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Theorem 1 (Lindeberg—Lévy Central Limit Theorem). Let {X,,} be a sequence of iid
RVs with 0 < var(X,) = ¢* < oo and common mean 4. Let S, = > | X;, n=1,2,....
Then for every x € R
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https://openviewpartners.com/blog/7-inconvenient-truths-about-big-data/

John Wright and Yi Ma
High-Dimensional
Data Analysis

Nevertheless, data-rich does not necessarily imply “information-rich,” at least
not for free. Massive amounts of data are being collected, sometimes without

with

Dat Informati Irrelevant Dat Low-Dimensional
ata = Information + Irrelevant Data. Models

Principles, Computation, and Applications
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R Session Aborted

R encountered a fatal error.

The session was terminated.

Start New Session

Gaussian process regression: 0(n3)

3.8GHz i7 CPU
64GB ram

n = 100,000
d=28
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FIG. 1. Panels 1-3: interpolator in solid blue and actual function in dotted black with collected
data indicated by black dots.
f(x) =exp{(x +1/2)%} sin(exp{(x +1/2)*})

®(x —y) =exp{—(x — y)*}

Ben Haaland. Peter Z. G. Qian. "Accurate emulators for large-scale computer experiments."
Ann. Statist. 39 (6) 2974 - 3002, December 2011. https://doi.org/10.1214/11-A0S929 ‘



The more the better?

. Variable selection

. Sufficient statistics

- Max pooling layer

. Stochastic gradient descent

Representative
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What Information?

Data-rich # Information-rich

Information is objective-dependent

Here, two types of information from the data:
Conditional distribution
- Joint distribution



Conditional Distribution of

X,

X41X5, ...

Ma et al. (2015)
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Joint Distribution of X4, ..., ), ¢

* What 1s similar?
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Two Objectives

Conditional distribution of X; | X, ..., X,

Model-dependent subsampling
Model-free subsampling

Joint distribution of X3, ..., X,

Model-free subsampling



Model—dependent

Model-free

-©

-©

Conditional Distribution

Wang, H., Yang, M., and Stufken, J. (2019), “Information-based Optimal
Subdata Selection for Big Data Linear Regression,” Journal of the
American Statistical Association, 114, 393-405

M.-C. Chang (2023). " Predictive Subdata Selection for Computer
Models”, Journa/ of Computational and Graphical Stat/st/cs 32, 613-630.
DOI: 10.1080/10618600.2022.2097247. SPECA /R P /Iy
2 https://spec.ntu.edu.tw/20230901-research-math/]

Joseph, V. R., and Mak, S. (2021), “Supervised Compression of Big Data,”
.gtla7t152t/2cgal Analy515 and Data Mining: The ASA Data Science Journal 14

.-C. Chang (2024). “Supervised Stratified Subsampling for Predictive
Analytics”, Journa/ of Computational and Graphical Statistics, to appear.
DOI:10.1080/10618600.2024.2304075.
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Reqgression problem / Supervised learning

Unveil the blackbox among features/variables

A

 NATA Statistical model fitting
- I] (Linear model, Gaussian process regression, etc.)

LILS

d

fx) = - Z sin(z;)sin®™

i=1




Conditional Distribution

Model-Dependent Subsampling
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Information-Based Optimal Subdata Selection for Big Data Linear Regression

HaiYing Wang?, Min Yang®, and John Stufken¢

3Department of Statistics, University of Connecticut, Storrs, Mansfield, CT; "Department of Mathematics, Statistics, and Computer Science, University of

lllinois at Chicago, Chicago, IL; “School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ

ABSTRACT

Extraordinary amounts of data are being produced in many branches of science. Proven statistical methods
are no longer applicable with extraordinary large datasets due to computational limitations. A critical step
in big data analysis is data reduction. Existing investigations in the context of linear regression focus on
subsampling-based methods. However, not only is this approach prone to sampling errors, it also leads to
a covariance matrix of the estimators that is typically bounded from below by a term that is of the order of
the inverse of the subdata size. We propose a novel approach, termed information-based optimal subdata
selection (IBOSS). Compared to leading existing subdata methods, the IBOSS approach has the following
advantages: (i) it is significantly faster; (ii) it is suitable for distributed parallel computing; (iii) the variances
of the slope parameter estimators converge to 0 as the full data size increases even if the subdata size is fixed,
that is, the convergence rate depends on the full data size; (iv) data analysis for IBOSS subdata is straightfor-
ward and the sampling distribution of an IBOSS estimator is easy to assess. Theoretical results and extensive
simulations demonstrate that the IBOSS approach is superior to subsampling-based methods, sometimes
by orders of magnitude. The advantages of the new approach are also illustrated through analysis of real
data. Supplementary materials for this article are available online.

ARTICLE HISTORY
Received June 2016
Revised August 2017

KEYWORDS
D-optimality; Information
matrix; Linear regression;
Massive data; Subdata
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2. The Framework

Let (zy, ¥1), ..., (z,, y,) denote the full data, and assume the
linear regression model:

p
yi:ﬁ0+z;'llﬁl+8i:ﬁ0+zzi}'ﬁj‘|—8h i=1,...,n

i=1

(1)
where pBy is the scalar intercept parameter, B, =
(B1. B2, - ... ﬁp)’r is a p-dimensional vector of unknown
slope parameters, z; = (21, .. ., Zip )T is a covariate vector, y; 1s

a response, and ¢; is an error term. We write x; = (1, zfl)l,

B= (BB,  Z=(z.....z)", X=(x.....x)",
y = (y1,...,y,)", assume that the y;’s are uncorrelated given
the covariate matrix Z, and that the error terms g;s satisfy

E(g;) = 0and V(g;) = o?.

1 -1 M
Br=(2_xx ) Do
i=1 i=1
3

1 7
Mf:;zx‘xf
i=1
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In our framework, for given full data of size n, the D-
optimality criterion suggests the selection of subdata of size k
so that

4 iﬁ;zk

i=1

n
§ T
3,‘](,‘](1-

i=1

t
8, = argmax
5

Obtaining an exact solution is computationally far too expen-
sive. In working toward an approximate solution, we first derive
an upper bound for |[M(8)| which, while only attainable for very
special cases, will guide our later algorithm.

Theorem 2 (D-optimality). For subdata of size k represented by
3,

fp+1 P ,
IM(8)| < TSy (Zamj — zyj)°s (17)
j=1
where z(,); = max{z;. z2j,....2,j} and z); = min{z;,
Zj, ..., 2y} are the nth and first-order statistics of
Zij, Z2j - .- Zuj- 1If the subdata consists of the 27 points
(al,...,ap)T where a; = z(,; or zyy;, j=1,2,..., p, each

occurring equally often, then equality holds in (17).
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For the result in (22), it can be shown from the proof that

p
— - _ B 2
KF'(1—nY) —F '(n 1]

V(BPIZ) =p i=1,....p.

What we find more interesting is the fact that, when k is fixed,
from Theorems 2.8.1 and 2.8.2 in Galambos (1987), z(,—r41); —
Z(r)j goes to infinity with the same rate as that of z(,); — z();.
Thus, the order of the variance of a slope estimator is the inverse
of the squared full data sample range for the corresponding
covariate. If the sample range goes to o¢ as n — o0, then the
variance converges to 0 even when the subdata size k is fixed.
This suggests that subdata may preserve information at a scale
related to the full data size. We will return to this for specific
cases with more details. In the remainder of this section, we
focus on the case that both p and k are fixed.
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Table 3. Estimation results for the CSFIl data. For the D-OPT IBOSS method, the sub-

datasize is k = 10p = 50. n = 1287
D-OPT FULL
Parameter Estimate Std. Error Estimate Std. Error
Intercept 33.545 46.833 45.489 11.883
Age —0.496 1.015 —0.200 0.234
BMI —0.153 0.343 — 0.521 0.224
Fat 8.459 0.405 9.302 0.115
Protein 5.080 0.386 4,254 0127
Carb 3.761 0.106 3.710 0.035
=
":, —— D-OPT
“ <= UNI
@5 -%- LEV
= . FULL |?
2% 1\ %
é ‘ .‘.. -»
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Figure 6. MSEs for estimating slope parameters for the CSFIl data. They are com-
puted from 1000 bootstrap samples.



Lectures of NTUData5010, by CA i Gl Gl (Institute of Statistical Science, Acaderria Sinica)

Gaussian Process Regression

« Gaussian process regression (GPR):
p
y = Bg;®) +2(x)+e
j=1

* Z(x) isa Gaussian process (GP)

* For any L =1, any choice of xq,...,x;, the vector (Z(x,),...,Z(x;)) has a multivariate
normal distribution

*  Determined by its mean function and covariance function
« u(x)=E[Z(x)]and C(x,x") = cov(Z(x),Z(x"))

« Stationary: the joint distribution of Z(x,),...,Z(x;) Is identical to that of
Z(x;+h),..,Z(x, + h) forany L, any x4, ..., x;,any h


https://sites.google.com/view/mcchang/

R Session Aborted

R encountered a fatal error.

The zessicn was terminated.

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS
2023,VO0L. 32, NO. 2,613-630
https://doi.org/10.1080/10618600.2022.2097247

Predictive Subdata Selection for Computer Models

Ming-Chung Chang

Institute of Statistical Science, Academia Sinica, Taipei, Taiwan

ABSTRACT

An explosion in the availability of rich data from the technological advances is hindering efforts at statis-
tical analysis due to constraints on time and memory storage, regardless of whether researchers employ
simple methods (e.g., linear regression) or complex models (e.g., Gaussian processes). A recent approach
to overcoming these limits involves information-based optimal subdata selection and Latin hypercube
subagging. In the current study, we develop a novel subdata selection method for large-scale computer
models based on expected improvement optimization. Numerical and empirical analysis using real-world
data are used to select subdata by which to derive accurate predictions. During the optimization procedure,
the proposed scheme employs the geometry of the input feature region as well as information related to
outputvalues. The data points associated with the largest improvement in prediction accuracy are combined
in the construction of a subdataset that can be used to formulate predictions with affordable computing
time. Supplementary materials for this article, including proofs of theorems and additional numerical results,
are available online.
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Methodology

* Expected improvement (El) optimization

e Different from the traditional El
* Purpose = Prediction
* Output values available outside the subdata

* The proposed criterion for subdata selection
* No: GPR outputs at xy = (xl-l, ...,xik)
* t,: true outputs (known) at x5 = (x;, )

. xik

* Discrepancy function: I(xy) = (9o — to) (Mo — to)
* Conditional expectation:

E[I(xp)|y] = tr(Zn) + (Elmolyl — to)" (Elmoly] — to)

= tr(Zn) + (Enolyl — y0)" (Elnoly] — yo) + tr(Ze)



Methodology

xo = (%, ;) -9

E[I(xo)ly] = tr(Zn) + (E[moly] — ¥0)" (Elnoly] — yo) + tr(Ze)

2

E {prediction var. +prediction error* + noise var. }., xi;

k

j=1
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Figure 9. Contour of the Drop-Wave function: black squares for subdata. Upper: true contour. Bottom: fitted contour.
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Image Data

98304 data points 10000 subdata points 10000 subdata points
~ Proposed ~ SPlit

30



Image Data

98304 data points Reconstruction using Reconstruction using
10000 (Proposed) 10000 (SPlit) subdata points
su\bdata points W
~

Fitted by partitioning estimate
(aka regressogram or regression histogram)
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Conditional Distribution

Model-Free Subsampling
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Abstract

The phenomenon of big data has become ubiquitous in nearly all disciplines,
from science to engineering. A key challenge is the use of such data for fitting sta-
tistical and machine learning models, which can incur high computational and
storage costs. One solution is to perform model fitting on a carefully selected sub-
set of the data. Various data reduction methods have been proposed in the liter-
ature, ranging from random subsampling to optimal experimental design-based
methods. However, when the goal is to learn the underlying input-output rela-
tionship, such reduction methods may not be ideal, since it does not make use
of information contained in the output. To this end, we propose a supervised
data compression method called supercompress, which integrates output
information by sampling data from regions most important for modeling the
desired input-output relationship. An advantage of supercompress is that it
is nonparametric—the compression method does not rely on parametric mod-
eling assumptions between inputs and output. As a result, the proposed method
is robust to a wide range of modeling choices. We demonstrate the usefulness
of supercompress over existing data reduction methods, in both simulations
and a taxicab predictive modeling application.

KEYWORDS

clustering, data reduction, experimental design, K-means algorithm, subsampling
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Algorithm 1. supercompress(n, {(X], Yj)}j.\;l): Supervised data reduction via clustering.

Return: reduced data points {(x;, yi)}?zl :

e Perform k-means clustering using two clusters on input features of the big data {X;} ;”; 1> Yielding two cluster
centers in x-space {x1,x>} and partitions {I;,15};

e [nitialize cluster centers D = {x;,x,} and partitions P = {I}, 1 };

e Compute the loss (2) for each partition in 7;

form=1,---.n—2do

e Find the cluster with highest loss i* = argmax;_; . ,,,1 Li:

e Split 1: Perform k-means clustering using two clusters on input features in cluster i*: {X|};e;, , yielding two
cluster centers in x-space {x’,X’};

e Split 2: Perform k-means clustering using two clusters on the response in cluster i*: {y;}jer, , yielding a
partition in the y-space. Let {x*,X*} be the cluster means in x-space for this partition;

e Compute the loss (2) for the two split choices, and choose the cluster centers (x,X) which yield smaller loss;

e Remove from D the old center x;. and add new centers {x*,X*};

e Update the partitions P = {I i}?:f from centers D;

end

35
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Supervised Stratified Subsampling for Predictive Analytics

Ming-Chung Chang

Institute of Statistical Science, Academia Sinica, Taipei, Taiwan

ABSTRACT

Predictive analytics involves the use of statistical models to make predictions; however, the power of these
techniques is hindered by ever-increasing quantities of data. The richness and sheer volume of big data can
have a profound effect on computation time and/or numerical stability. In the current study, we develop
a novel approach to subsampling with the aim of overcoming this issue when dealing with regression
problems in a supervised learning framework. The proposed method integrates stratified sampling and is
model-independent. We assess the theoretical underpinnings of the proposed subsampling scheme, and
demonstrate its efficacy in yielding reliable predictions with desirable robustness when applied to different
statistical models. Supplementary materials for this article are available online.
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* Model-free approach: Chang (2024)

Michalewicz function : True Surface
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* Assume: (i) f (x) is bounded; (ii) Var(Y|x) is bounded; (iii
g(y)is bour(d(e , defined on a compagt |su?oport, and has‘T'¥
to 4% bounded derjvatives. Then, the MISE for the
partitioning estimate f(x) is:

B4 | (70 - r@) ucan =0<5+ 1)

n ' k2

1 2
» Suggest k = n3 = Convergence rate: O(n_E)

logip(n) |2 3 4 5 6 7 8 9 10|
k 4 9 21 46 99 215 464 999 2154 |
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WEC Dataset

* The Wave Energy Converters (WEC) dataset, provided by UCI Machine
Learning Repository (Dua and Graff, 2019)
® Y: total power output
® X: 32 location variables and 16 absorbed power variables (d = 48)
® 288,000 = 252,000 for training + 36,000 for testing (divided by SRS)
® Subdata size: 1,000 }

B =5 40 replications = 40 RMSPEs
Chang(2024)
 Methods: rSSS-k-GL/OL, rSSS-Sed-GL/OL, supercompress, ASMEC, SRS,
Chang(2023)

 Models

* Gaussian process regression (mleHomGP)
® Gaussian correlation function

* k-NN (k = 1 and k = 5, knn.reg)

40



Table 8. Medians of the 40 RMSPEs (bold for the minimum): WEC data.

GP (Gauss) k-NN (k=1) k-NN (k=O0pt)

| ASMEC! 859 minutes 0.04767 0.11672 0.11921
Chang (2023) | 3057 mines  0,01889 0.08165 0.07357
SRS 0.02594 0.07549 0.06566
rSSS-Kmeans-GLS 0.02211 0.05973 0.06169
rsSS-Kmeans-OLS 0.02294 0.05974 0.06172
rSSS-Seq-GLS jgee k. 0.02417 0.06317 0.06411
rSSS-Seq-OLS 0.02457 0.06322 0.06420
SUpercompress’ 0.10003 0.05451 0.06754

75.20 minutes
Desktop computer with a 3.20GHz Intel Corei9 CPU and 128GB of RAM

Chang(2023) not good for k-NN
supercompress usually better for 1-NN (non-smooth model)
Chang(2024) seems more robust

41



Summary

- Wang, Yang, and Stufken (2019)
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Summary

Chang (2023)
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Summary

. Chang (2024)
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= Data splitting techniques: SPlit, Twinning, and Optimal ratio (Slides) (Video)

https://sites.google.com/view/mcchang/teaching?authuser=0

V. Roshan Joseph and Vakayil, A. (2022). “SPlit: An
Optimal Method for Data Splitting”. Technometrics, 64,
166-176. R package: SPlit. (Wilcoxon Award).

V. Roshan Joseph. (2022). “Optimal Ratio for Data
Splitting®. Statistical Analysis and Data Mining: The ASA
Data Science Journal, 15, 531-538. R package: SPIit.

—————————————————————————————————————————————

Vakayil, A. and V. Roshan Joseph (2022). “Data

Twinning“. Statistical Analysis and Data Mining: The ASA
Data Science Journal, 15, 598-610. R package. Python
package.



https://www.tandfonline.com/doi/pdf/10.1080/00401706.2021.1921037?needAccess=true
https://cran.r-project.org/web/packages/SPlit/index.html
https://onlinelibrary.wiley.com/doi/epdf/10.1002/sam.11583
https://cran.r-project.org/web/packages/SPlit/index.html
https://onlinelibrary.wiley.com/doi/epdf/10.1002/sam.11574
https://cran.r-project.org/web/packages/twinning/index.html
https://github.com/avkl/twinning
https://sites.google.com/view/mcchang/teaching?authuser=0

Lectures of NIUDstab010, by Ui Gy G (Institute of Statistical Science, Acadenria Sinica)

» Data structure

bz oes Aoy
Dedo - l: K \(\ 2
Let D= {Z; = [X;, Y]}, € RN be the given dataset, 1:&21 A
where X; is a d — 1 dimensional vector representing the -
d — 1 features in the i’ row, and Y; denotes the correspond- -
ing response value. Assume that each row of the dataset is Ty
independently drawn from a distribution F:
) €9, mulfivariote norwmod
X.Y)<~F, i=1, .. .N.
21, %o, v P 2

* Generalization error

oo D s the timate of B ustng  D*
e = Bxy { LY. 5% 0)1D?)

ﬂran‘v\tmg data
* Estimate of the generalization error

n (“S,Tglﬁ o the Teﬁ}-{-u\m% doct o

e= a2 (16 (x19))

i=1

_ s BELOG, 3 93)}
-?-* W sy ] Lo

= "'\lf]" N - —E% L(Y\‘rg(x'.\;é\) J j = E_
* The estimate of the generalization error will be unbiased if . . _

R as %) Ay
« ByLLN,we have ¢ —2<% ¢ (a5 : alwost quvely)
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Lectures of NTUData5010, by -l i C/nwn Gy (Instituke of Statistical Science, Academia Sinica)

* Mak and Joseph (2018) showed that, under some regularity conditions,

| & — € |< CVED

* ED is the energy distance

2, 2o Sull dato
EDW_ZZHU Zll, - ZZIIU Ull|
1--1 Wt

i=1 j= i=1 j= &%MDSQ‘E
N N
O .
——ZZMZ -7, FoEs
i=1 j=

* Twinning aims to partition a dataset into two disjoint sets such that they have
similar statistical properties. We will call the two sets as twins. The twins needn’t
be of the same size, but they should have similar statistical distributions.

n N-n The twins are obtained by minimizing ﬁn N-n With
EDp N "N = n)lz:,jZ”U = Vjll2 | | respect to D! and D?, that s, L U Unf U3 V-V =Sl
_ e
N-n .
I-:Vr = ar EDH N—n
Z”U Ul { } =1’ { } {U.‘;"g?::r;” ) N
i= lj F)i=1° j=1
—nN— subjectto : {U;}lL, Nn{V; }J\ "=
> 2ZEMV ~Vil>. o
(N - n)* & = (Ui, u{Vi},_, =D. 9)

49



Lectures of NIUDsta5010, by 4 i Gy Gl (Instituke of Statistical Science, Academia Sinica)

Subdata 5 l
: i = B e B = Training « tecting = €2 |
« Algorithm of Twinning ‘) = el = raintng < tegting = €=
Sull data, 132 5 G|
(A) (B)
31 $3 < training ® 31 ®
O3 1-«1.‘-\3 g
2 2
1 L 1 :
> . > @
2
01 0
-1 11
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X X
(©) ] (D)
3 ® 3 ®
: farest $rom O ' y
21 2
1 - 14 A
> Q. 5 » Q.
5 2 ® . 2
- a -
0 X ? 0 H . ® \?
| @ 2 " 3 e,
Fo iy 7 A
Rl .4 @
11 C;) 11 D % ) -
. e
1 0 1 2 11 0 1 2
X X
FIGURE 2 Theconvex hull of subsets identified by Twinning at the end of iterations 1, 2, 5, and 10 for the sample dataset described
in Section 3. Points in D' are shown as encircled points, and they are numbered in the order they were selected. (A) Iteration 1. (B) Iteration
2. (C) Iteration 5. (D) Iteration 10 4
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* Three strategies to generate quadruplets

* Example: training&testing

> X = rnorm(n=100, mean=0, sd=1) SmallerTwin
> Y = rnorm(n=100, mean=XA2, sd=1)
> data = cbind(X, Y) © R
> twinl_indices = twin(data, r=5)
> twinl = data[twinl_indices, ] ]
> twin2 = data[-twinl_indices, ] . . o B
> plot(data, main="smaller Twin") |[ ® , ° . P
> points(twinl, col="red", cex=2) ] o@i;) o .8 @os °° @,
N o° o ©@©°°°@ g‘?y%@
t > dim(twinl) ©° gz B, 00 o0
V:—,Y’ [1] 20 2 o % %
> dim(twin2) . - 4 0 1' 2
[1] 80 2 X




Conclusion

- Why subdata?

Data-rich # Information-rich

Time consuming

Full data beaten by subdata

Solutions

Divide and conquer

i - Conditional distribution of X;|X>, ..., X
' - Model-dependent subsampling
! - Model-free subsampling

Subsampling

i + Joint distribution of X1, e Xp
I +  Model-free subsampling



Thank you for your attention



