Bridging Deep Learning and Statistical Dimension

Reduction: An SNN-PCA Framework for Efficient

Learning

周珮婷

國立政治大學統計學系

Abstract

Deep learning models offer strong predictive capability but are often criticized for high computational cost and limited interpretability, particularly in data analysis. This study introduces a statistically grounded framework that integrates Siamese Neural Networks (SNNs) with Principal Component Analysis (PCA) to enhance representation learning and model efficiency. The SNN is employed as a nonlinear feature extractor that maps high-dimensional inputs into a latent space with improved class separability. These learned representations are then incorporated into classical statistical learning models to strengthen anomaly detection and classification performance. PCA is further applied to SNN-derived features and network weight structures to quantify contribution, reduce dimensionality, and prune redundant neurons. Empirical studies demonstrate that the SNN–PCA framework improves F1-score and balanced accuracy while substantially reducing network complexity. This work illustrates how statistical dimension reduction can be synergistically combined with deep learning to deliver interpretable, computationally efficient, and high-performing models for structured data applications.

Keyword: Siamese Neural Networks (SNN), Principal Component Analysis (PCA), Dimensionality Reduction, Classification, Network Pruning