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Outline:
» Credit Scoring and Its Common Statistical Methods

» Maximum Utility Estimation

Complexity Penalized Maximum Utility Estimation
Nonparametric Maximum Utility Estimation
Profit-Maximizing Credit Scoring

Prerequisites:

> An introductory course in probability and statistics (Required)
A course in mathematical statistics (Required/Suggested)

An introductory course in statistical learning (Suggested/Optional)

>
>
> An introductory course in economics/finance (Optional)
> A course in mathematical analysis (Not Required)

>

An introductory course in computer science (Not Required)



Literature on utility-maximizing binary prediction:
> Lieli and White (2010): “The Construction of Empirical Credit Scoring Rules
Based on Maximization Principles”

> Elliott and Lieli (2013): “Predicting Binary Outcomes”
> Su (2021): “Model Selection in Utility-Maximizing Binary Prediction”

> Su (2023): “Utility-Maximizing Binary Prediction via the Nearest Neighbor
Method and Its Application to Credit Scoring”



Part 0 Credit Scoring

Anderson (2007): “The Credit Scoring Toolkit:
Theory and Practice for Retail Credit Risk
Management and Decision Automation”

Thomas et al. (2017): “Credit Scoring and Its
Applications”



Credit Scoring

» In the current context ‘credit’ simply means, ‘buy now, pay later’, as
indicated by Anderson (2007, p. 3).
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> Anderson (2007, p. 6):

‘What is credit scoring?’ Simply stated, it is the use of statistical models to
transform relevant data into numerical measures that guide credit decision.

A brief history of credit scoring:

» The arrival of credit cards in the late 1960s made the banks and other credit
card issuers realize the usefulness of credit scoring. (Thomas et al., 2017,

p. 4)

» For the most part, credit scoring was an American preserve prior to 1980,
while most other countries relied upon traditional relationship lending, and
risk-assessment procedures. (Anderson, 2007, p. 41)

» In the 1980s, the success of credit scoring in credit cards meant that bankds
started using scoring for their other products, such as mortgages and personal
loans, while in the last few years scoring has been used for home loans and
small business loans. (Thomas et al., 2017, p. 5)

» However, the greatest impact on credit scoring since 2000 is the advent of
the Basel Accords. (Thomas et al., 2017, p. 5)

A bank should hold an amount of capital (regulatory capital);

Under the internal ratings-based approach, a bank can provide its own
estimates of PD, LGD, and EAD.



Two types of credit scoring:

Application scoring: to provide guidance on an ‘accept/reject’ decision on
granting credit to a new applicant;

Behavioral scoring: to facilitate account management of existing customer,
for example, adjustment of credit limit.

We will focus on the application scoring in what follows.



Statistical Methods in Credit Scoring

We will quickly go over the following methods in credit scoring:

» Linear Discriminant Analysis;
» Logistic Regression;

» Support Vector Machine.

Further methods can be found in Anderson (2007) and Thomas et al. (2017).



Fisher's Linear Discriminant Analysis (LDA)

> Setting: Y € {0,1}, X € R¥
> Assumption: XY =y ~ N (py, X)
> Decision:
given X =z, predictY =1
SPY =1X=2)>PY =0|X =x)

s0<log BV =X =2)
E1P(Y = 0[X = =)
B P(X =z]Y =1)P(Y =1)
= log { B(X = 2]V = 0)P(Y =0) Bayes theorem
B 1 B _ PY =1
=z’ Y 1(,u1 — o) + 5 [uoTE "o — NIE lﬂl] + log {ﬁ}

=«



Note that

P(Y = 11X = z)
B P(X =2|Y = DP(Y = 1)

TPX =z[Y =1DP(Y =1) + P(X = 2]Y =0)P(Y =0)
1

—1
P(X =]y =1)P(Y =1)
L+ {P(X:i\Y:O)IP(Y:O)}

1
- P(X=2|Y=1)P(Y=1) ’
1+ exp {— log {P(X:ﬂyzo)nm(y:o) }}

Thus, under the assumption that X|Y =y ~ N (p,, X), we have

1
1+exp{—(zT8+a)}
=Az"B+a),

P(Y = 1|X = z) =

where A(u) = (1 + exp{—u})~! is the logistic function.



Logistic Regression

> Setting: Y € {0,1}, X € R*
» Assumption: P(Y = 1|X = z) = A(z" B + a) for some 5 € R* and a € R
> Motivation:
Generalized linear model (with linear log odds)
Specifying the link function A~*, we have E[Y|X = z] = A(z "8 + «).
Latent regression

Under the assumptions that
WY =X"8+a—¢ Pe<ulX =z)=A(u), and
H * > .
my -l if Y = 0;
0, otherwise,

we have P(Y = 1|X =z) = A(mTB—i—a),

» Decision:

given X =z, predictY =1 < PY =1X=2) >P(Y =0|X =x)



Vapnik's Support Vector Machine (SVM)

Figures 9.2 and 9.3 of James et al. (2021)

X

> Setting: y € {—1,1}, z € R¥

> We say the observations {(y;,x;)}"_; are linearly separable if there is a
separating hyperplane with slope 8 and intercept « such that for all
1=1,...,n,

Bla;+a>0, ify;=1,
Bla;+a <0, ify =—1;

equivalently, y; (8T 2; + a) > 0.



» The hard support vector machine aims to find the separating hyperplane with
the largest margin; specifically,

B,a) carg max min{|b'z;+al:i=1,2,....,n
(8,2) g(b,a):llbllz1 { | )
subject to y;(b"x; +a) > 0foralli=1,2,... n.

Lemma 1

The following algorithm yields a solution to the hard-SVM.
Input: D = { (s, 2 Yy
Solve:
~, &) € argmin ||b]|?
(5.6) cargmin 0]

)

subject toy; (b z; +a) > 1 foralli=1,2,... n.

Output: 8 = ”i and o = &




> If the observations {(y;,2;)}? ; are linearly non-separable, then we consider
the soft support vector machine

c n
(8,@) €argmin — % & + ||b]?
(b,a) N P
subject to y;(z; b4+a) >1—¢and & >0foralli=1,...,n.
» Recap: the hard support vector machine can be solved by
(B, a) € argmin o]

)

subject to y;(b"z; +a) > 1foralli =1,2,... n.



If the observations {(y;,x;)}?_, are linearly non-separable, then we consider
the soft support vector machine

c n
,a) €argmin — 5+ [|p]|?
(B.) g(wngﬁ [l

subject to y;(z; b4+a) >1—¢ and & >0foralli=1,...,n.

The soft support vector machine can be equivalently recast as
1 n
(B,a) € argg}i% - Zmax {0,1 —y;(zb+a)} + Ab)?
=

if we appropriately select A.

> Setting: Y € {—1,1}, X € R*

Decision:
given X =z, predictY =1 < 2" f+a >0

s sign(A(z'B+a) —1/2) >0



Stefan Banach:

A mathematician is a person who can find analogies between theorems;
a better mathematician is one who can see analogies between proofs and
the best mathematician can notice analogies between theories. One can

imagine that the ultimate mathematician is one who can see analogies
between analogies.



Why 1/27

>

Setting: Y € {0,1}, X € R¥
(Without loss of generality, 0 can be replaced with -1 here.)

> Two outcomes and P(Y = 1|X =z) > P(Y = 0|X = z)

» The implicit rationale is to find a classifier such that the misclassification rate

is minimized.
The Bayes decision rule

. 1, ifP(Y =1X=2)>1/2,
g*() = =X =0 =1
0, otherwise,

has the property that for all g : R? — {0, 1},

Plg"(X) #Y) <P(g9(X) #Y).

See the discussion in Devroye et al. (1996) and Hastie et al. (2009).

» We make a decision in pursuit of statistical accuracy.

Should we do so in credit scoring?



Part 1 Maximum Utility Estimation

Elliott and Lieli (2013): “Predicting Binary
Outcomes”



Binary Decision and Binary Prediction

Making a binary decision based on an uncertain binary outcome is common in
modern economic activities.

Granger and Machina (2006) suggest that decision making based on the
prediction should be driven by a decision maker's preference.

> Lieli and White (2010) study how a utility-maximizing lender’s approval or
rejection depends on his or her binary prediction about a borrower’s default.

Two scenarios

» The lender rejects the loan & the borrower complies fully with the terms of the
contract =
» The lender approves the loan & the borrower defaults @

> Further examples can be found in Elliott and Timmermann (2016).



Decision-Based Binary Prediction

Elliott and Lieli (2013):

A decision maker chooses a binary decision @ € {—1,1} to maximize his or her
expected utility
max E[U(a,Y,X)|X =z, (1)
ac{—1,1}

where X = x is a d-dimensional vector of observed covariates, and Y € {—1,1} is
not observable at the time of the decision.

Application: Profit-Maximizing Credit Scoring

> U =, lender’s profit function

Good (Y =1) Bad (Y = -1)
> Approve (A)  mai(z) >0 A —1(z
Reject (R)  wgr1(z) =0

> X: loan characteristics (e.g. interest rate and duration)



max E[U(a,Y,X)|X = z]
ace{-1,1}
Assumptions imposed by Elliott and Lieli:

A1l The conditional probability P(Y = 1| X = z) does not depend on the binary
decision a.

A2 For all z in the support X C R? of X, U(1,1,2) > U(—1,1,7) and
U(-1,-1,z) > U(1,—-1,x).

A3 For any a,y € {1,—1}, U(a,y,-) is Borel measurable; in addition, there is
some M > 0 such that |U(a,y,x)| < M for all x € X and a,y € {1,—1}.



Optimal Decision Rule

max E[U(a,Y,X)|X = z]
ac{-1,1}

Elliott and Lieli (2013) show that under Assumptions Al and A2, we can obtain
an optimal decision rule (after observing X = )

B (1 if p*(z) > c(x),
a” () :{ —1 otherwise,

= sign(p*(X) — ¢(X))
where p*(z) =P(Y =1| X =x) and

U(-1,-1,2) — U(1,—1,2)
U(]-a 1,.T) - U(_la 171') + U(_17 —]_,IE) - U(17 _17:17)

C(.’L‘) = € (0, 1)

is a cutoff function derived from the utility function, which is known in principle to
the decision maker.



To solve maxqeq—1,13 E[U(a,Y, X)|X = 2], we let uq,y (X) = U(a,Y, X) for
ease of notation.

a=1:
Elu1,y (X)X = 2]
=p(Y =1|X =2)ura1(z) + p(Y = —1[X = z)us —1(2)
=p*(@)[u1,1(z) — u1,-1(z)] + u1,—1(x)
a=—1
Elu_1y(X)|X = 2]
=pY =1|X =2)u_11(z) +p(Y = 1| X =2)u_; _1(2)
=p"(x)[u-1,1(2) —u—1,-1(z)] + u_1,-1()
We have

a*(z) =1 if and only if p*(x)[u11(x) — u1,—1(z)] + u1,—1 ()
zp*(@)u-—11(2) —u_1-1(2)] +v1,-1(2);

e, p*(z) > c(z) = uo1—1(@) =, 1 (@)

w1 (z)—u—_1,1(z)tu—_1,—1(z)—ur,—1(z)"




> To achieve maximal expected utility in (1), we only need the correct
specification of sign(p*(z) — ¢(x)).

Elliott and Lieli (2013)

1 -4

Fig. 1. Here p(X) gives the probability that Y = 1 given scalar X, c¢(X) gives the
cutoff for the decision rule, m(X) gives a function that differs from p(X) everywhere
but at the cutoff and so delivers the same decisions.



Maximum Utility Estimation

Elliott and Lieli (2013) also show that the decision-making problem in (1) can be
equivalently written as

m?x]E BX)[Y + 1 —2¢(X)]sign(f(X) — c¢(X))],

where b(x) = U(1,1,2) —U(-1,1,2) + U(-1,—-1,z) = U(1,—1,z) is the
denominator of ¢(x) and the maximum is taken over all measurable functions from
X to R.

Decomposition:

=A
b(X)[Y +1 —2¢(X)] sign(f(X) — ¢(X))

Jelu(,1,X) - U(-1,1,X)] >0, ify =1
| 2lu@,-1,X) -U(-1,-1,X)] <0, ifY =—1.

> If AY =1, then b(X)[Y + 1 — 2¢(X)] > 0;
> If AY = —1, then b(X)[Y + 1 — 2¢(X)] < 0.



Given a sample of observations {(Y;, X;)}7, and a pre-specified class F of
functions, a maximum utility estimator is defined as

fu € argmax Zb NY: + 1 — 2¢e(X;)]sign(f(X:) — o(X3)).

The associated prediction rule is 2 — sign(fmu(z) — ¢(z)).

Manski's (1975, 1985) maximum score estimator is a special case of this maximum
utility estimator. (Note that Y;sign(f(X;) — ¢(X;)) is the score for observation i.)



According to the simulation results, Elliott and Lieli make the following comments:

“Both ML and MU have a strong tendency to overfit in sample, how-
ever the problem seems more severe for the MU method. This creates
challenges for model selection.”

“There are a large number of methods for model selection for classifica-
tion schemes, although none have been shown to extend to the general
methods of this paper.”

To alleviate the in-sample overfitting in the maximum utility estimation, Su
(2021) further studies the complexity-penalized utility-maximizing prediction rule.



Part 2 Complexity Penalized Maximum Utility
Estimation

Su (2021): “Model Selection in
Utility-Maximizing Binary Prediction”



Cost-Sensitive Binary Classification

‘ Cause of overfitting? ‘

The maximum utility estimation can be viewed as binary classification in which
the cost of misclassification for each in sample observation may be different.

i € axg DB 1 2eX0)sign((X,) — (X0)

1
=argmin= 3~ b(X0)[Yi(1 — 2¢(X2)) + 1 L, psgn(s(x—e(X0)-
i=1

cost of mismatch >0



Nature of the Overfitting in MU Estimation

> If the cost of mismatch is a constant, then the maximum utility estimation
reduces to the traditional binary classification in machine learning

n

) 1
. in = ST B(X)[YVi(1 — 26(X:) + 1] Ly aon( £(x.1 o .
f Earg?g/gn;( MYi(1 = 2¢(X3)) + 1] Ly, #sign(£(x0)—e(X:))]

cost of mismatch
n

1
= in — iy, 2 N e(X))] -
arg ?g}:l n Zl Vi #sign(f(X;)—c(X3))]

1=

» Moreover, if the in-sample observations can be perfectly separated by F, then
0 =min — Z Ly ssign(£(Xi)—e(X2))]

=min Z b(X3)[Yi(1 = 2¢(X3)) + 1Ly, sign(£(X0)—c(X.))]-

Cause of overfitting: Complicated ]-"




Structural Risk Minimization

‘ How to alleviate overfitting? Vapnik's (1982) structural risk minimization ‘

max — Y b(X;)[V; + 1 — 2¢(X;)]sign(f(X;) — e(X))
i=1

> The utility of a predictor f evaluated at the observation (y, ) is denoted by

s(y, z, f) = b(x)[y + 1 — 2c(x)]sign(f(z) — c(x))

> Given a predictor f constructed based on a sample 2,, = {(Y;, X;)}; of
observations with sample size n, its expected utility is

S(f) =E[s(Y, X, f)|Zn]
and its empirical utility is

1 n
E _ZS Y;7X’Laf
=1

3



Utility-Maximizing Prediction Rule

» Consider nondecreasing sieve {F;}7° ;; i.e.,
FiCFRCCFC-andF=|]F
k=1

For example, Fj, = P is the class of polynomial transformations on X" of
order at most k.

» For each F, we select a maximum utility estimator
f, € arg max S .
fk gfe}'k n(f)

We define a utility-maximizing prediction rule (UMPR) as a maximum utility
estimator f; that maximizes the complexity penalized empirical utility;
specifically,

fn= ff% , where k,, = arg max Sl f) — Cu(k).



Heuristic Idea of Structural Risk Minimization

Utility-Maximizing Prediction Rule (UMPR):
fn = fk , where k, = arg max Sn(fk) — Cyr(k).
" €

Heuristic ldea:

If Cu(k) 2 Su(fr) — S(fr)

magnitude of overfitting
then S(fi) =~ Su(fi) — Cu(k),
penalized empirical utility
b =argmax Sy (fiy) = Cn(k)
=~ arg max 5(/i)
and thus

S(f,) = S(fx) for all k.



Resemblance between UMPR and AlIC

Utility-Maximizing Prediction Rule (UMPR):

PN

fn = fk , where k&, = arg max Sn(fr) — Cn(k).
n €

Akaike Information Criterion (AIC):
- N . 1< N
IC _ FML _ MLy v\ _ ~IC
fn = fkn , Where k,, = argmax — E_l L(f2 Y, X)) — C (k).

> LMY, X0) = (B55) log fi'(X3) + (A52) log[1 — f*(X3)]
> L: the log-likelihood function of a single observation (Y, X)

> f,'C\AL: the maximum likelihood estimator in Fy,

> C)°(k) : £ x the number of free parameters in Fj,



UMPR AIC

Fitting of p* local global
Validity of penalty | non-asymptotic asymptotic

Methodology discriminative  generative

X)) max Eluy (X)X =4
acy{—1,

pN S
pra)=PY=1|X=x)
Vapnik (in the 1990s): “When solving a problem of interest, do not solve

a more general problem as an intermediate step. Try to get the answer
that you really need but not a more general one.”



Computability-Bounded Rationality

» Heuristic Idea: Cy(k) ~ S,(fx) — S(fr)

magnitude of overfitting

> Sn(fk) _S(fk) < sup (Sn(f) - S(f))

EFk

maximal magnitude of overfitting

We avoid measurability complications by imposing the following assumption:

A4 For each k € N, the class F;, of functions is countable.

In a computer program, there are only countably many computable real numbers.

This assumption could be interpreted as a decision maker's computability-bounded
rationality, as in Richter and Wong (1999).



Concentration Inequality

Theorem (McDiarmid, 1989)
Suppose that g : Z" — R satisfies

. Sug |g(zlv OO 7Zn) - g(zla sy R2(i—1)s z;az(i-i-l)a sy zn)| <g¢
L1s---3%m
2,€EZ
for1 <i¢<mn. If Zy,...,Z, are independent random variables taking values in a

set Z, then for any t > 0,

P(g(Zr,.... 20) — E[g(Ze,..., Z0)] > t) < exp{—%}.
=1 "1

> Talagrand (1996):

A random variable that depends (in a “smooth” way) on the influence

of many independent variables (but not too much on any of them) is
essentially constant.

> Boucheron et al. (2013): “Concentration Inequalities: A Nonasymptotic
Theory of Independence”



Application

» Taking g = supc 7, (Su(f) — S(f)) in McDiarmid’s (1989) inequality, we
obtain

P <sup (Su(f) — S(f) —E [sup (Sulf) —S(f))] >e> Sexp{— ne” }

feFk fEF 32M2

> This inequality implies that given i.i.d. observations, |S, (fr) — S(fx)|
converges almost surely to zero whenever Fj, is a VC-subgraph class.

> See the discussion immediately after Corollary 1 of Su (2021).



Data-Dependent Penalty

! n

> Suppose that we have the ghost sample {(Y/, X/)}7™,.

(That is, the observations (Y{, X7),..., (Y., X/) are distributed as
(Y1,X1),...,(Yn, X,) and independent of them.)

S! (f): empirical utility of f constructed based on the ghost sample

» The common symmetrization argument implies that

E [sup (Su(f) - su»] =& | sup (Su(/) - E[s;m@n])]

feEFK fEFk

=E | sup E[(S() - 4(9) \@n}]

| JE€Fk

<& [ |ax (5.() - 5,(0) .|

_E [ (8.(/) - S;<f>>] |

| fE€Fk



> We have E [supc 7, (Su(f) = S(f))] < E[maxser, (Sn(f) — S),(f))]-

> |t follows from McDiarmid’s (1989) inequality that

P <Sup (Sn(f) = S(f)) = max (Su(f) = S,.(f)) = 5)

fEF feF

<P <Sup (Sn(f) = S(f)) = max (Su(f) = S,.(f))

fEF, feFs

—E [sup (Sn(f) = 5(f)) — max (Sn(f) — Sé(f))] 2 5)

fEFK feFy

< ne?
< exp Tl

for some constant ¢y > 0.

» Therefore, we obtain

sup (Su(f) — S()) < max (Su(f) — S4(f)) +O (;ﬁ)

fEF. T feF,

with high probability.



Maximal Discrepancy (MD)

» In practice, the lack of the ghost sample invalidates the direct estimation of

IHaXfefk(S%(f)__SL(f))

» We partition the sample into two nonoverlapping and roughly equal-sized
subsamples; for example, the sample &, is partitioned into two subsamples

1 n/2 2 n/2
@:L/)Q = {(Yzi—l,Xzi—ﬂ}i:/l and @7(1/)2 = {(Yéin2i)}i:/1-

» We define the maximal discrepancy complexity penalty as
9 n/2 9 n/2
CyP (k) =max | = (Yo, Xoio1, f) — -~ > 5(Yai, Xai, f)

€EFr \ n
FEFk i=1 i=1

+ 24 My (k; ).



» We define the maximal discrepancy complexity penalty as

n/2 n/2
2 2
CYP (k; ) EJ{TéaF); - ;S(Ym—qui—l,f) - Egs(yzi,Xzi,f)

+ 24 My (k; ).

» Recap:
Heuristic Idea: Cy (k) ~ Sn(fx) — S(fx)
—_———
magnitude of overfitting

Sn(f) = S(fr) < fSUp (Sn(f) = S(f))

€EFg

maximal magnitude of overfitting

With high probability,

Sn(f) = S(fr) < sup (Sa(f) = S(f))
magnitude of overfitting TE7%

< max (Sn(f) - S:l(f)) +0 (;ﬁ) '

T fEFR



» We define the maximal discrepancy complexity penalty as

9 n/2 n/2

2
MD (1. = § ) . _ ,E ) .
Cn (k,a) _thréa)i - s(Ygl,thz,l, f) o 2 s(Ygl,Xgl, f)

+ 24 My (k; @).

> Let Vj, be the Vapnik-Chervonenkis (VC) dimension of the class
{z — sign(f(z) — c(z)) : f € Fr}. The technical term

(14 a)log{Vi}
2n

Xn(k; @)

is included in the penalty to guarantee that ((a) = -, Vk_(H'a) is
summable for some . The tuning parameter o > 0 can be selected by the
tenfold cross-validation method.



Pseudo-Random Maximal Discrepancy

» We draw a sequence (01, 03,...,0,/2) of i.i.d. Rademacher random variables
that are independent of 9,,; that is, P(0; = 1) = P(0; = —1) = 1/2.

» We consider the pseudo-random maximal discrepancy complexity penalty
(without a technical term)

n/2

2
max = > o <3(Y2i—17X2i—1a f) = s(Yai, X, f))

i=

» The previous maximal discrepancy complexity penalty is a special case.



Rademacher Complexity (RC)

Rademacher complexity (Koltchinskii (2001) and Bartlett et al. (2002)) is
commonly used to construct a data-dependent penalty in the traditional binary
classification.

Let {o;}", be a sequence of i.i.d. Rademacher random variables that are
|ndependent of Z,.

E | sup (Sn(f)—S(f))}S max (Sn(f) - <>)}
FEFY L FE€Fk

n

— 1 ’ /

=B | max =2 1 (s(n,xi,ﬁ—sm,xwf))]
1=

feFyn
i=1

—E | max L i (s(Yi, Xy, f) — S(}/i/sz{?f))‘|

n

1 1
<E | max — U,s(K,Xz,f)] +E lmax -
fEFE M fEFE N

NgE

(_Ui)s(yilv Xz{r f)‘|

i=1 i=1

n

2

=E z Y;, X;,

B 2ot 1f>]
i=



> K [Sque]-‘k (Sn(f) - S(f))] <E [maxfe]:k %Z?:1 UiS(Yia X, f)]

> Applying McDiarmid’s (1989) inequality, we have
0
i (ﬁ)

sup (Sn(f) - S(f)) < E
fEFK

max — o:s(Yi, Xy, ‘.@
fe]-‘knz K3 3 Zf n

empirical Rademacher complexity

with high probability.

We define the simulated Rademacher complexity penalty as

m

1
Csc(k;a,m) = m Z (J{%%__)i n ZO' Yqu;f)) + Vm,n(M)Xn(k;O‘)v

Jj=1

where {a(ﬂ)}m = {(oy @ ol ), . (j)) * , is the collection of i.i.d.
Rademacher random vectors that are |ndependent of Dy, and vy, is a
deterministic function that satisfies

(M) = 40M, if n<m < oo,
Tmnl TN (1604 40)M, if n/(£+1)2 <m < n/e% and € N.

P Ym.n is designed to control the extra randomness introduced by {a(j)}}”:l.



Bootstrap Complexity (BC)

> Note that o < 2B — 1, where B ~ Ber(1/2).

» The simulated Rademacher complexity penalty (without a technical term)
satisfies

1\ (4)
- - s(Yi, Xi,
m 2 (;«n; nZU f>>

gz Y <maxli<235” —1>s<Yi,Xz»f>)-

> Fromont (2007) suggests using bootstrap to construct a complexity penalty.



We define the bootstrap complexity penalty as

BC o oy [\ 1 1 ) _ e
cstham = () > (;nfx S (W 1) s X )
+ Vi (M) X0 (K3 ),
where {W,(/)};n:l = {(Wéjl), W,(L %, ce T(LJ%)};”:l is the collection of i.i.d.

multinomial vectors with parameters n and (1/n,1/n,...,1/n) such that
{Wn])} * . is independent of Z,,, and

(M) = 56 M, if n<m < oo,
Tl TN (3204 56)M, if n/(€+1)2 <m <n/f and £€N.

» 5, is designed to control the extra randomness introduced by {W(J iy



Theoretical Properties of the UMPR

> Recap: S(f) = E[B(X)[Y + 1 — 2¢(X)Jsign(f(X) — c(X))|Z,]

> Let S* = S(p*) be the maximal expected utility and S} = sup 7, S(f) for
each k.

> S* — S} approximation error for Fj,

> E[S(fn)]: generalized expected utility of the UMPR



Theorem 1

Suppose that (i) the data @, = {(Y;, X;)}, are i.i.d., (ii) Fy is a VC-subgraph
class with VC index Vi, for each k, (iii) {(c) < oo for some ay, and (iv)
Assumptions A1-A4 hold.

If the UMPR fn is constructed based on the penalty C’,’fc with tuning parameter
«g, then we have for any n € N,

S* —E[S(fa)]
1+ log{2
<min {(S* = St) + E [CE(k; a0, m)] } + Y, (M) %C(ao)}
Trade-off:
ko o= approximation error S* — S; |

expected complexity penalty E [Csc(k;ao,m)] 0



Corollary 1

Suppose that the assumptions of Theorem 1 hold. If in addition m/n > 1 /02 for
some positive integer £, then there are positive constants r1 and k2 only
depending on M, and k3 depending on (M, {) such that for each k € N and

n > 8,

E [C,’fc(k;a(),m)] < nl\/¥+ RQVkM /T T o log {Vk}

Moreover, the UMPR f,, constructed based on the penalty CRC with tuning
parameter o satisfies

lim S(f,) =S* with probability one

n—oo

for any distribution of (Y, X') such that limy_,., S = S*.

» Using the other penalties to construct the UMPR, we obtain similar results.



Proposition 1

Suppose Assumptions Al and A2 hold. For any (measurable) deterministic
function f : X — R, we have

S* = 8(f) =4E [b(X)[p*(X) — c(X)](Lp+ (x)>e(x)) — Lpx)zex)])] =0
and

5% = 5(f) S4EB(X)|p"(X) — f(X)]] < 16M sup p*(2) = f()].

> For each k € N,
0< S*—S; <16M inf sup |p*(z) — f(x)].

—_—— F€Fk zex
approximation
error uniform distance

between p* and Fj

> If we specify Fi = P, then

inf su z)—p*(z) =0 ask — oo
. sup () = (o)

whenever p* is continuous on the compact support X C R?.
(Stone-Weierstrass approximation theorem)



Monte Carlo Experiments

We consider the simulation designs in Elliott and Lieli (2013).

DGP1 The covariate X follows the distribution 5 - beta(1,1.3) — 2.5 and p*(X) = A(—0.5X + 0.2X?)
where A is the standard logistic function; i.e., A(u) = (1 4+ exp {—u}) ! for all u € R;

Pref.1 b(X) = 20 and ¢(X) = 0.5;

Pref.2 b(X) = 20 and ¢(X) = 0.5 + 0.025X;

DGP2 Both covariates X and X5 are independent and uniformly distributed on [—3.5, 3.5] and
p*(Xl, Xz) = A(Q(15X1 -+ 1.5X2)), where
Q(u) = (1.5 — 0.1u) exp{—(0.25u + 0.1u? — 0.04u>)}.

Pref.3 b(X1, X2) =20 and ¢(X1, X2) = 0.75;

Pref.4 b(X1,X2) =20+ 40 - Lix1+x5]<1.5] and ¢(X1, X2) = 0.75.

Preference



» For the UMPR with any aforementioned penalty, we specify the hierarchy
{Fr}32, of classes as Fy, = Py, for k € {1,2} and Fj, = Ps for all k > 3.

> For the AIC and BIC, we specify the hierarchy {Fj}72; of classes as
Fr = A(Py,) for k € {1,2} and Fj, = A(P3) for all k > 3, where
A(Pr) ={z — A(f(z)) : f € Py} for each k € N.

> We also compute the tenfold cross-validatory LASSO (Tibshirani (1996))
with optimization taken over the class A(P3) and ¢;-norm SVM (Fung and
Mangasarian (2004)) with optimization taken over the class Ps.



Least Absolute Shrinkage and Selection Operator

Cubic Lasso-logit (i.e., cubic ML-logit with an ¢; penalty)

n

w5 L (52 ) ogp(x,s0) + (1522 sl = 00 | - ol

6 n
i=1

> DGP 1: p(z;0) = A (90 + 017 + O22% + 93953),
16111 = =2 16:]
> DGP 2: p(z;0) = A<90 + 60121 + 0229 + 0323 + 0423 + G519
+O0s3 + 0723 + O30 + 99x1m§> ,

10]: =37 164]



Support Vector Machine

Lasso-logit (i.e., logistic loss with an ¢; penalty)

n

1 1+, ' 1-, _
e S { (55 oo + (15 ) toult ~ 6001}~ Al

i=1

RS
= —min> ;bg [14exp (—Yif(X:;:0))]+A]6]

logistic loss

where p(z;0) = A(f(z;0)) and f(x;0) is a polynomial in = with coefficient 6.

ly-norm SVM (i.e., Hinge loss with an ¢; penalty)

RS .
min — ;max{o, 1—Y;f(Xi30)} +A]0lx

Hinge loss

= SVM prediction rule foym(z) = A(f(z; Osym))

Note that § = sign(f(x; Osym)) = sign(fsvm(z) — 1/2).



We compute the relative generalized expected utility of a prediction rule f;

E[S(f})]

RGEU(f}) = <

where S* = sup; S(f) = S(p*).

The relative expected utility can be approximated via simulation:

i [Sah Se,i (F11Pn.s)
RGEU(fnwE{ } SZ ,

S(p*) Se.j (p*)

> Sg,j(fﬂ@n,j) is the j-th (out-of-sample) empirical utility with size £ of ffl, constructed by the j-th
in-sample 2, ; with size n,
> S, (p™) is the j-th (out-of-sample) empirical utility with size ¢ of p*, and

P S is the number of simulation replications.

We set n € {500, 1000}, m = 10, £ = 5000, and S = 500.



Table 1: Relative Generalized Expected Utility of UMPR, AIC, BIC, LASSO and SVM

DGP1 p*(z) = A(—0.52 + 0.223)
n = 500
Preference b(z) = 20 and ¢(z) = 0.5 b(z) = 20 and ¢(z) = 0.5+ 0.025z
UMPR MD SMD RC BC MD SMD RC BC
65.36 66.68 66.86 65.74 55.00 58.87 58.58 57.65
Information  AIC BIC AIC BIC
Criterion 93.93 89.95 94.70 88.81
{y-Penalty  LASSO SVM LASSO SVM
60.60 87.77 65.62 83.91
n = 1000
Preference b(z) = 20 and ¢(x) = 0.5 b(z) =20 and ¢(z) = 0.5+ 0.025z
UMPR MD SMD RC BC MD SMD RC BC
69.32 7251 7223 7175 63.30 67.12 67.01 65.81
Information  AIC BIC AIC BIC
Criterion 97.21 97.13 97.48 97.29
(1-Penalty  LASSO SVM LASSO SVM
68.82 93.26 78.92 91.14



1.5—-0.1u

DGP2 p*(z1,22) = AQ(1.521 + 1.522)) where Q(u) = oxp{0.25u+0.1u?—0.04u3]
n = 500
Preference b(x1,x2) = 20 and ¢(z1,22) = 0.75 b(21,22) = 20 + 40 - L{jg, 4aq|<1.5]
and ¢(zq,22) = 0.75
UMPR MD SMD RC BC MD SMD RC BC
68.55 69.52 69.47 69.11 50.41 53.87 53.32 52.90
Information  AIC BIC AlIC BIC
Criterion 60.07 60.27 33.20 30.90
¢1-Penalty  LASSO SVM LASSO SVM
59.75 26.86 32.93 5.92
n = 1000
Preference b(x1,x2) = 20 and ¢(z1,22) = 0.75 b(w1,2) = 20 + 40 - 11z, 4oy|<1.5]
and ¢(zq,x2) = 0.75
UMPR MD SMD RC BC MD SMD RC BC
71.091 71911 71971 71891 57.131 59.611 60.0817 58.961
Information  AIC BIC AIC BIC
Criterion 59.72 | 59.06 | 3149 2816
¢1-Penalty  LASSO SVM LASSO SVM
59.68 | 2593 29.08| 5.104



> For k € {2,3}, consider {Hék) :Sh_1) =Sk

k) . o« *
H{ : S(k—l) <S5
> Test statistic is developed by Elliott and Lieli (2013).

A general-to-specific approach:

1 if neither Hég) nor Hé2) is rejected,

l%(G—)S):{ ’

max {k €{2,3}: Hék) is rejected against ka)}, otherwise.
A specific-to-general approach:

3, if both Hé3) and Hé2) are rejected,
min {k €{2,3}: Hék) is not rejected against ka)} — 1, otherwise.

IE(S—>G):{



Cross-Validation

>

We randomly partition the data Z,, into T roughly equal-sized sets. Let
7:{1,2,...,n} = {1,2,...,T} be the indexing function such that the
observation (Y;, X;) is in the validation set 7(4).

For each k € {1,2,3} and t € {1,2,..., T}, we calculate the MU estimator
based on @,(L_t) by

f,g € arg ma,x Z (Y;, X5, f).
i (i)#t

The cross-validated value of k is defined as

i = argmax Z S sV X, i),

ke{1,2,3} £ T et

The cross-validated MU estimator is the MU estimator selected from ]:fcn
based on Z,,; specifically,

FCV
~V € arg max S, .
k. € arg max S,(f)

kn



Table 2: Relative Generalized Expected Utility of UMPR, Pretest, and Cross-Validation

DGP1
n = 500
Preference

UMPR

Pretest

Cross-Validation

n = 1000
Preference

UMPR

Pretest

Cross-Validation

p*(z) = A(—0.52 + 0.223)

b(xz) =20 and ¢(z) = 0.5

b(xz) = 20 and ¢(z) = 0.5 + 0.025z

MD SMD RC BC
65.36 66.68 66.86 65.74

S—G
59.27

G—S
62.69

61.30

b(xz) =20 and ¢(z) = 0.5

MD SMD RC BC
55.00 58.87 5858 57.65

S—G
45.63

G—S
48.69

50.42

b(xz) = 20 and ¢(z) = 0.5+ 0.025z

MD SMD RC BC
69.32 7251 7223 71.75

S—G
62.60

G—S
65.20

64.81

MD SMD RC BC
63.30 67.12 67.01 65.81

S—G
50.14

G—S
53.52

55.19



n = 500

Preference

UMPR

Pretest

Cross-Validation

n = 1000

Preference

UMPR

Pretest

Cross-Validation

p*(x1,22) = A(Q(1.521 + 1.522)) where Q(u) = 1.5°0.1y

b(x1,29) = 20 and c(z1,x2) = 0.75

exp{0.25u~+0.1u2—0.04u3}

b(éL'l, .’L’Q) = 20 + 40 N ]l[|w1+1'2|<1,5]
and ¢(zq,22) = 0.75

MD
68.55

S—G
68.72

67.30

b(x1,x2) = 20 and ¢(z1,22) = 0.75

SMD
69.52

G—S
68.34

RC BC
69.47 69.11

MD SMD RC BC
50.41 53.87 53.32 52.90

S—G G-S
50.62 49.91

48.26

b(xl., xg) =20+40- ]l[|ml+m2|<1_5]
and ¢(z1,x2) = 0.75

MD
71.09

S—G
70.90

69.93

SMD
71.91

G—S
71.20

RC BC
71.97 71.87

MD SMD RC BC
57.13 59.61 60.08 58.96

S—»G G—S
56.64 56.48

54.51



Conclusion

We propose a method of model selection in the framework of maximum utility
estimation.

>

>

The maximum utility estimation proposed by Elliott and Lieli (2013) can be
viewed as cost-sensitive binary classification.

Applying the structural risk minimization in machine learning, we construct a
utility-maximizing prediction rule (UMPR) to alleviate the in-sample
overfitting of MU estimation.

Under regularity conditions, the expected utility of the UMPR converges to
the maximal expected utility if the approximation error goes to zero.

Simulation results show that the UMPR, in comparison to some common
estimators (AIC, BIC, LASSO, ¢;-norm SVM) may have larger relative
expected utility if the conditional probability of the binary outcome is
misspecified.
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Frisch (1933, Econometrica):

But there are several aspects of the quantitative approach to economics,
and no single one of these aspects, taken by itself, should be confounded
with econometrics. Thus, econometrics is by no means the same as eco-
nomic statistics.... Experience has shown that each of these three view-
points, that of statistics, economic theory, and mathematics, is necessary,
but not by itself a sufficient, condition for a real understanding of the quan-
titative relations in modern economic life. It is the unification of all three
that is powerful. And it is this unification that constitutes econometrics.

computer science: Turing machine (1936), von Neumann architecture (1945)

Varian (2014, JEP):

In fact, my standard advice to graduate students these days is go to
the computer science department and take a class in machine learning....
There have been very fruitful collaborations between computer scientists
and statisticians in the last decade or so, and | expect collaborations
between computer scientists and econometricians will also be productive
in the future.
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