many people feel that it contributes to the fact that 

many Phase III studies were under-sized.  
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A random treatment effect approach 

As an alternative to the fixed approach, one may try to consider Δ as 

random then consider the “average power”.  (Bayesian???) 

Example of average power (ΔII=0.3, N=400): 

Δ = x = 0 .1 .2 .3 .4 .5 .6 

Weight=prob. .05 .1 .2 .3 .2 .1 .05 

Fixed power 2.5% 16.8% 52.6% 85% 97.9% 99.9% 100% 

Average power = 72.2% < 85%. (symmetric weights, prior belief) 

In general, how do we assign distribution for Δ? 

If Δ is continuous with density g, average power = ∫ power(x)g(x)dx. 
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Prior distribution of Δ in Phase III  

II
II II II T C

Δ
Z =  = Δ M/4 .   {Δ =(X  - X )/σ}              (Eq 2)

4/M  

 

It is common that we consider [ΔII – 1.96 √(4/M), ΔII + 1.96 √(4/M)] 

as a 95% confidence interval for Δ.  

This is similar to assuming Δ ~ N(ΔII, 4/M). 

 

Under normality, we use N(ΔII, 4/M) to evaluate “average power”: 
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In the following slides,  

“fixed power” = “power” = power of a Phase III study 

derived from the fixed approach; 

“average power” = power from a random approach. 

Default distribution: Δ ~ N(ΔII, 4/m).
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Let M = sample size of a Phase II study, ZII = the observed Z-

value,  ΔII is observed treatment effect.   

For the Phase III trial with one-sided α =.025, the desired fixed 

power is 1-β = Φ(zβ).  

N = sample size is chosen to reach fixed power 1-β.  N satisfies  

zβ = ΔII √(N/4) -1.96.        

 

An interesting result:  

If τ = M/(M+N), then average power = Φ(zβ√τ).    

 

A simple mathematical expression with serious problems in application!
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Example: In Phase II, M=100, ΔII = .125 and ZII = 0.625. 

To reach 85% fixed power, N=2304 and τ = 100/2404 ≈ 0.04. 

(power = 85%  β = 0.15 and zβ = 1.04.) 

Average power = Φ(zβ√τ) = Φ(1.04√.04) = Φ(.208) ≈ 58%. 

 

If sample size N is increased to 5000, then  

Fixed power ≈ 99.3% ,τ ≈ .02 and average power ≈ 64%. 

 

If sample size N is increased to 20000, then  

Fixed power = Φ(6.88) ≈ 1, τ ≈ .005 and average power ≈ 69%. 

Average power will not approach 1 as N→∞. 
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Some interesting results: 

 

Pick any sample size N.  When Δ = ΔII is considered fixed,   

β = 1 -  Φ[ΔII √(N/4) -1.96] and τ =M/(M+N) are known.  

It can be shown that average power = Φ(zβ√τ)  ≤ Φ(zII). 

 

In the example above, ZII = .125 √(100/4) = .625. 

Average power ≤ Φ(.625) ≈  73%. 

When N→∞, average power → Φ(zII). 

 

Note that in our example,  Δ ~ N(.125, .040) & P[Δ ≤ 0] = 27%. 

When Δ = x = 0, power = 2.5%.  Power for x<0 is ≈ 0. 
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Prior distribution for Ph2=0.25;

 

  

Average power 

Fixed  0.85 

N(, ) .655 

Gamma with mean  and variance  .603 

Gamma with mode  and variance  .828 

N(, ) truncated to (0, ) .732 
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Sample size required under three different approaches to sample size calculation  

(Phase 2=0.22, the sample size M in Phase 2=96,  Z Phase 2=1.08 and one-sided =0.05) 
 

Power 

Sample size 

 

 

Fixed 

effect 

 

Average power 

calculated from a 

truncated normal 

prior (TAP) 

Average 

power 

calculated 

from a new 

prior  

0.8 512 826 662 

0.85 596 1332 800 

0.90 710 2640 990 

0.95 896 8890 1304 
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A new approach (compromise) 

 

Find N so that traditional (fixed effect) power = 1-. 

 

Power (fixed) = (z)=(z1) 

 

Average power (normal prior) = (zw),  w=M/(M+N) 

 

 

Find a prior so that  

Average power (new prior) = (z(w+1)/2) 

 

Find a new N* so that average power (new prior) = (z(w+1)/2). 
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Sample size required under three different approaches to sample size calculation  

(Phase 2=0.22, the sample size M in Phase 2=96,  Z Phase 2=1.08 and one-sided =0.05) 
 

Power 

Sample size 

 

 

Fixed 

effect 

 

Average power 

calculated from a 

truncated normal 

prior (TAP) 

Average 

power 

calculated 

from a new 

prior  

0.8 512 826 662 

0.85 596 1332 800 

0.90 710 2640 990 

0.95 896 8890 1304 
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Final Comments 

 

Solicit prior distribution from clinicians if possible. Use their choice 

as prior to pick sample size N. 

 

We do not start a Phase III trial unless ΔII is “promising”. Therefore, 

there is a hidden bias (over-estimate) of Δ in Phase III studies.  
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THANK YOU! 


