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Prerequisites:
I An introductory course in probability and statistics (Required)
I A course in mathematical statistics (Required/Suggested)
I An introductory course in statistical learning (Suggested/Optional)
I An introductory course in economics/finance (Optional)
I A course in mathematical analysis (Not Required)
I An introductory course in computer science (Not Required)



Literature on utility-maximizing binary prediction:
I Lieli and White (2010): “The Construction of Empirical Credit Scoring Rules

Based on Maximization Principles”
I Elliott and Lieli (2013): “Predicting Binary Outcomes”
I Su (2021): “Model Selection in Utility-Maximizing Binary Prediction”
I Su (2023): “Utility-Maximizing Binary Prediction via the Nearest Neighbor

Method and Its Application to Credit Scoring”



Part 0 Credit Scoring

Anderson (2007): “The Credit Scoring Toolkit:
Theory and Practice for Retail Credit Risk
Management and Decision Automation”
Thomas et al. (2017): “Credit Scoring and Its
Applications”



Credit Scoring

I In the current context ‘credit’ simply means, ‘buy now, pay later’, as
indicated by Anderson (2007, p. 3).

I 板谷敏彥 (2022, p. 27):
I 美索不達米亞的西帕爾出土之西元前一八二三年的泥板，上頭紀錄了一份借貸契約

(借據)，內容如下:
「伊利 · 卡達里之子普茲魯姆，從沙瑪什 (太陽神) 處收到三十八又十六分之一謝克爾。
普茲魯姆將按照沙瑪什神規定的利率支付利息。普茲魯姆將於收成之時，償還白銀本
金和利息。」

此處的借貸利率是依據神殿的規範，因此應該是百分之二十。還款時間為「收成之時」。
因為小麥一年只收成一次，由此可知，借貸契約的期限為一年以內，借貸目的是為了
耕種小麥。

I 「如果商人違反規定，每古爾穀物收取超過六十卡利息、每謝克爾白銀收取超過六分
之一謝克爾又六賽拉的利息，商人將喪失其所提供之物。」

這就是《漢摩拉比法典》規範的利率上限。此依法條的存在供我們想像，當時美索不
達米亞也存在高利貸，而且釀成了社會問題。



I Anderson (2007, p. 6):
‘What is credit scoring?’ Simply stated, it is the use of statistical models to
transform relevant data into numerical measures that guide credit decision.

A brief history of credit scoring:
I The arrival of credit cards in the late 1960s made the banks and other credit

card issuers realize the usefulness of credit scoring. (Thomas et al., 2017,
p. 4)

I For the most part, credit scoring was an American preserve prior to 1980,
while most other countries relied upon traditional relationship lending, and
risk-assessment procedures. (Anderson, 2007, p. 41)

I In the 1980s, the success of credit scoring in credit cards meant that bankds
started using scoring for their other products, such as mortgages and personal
loans, while in the last few years scoring has been used for home loans and
small business loans. (Thomas et al., 2017, p. 5)

I However, the greatest impact on credit scoring since 2000 is the advent of
the Basel Accords. (Thomas et al., 2017, p. 5)

1 A bank should hold an amount of capital (regulatory capital);
2 Under the internal ratings-based approach, a bank can provide its own

estimates of PD, LGD, and EAD.



Two types of credit scoring:
1 Application scoring: to provide guidance on an ‘accept/reject’ decision on

granting credit to a new applicant;

2 Behavioral scoring: to facilitate account management of existing customer,
for example, adjustment of credit limit.

We will focus on the application scoring in what follows.



Statistical Methods in Credit Scoring

We will quickly go over the following methods in credit scoring:

I Linear Discriminant Analysis;
I Logistic Regression;
I Support Vector Machine.

Further methods can be found in Anderson (2007) and Thomas et al. (2017).



Fisher’s Linear Discriminant Analysis (LDA)

I Setting: Y ∈ {0, 1}, X ∈ Rk

I Assumption: X|Y = y ∼ N (µy, Σ)
I Decision:

given X = x, predict Y = 1

⇔ P(Y = 1|X = x) > P(Y = 0|X = x)

⇔ 0 < log
{
P(Y = 1|X = x)
P(Y = 0|X = x)

}
= log

{
P(X = x|Y = 1)P(Y = 1)
P(X = x|Y = 0)P(Y = 0)

}
Bayes theorem

= x> Σ−1(µ1 − µ0)︸ ︷︷ ︸
≡β

+ 1
2
[
µ>

0 Σ−1µ0 − µ>
1 Σ−1µ1

]
+ log

{
P(Y = 1)
P(Y = 0)

}
︸ ︷︷ ︸

≡α



Note that

P(Y = 1|X = x)

= P(X = x|Y = 1)P(Y = 1)
P(X = x|Y = 1)P(Y = 1) + P(X = x|Y = 0)P(Y = 0)

= 1

1 +
[
P(X=x|Y =1)P(Y =1)
P(X=x|Y =0)P(Y =0)

]−1

= 1

1 + exp
{

− log
{

P(X=x|Y =1)P(Y =1)
P(X=x|Y =0)P(Y =0)

}} .

Thus, under the assumption that X|Y = y ∼ N (µy, Σ), we have

P(Y = 1|X = x) = 1
1 + exp {−(x>β + α)}

= Λ(x>β + α),

where Λ(u) = (1 + exp{−u})−1 is the logistic function.



Logistic Regression
I Setting: Y ∈ {0, 1}, X ∈ Rk

I Assumption: P(Y = 1|X = x) = Λ(x>β + α) for some β ∈ Rk and α ∈ R
I Motivation:

1 Generalized linear model (with linear log odds)

Specifying the link function Λ−1, we have E[Y |X = x] = Λ(x>β + α).
2 Latent regression

Under the assumptions that
i. Y ∗ = X>β + α − ε, P(ε ≤ u|X = x) = Λ(u), and

ii. Y =
{

1, if Y ∗ ≥ 0;
0, otherwise,

we have P(Y = 1|X = x) = Λ(x>β + α).

I Decision:

given X = x, predict Y = 1 ⇔ P(Y = 1|X = x) > P(Y = 0|X = x)

⇔ 0 < log
{
P(Y = 1|X = x)
P(Y = 0|X = x)

}
= x>β + α



Vapnik’s Support Vector Machine (SVM)
Figures 9.2 and 9.3 of James et al. (2021)

I Setting: y ∈ {−1, 1}, x ∈ Rk

I We say the observations {(yi, xi)}n
i=1 are linearly separable if there is a

separating hyperplane with slope β and intercept α such that for all
i = 1, . . . , n, {

β>xi + α > 0, if yi = 1,

β>xi + α < 0, if yi = −1;

equivalently, yi(β>xi + α) > 0.



I The hard support vector machine aims to find the separating hyperplane with
the largest margin; specifically,

(β, α) ∈ arg max
(b,a):‖b‖=1

min{|b>xi + a| : i = 1, 2, . . . , n}

subject to yi(b>xi + a) > 0 for all i = 1, 2, . . . , n.

Lemma 1
The following algorithm yields a solution to the hard-SVM.

1 Input: Dn = {(yi, xi)}n
i=1

2 Solve:

(β̃, α̃) ∈ arg min
(b,a)

‖b‖2

subject to yi(b>xi + a) ≥ 1 for all i = 1, 2, . . . , n.

3 Output: β = β̃

‖β̃‖ and α = α̃
‖β̃‖ .



I If the observations {(yi, xi)}n
i=1 are linearly non-separable, then we consider

the soft support vector machine

(β, α) ∈ arg min
(b,a)

c

n

n∑
i=1

ξi + ‖b‖2

subject to yi(x>
i b + a) ≥ 1 − ξi and ξi ≥ 0 for all i = 1, . . . , n.

I Recap: the hard support vector machine can be solved by

(β̃, α̃) ∈ arg min
(b,a)

‖b‖2

subject to yi(b>xi + a) ≥ 1 for all i = 1, 2, . . . , n.



I If the observations {(yi, xi)}n
i=1 are linearly non-separable, then we consider

the soft support vector machine

(β, α) ∈ arg min
(b,a)

c

n

n∑
i=1

ξi + ‖b‖2

subject to yi(x>
i b + a) ≥ 1 − ξi and ξi ≥ 0 for all i = 1, . . . , n.

I The soft support vector machine can be equivalently recast as

(β, α) ∈ arg min
(b,a)

1
n

n∑
i=1

max
{

0, 1 − yi(x>
i b + a)

}
+ λ‖b‖2

if we appropriately select λ.
I Setting: Y ∈ {−1, 1}, X ∈ Rk

I Decision:

given X = x, predict Y = 1 ⇔ x>β + α > 0

⇔ sign(Λ(x>β + α) − 1/2) > 0



Stefan Banach:
A mathematician is a person who can find analogies between theorems;
a better mathematician is one who can see analogies between proofs and
the best mathematician can notice analogies between theories. One can
imagine that the ultimate mathematician is one who can see analogies
between analogies.



Why 1/2?
I Setting: Y ∈ {0, 1}, X ∈ Rk

(Without loss of generality, 0 can be replaced with -1 here.)
I Two outcomes and P(Y = 1|X = x) > P(Y = 0|X = x)
I The implicit rationale is to find a classifier such that the misclassification rate

is minimized.
I The Bayes decision rule

g∗(x) =

{
1, if P(Y = 1|X = x) > 1/2,

0, otherwise,

has the property that for all g : Rd → {0, 1},

P(g∗(X) 6= Y ) ≤ P(g(X) 6= Y ).

See the discussion in Devroye et al. (1996) and Hastie et al. (2009).
I We make a decision in pursuit of statistical accuracy.
I Should we do so in credit scoring?



Part 1 Maximum Utility Estimation

Elliott and Lieli (2013): “Predicting Binary
Outcomes”



Binary Decision and Binary Prediction

Making a binary decision based on an uncertain binary outcome is common in
modern economic activities.

Granger and Machina (2006) suggest that decision making based on the
prediction should be driven by a decision maker’s preference.

I Lieli and White (2010) study how a utility-maximizing lender’s approval or
rejection depends on his or her binary prediction about a borrower’s default.
Two scenarios
I The lender rejects the loan & the borrower complies fully with the terms of the

contract
I The lender approves the loan & the borrower defaults

I Further examples can be found in Elliott and Timmermann (2016).



Decision-Based Binary Prediction

Elliott and Lieli (2013):

A decision maker chooses a binary decision a ∈ {−1, 1} to maximize his or her
expected utility

max
a∈{−1,1}

E [U(a, Y, X)|X = x] , (1)

where X = x is a d-dimensional vector of observed covariates, and Y ∈ {−1, 1} is
not observable at the time of the decision.

Application: Profit-Maximizing Credit Scoring

I U = π, lender’s profit function

I
Good (Y = 1) Bad (Y = −1)

Approve (A) πA,1(x) > 0 πA,−1(x) < 0
Reject (R) πR,1(x) = 0 πR,−1(x) = 0

I X: loan characteristics (e.g. interest rate and duration)



Assumptions

max
a∈{−1,1}

E [U(a, Y, X)|X = x]

Assumptions imposed by Elliott and Lieli:
A1 The conditional probability P(Y = 1 | X = x) does not depend on the binary

decision a.

A2 For all x in the support X ⊆ Rd of X, U(1, 1, x) > U(−1, 1, x) and
U(−1, −1, x) > U(1, −1, x).

A3 For any a, y ∈ {1, −1}, U(a, y, ·) is Borel measurable; in addition, there is
some M > 0 such that |U(a, y, x)| ≤ M for all x ∈ X and a, y ∈ {1, −1}.



Optimal Decision Rule

max
a∈{−1,1}

E [U(a, Y, X)|X = x]

Elliott and Lieli (2013) show that under Assumptions A1 and A2, we can obtain
an optimal decision rule (after observing X = x)

a∗(x) ≡
{

1 if p∗(x) ≥ c(x),
−1 otherwise,

= sign(p∗(X) − c(X))

where p∗(x) ≡ P(Y = 1 | X = x) and

c(x) ≡ U(−1, −1, x) − U(1, −1, x)
U(1, 1, x) − U(−1, 1, x) + U(−1, −1, x) − U(1, −1, x)

∈ (0, 1)

is a cutoff function derived from the utility function, which is known in principle to
the decision maker.



To solve maxa∈{−1,1} E [U(a, Y, X)|X = x], we let ua,Y (X) ≡ U(a, Y, X) for
ease of notation.

a = 1:

E[u1,Y (X)|X = x]
= p(Y = 1|X = x)u1,1(x) + p(Y = −1|X = x)u1,−1(x)
= p∗(x)[u1,1(x) − u1,−1(x)] + u1,−1(x)

a = −1:

E[u−1,Y (X)|X = x]
= p(Y = 1|X = x)u−1,1(x) + p(Y = −1|X = x)u−1,−1(x)
= p∗(x)[u−1,1(x) − u−1,−1(x)] + u−1,−1(x)

We have

a∗(x) = 1 if and only if p∗(x)[u1,1(x) − u1,−1(x)] + u1,−1(x)
≥ p∗(x)[u−1,1(x) − u−1,−1(x)] + u−1,−1(x);

i.e., p∗(x) ≥ c(x) ≡ u−1,−1(x)−u1,−1(x)
u1,1(x)−u−1,1(x)+u−1,−1(x)−u1,−1(x) .



I To achieve maximal expected utility in (1), we only need the correct
specification of sign(p∗(x) − c(x)).

Elliott and Lieli (2013)



Maximum Utility Estimation
Elliott and Lieli (2013) also show that the decision-making problem in (1) can be
equivalently written as

max
f

E [b(X)[Y + 1 − 2c(X)]sign(f(X) − c(X))] ,

where b(x) ≡ U(1, 1, x) − U(−1, 1, x) + U(−1, −1, x) − U(1, −1, x) is the
denominator of c(x) and the maximum is taken over all measurable functions from
X to R.

Decomposition:

b(X)[Y + 1 − 2c(X)]︸ ︷︷ ︸
=

{
2[U(1, 1, X) − U(−1, 1, X)] > 0, if Y = 1
2[U(1, −1, X) − U(−1, −1, X)] < 0, if Y = −1.

=A︷ ︸︸ ︷
sign(f(X) − c(X))

I If AY = 1, then b(X)[Y + 1 − 2c(X)] > 0;
I If AY = −1, then b(X)[Y + 1 − 2c(X)] < 0.



Given a sample of observations {(Yi, Xi)}n
i=1 and a pre-specified class F of

functions, a maximum utility estimator is defined as

f̂mu ∈ arg max
f∈F

1
n

n∑
i=1

b(Xi)[Yi + 1 − 2c(Xi)]sign(f(Xi) − c(Xi)).

The associated prediction rule is x 7→ sign(f̂mu(x) − c(x)).

Manski’s (1975, 1985) maximum score estimator is a special case of this maximum
utility estimator. (Note that Yisign(f(Xi) − c(Xi)) is the score for observation i.)



Overfitting

According to the simulation results, Elliott and Lieli make the following comments:

“Both ML and MU have a strong tendency to overfit in sample, how-
ever the problem seems more severe for the MU method. This creates
challenges for model selection.”

“There are a large number of methods for model selection for classifica-
tion schemes, although none have been shown to extend to the general
methods of this paper.”

To alleviate the in-sample overfitting in the maximum utility estimation, Su
(2021) further studies the complexity-penalized utility-maximizing prediction rule.



Part 2 Complexity Penalized Maximum Utility
Estimation

Su (2021): “Model Selection in
Utility-Maximizing Binary Prediction”



Cost-Sensitive Binary Classification

Cause of overfitting?

The maximum utility estimation can be viewed as binary classification in which
the cost of misclassification for each in sample observation may be different.

f̂mu ∈ arg max
f∈F

1
n

n∑
i=1

b(Xi)[Yi + 1 − 2c(Xi)]sign(f(Xi) − c(Xi))

= arg min
f∈F

1
n

n∑
i=1

b(Xi)[Yi(1 − 2c(Xi)) + 1]︸ ︷︷ ︸
cost of mismatch ≥0

1[Yi 6=sign(f(Xi)−c(Xi))].

Derivation



Nature of the Overfitting in MU Estimation
I If the cost of mismatch is a constant, then the maximum utility estimation

reduces to the traditional binary classification in machine learning

f̂mu ∈ arg min
f∈F

1
n

n∑
i=1

b(Xi)[Yi(1 − 2c(Xi)) + 1]︸ ︷︷ ︸
cost of mismatch

1[Yi 6=sign(f(Xi)−c(Xi))]

= arg min
f∈F

1
n

n∑
i=1

1[Yi 6=sign(f(Xi)−c(Xi))].

I Moreover, if the in-sample observations can be perfectly separated by F , then

0 = min
f∈F

1
n

n∑
i=1

1[Yi 6=sign(f(Xi)−c(Xi))]

= min
f∈F

1
n

n∑
i=1

b(Xi)[Yi(1 − 2c(Xi)) + 1]1[Yi 6=sign(f(Xi)−c(Xi))].

Cause of overfitting: Complicated F



Structural Risk Minimization
How to alleviate overfitting? Vapnik’s (1982) structural risk minimization

max
f∈F

1
n

n∑
i=1

b(Xi)[Yi + 1 − 2c(Xi)]sign(f(Xi) − c(Xi))

I The utility of a predictor f evaluated at the observation (y, x) is denoted by

s(y, x, f) ≡ b(x)[y + 1 − 2c(x)]sign(f(x) − c(x))

I Given a predictor f constructed based on a sample Dn ≡ {(Yi, Xi)}n
i=1 of

observations with sample size n, its expected utility is

S(f) ≡ E[s(Y, X, f)|Dn]

and its empirical utility is

Sn(f) ≡ 1
n

n∑
i=1

s(Yi, Xi, f).



Utility-Maximizing Prediction Rule

I Consider nondecreasing sieve {Fk}∞
k=1; i.e.,

F1 ⊂ F2 ⊂ · · · ⊂ Fk ⊂ · · · and F ≡
∞⋃

k=1

Fk.

For example, Fk = Pk is the class of polynomial transformations on X of
order at most k.

I For each Fk, we select a maximum utility estimator

f̂k ∈ arg max
f∈Fk

Sn(f).

We define a utility-maximizing prediction rule (UMPR) as a maximum utility
estimator f̂k that maximizes the complexity penalized empirical utility;
specifically,

f̃n ≡ f̂k̂n
, where k̂n = arg max

k∈N
Sn(f̂k) − Cn(k).



Heuristic Idea of Structural Risk Minimization
Utility-Maximizing Prediction Rule (UMPR):

f̃n ≡ f̂k̂n
, where k̂n = arg max

k∈N
Sn(f̂k) − Cn(k).

Heuristic Idea:

If Cn(k) ' Sn(f̂k) − S(f̂k)︸ ︷︷ ︸
magnitude of overfitting

,

then S(f̂k) ' Sn(f̂k) − Cn(k),

k̂n = arg max
k∈N

penalized empirical utility︷ ︸︸ ︷
Sn(f̂k) − Cn(k)

' arg max
k∈N

S(f̂k)

and thus

S(f̃n) % S(f̂k) for all k.



Resemblance between UMPR and AIC

Utility-Maximizing Prediction Rule (UMPR):

f̃n ≡ f̂k̂n
, where k̂n = arg max

k∈N
Sn(f̂k) − Cn(k).

Akaike Information Criterion (AIC):

f̃ IC
n ≡ f̂ML

ǩn
, where ǩn = arg max

k∈N

1
n

n∑
i=1

L(f̂ML
k |Yi, Xi) − C IC

n (k).

I L(f̂ML
k |Yi, Xi) =

( 1+Yi

2
)

log f̂ML
k (Xi) +

( 1−Yi

2
)

log[1 − f̂ML
k (Xi)]

I L: the log-likelihood function of a single observation (Y, X)
I f̂ML

k : the maximum likelihood estimator in Fk

I C IC
n (k) : 1

n × the number of free parameters in Fk



UMPR AIC

Fitting of p∗ local global

Validity of penalty non-asymptotic asymptotic

Methodology discriminative generative

{(Yi, Xi)}n
i=1−−−−−−−−→ max

a∈{−1,1}
E [ua,Y (X)|X = x]

↘ 99K

p∗(x) ≡ P(Y = 1 | X = x)

Vapnik (in the 1990s): “When solving a problem of interest, do not solve
a more general problem as an intermediate step. Try to get the answer
that you really need but not a more general one.”



Computability-Bounded Rationality

I Heuristic Idea: Cn(k) ' Sn(f̂k) − S(f̂k)︸ ︷︷ ︸
magnitude of overfitting

I Sn(f̂k) − S(f̂k) ≤ sup
f∈Fk

(Sn(f) − S(f))︸ ︷︷ ︸
maximal magnitude of overfitting

We avoid measurability complications by imposing the following assumption:
A4 For each k ∈ N, the class Fk of functions is countable.

In a computer program, there are only countably many computable real numbers.

This assumption could be interpreted as a decision maker’s computability-bounded
rationality, as in Richter and Wong (1999).



Concentration Inequality

Theorem (McDiarmid, 1989)
Suppose that g : Zn → R satisfies

sup
z1,...,zn,

z′
i∈Z

|g(z1, . . . , zn) − g(z1, . . . , z(i−1), z′
i, z(i+1), . . . , zn)| ≤ ci

for 1 ≤ i ≤ n. If Z1, . . . , Zn are independent random variables taking values in a
set Z, then for any t > 0,

P (g(Z1, . . . , Zn) − E[g(Z1, . . . , Zn)] > t) ≤ exp
{

− 2t2∑n
i=1 c2

i

}
.

I Talagrand (1996):
A random variable that depends (in a “smooth” way) on the influence
of many independent variables (but not too much on any of them) is
essentially constant.

I Boucheron et al. (2013): “Concentration Inequalities: A Nonasymptotic
Theory of Independence”



Application

I Taking g = supf∈Fk
(Sn(f) − S(f)) in McDiarmid’s (1989) inequality, we

obtain

P

(
sup

f∈Fk

(Sn(f) − S(f)) − E

[
sup

f∈Fk

(Sn(f) − S(f))

]
> ε

)
≤ exp

{
− nε2

32M2

}
.

I This inequality implies that given i.i.d. observations, |Sn(f̂k) − S(f̂k)|
converges almost surely to zero whenever Fk is a VC-subgraph class.

I See the discussion immediately after Corollary 1 of Su (2021).



Data-Dependent Penalty

I Suppose that we have the ghost sample {(Y ′
i , X ′

i)}n
i=1.

(That is, the observations (Y ′
1 , X ′

1), . . . , (Y ′
n, X ′

n) are distributed as
(Y1, X1), . . . , (Yn, Xn) and independent of them.)

S′
n(f): empirical utility of f constructed based on the ghost sample

I The common symmetrization argument implies that

E

[
sup

f∈Fk

(Sn(f) − S(f))

]
=E

[
sup

f∈Fk

(
Sn(f) − E[S′

n(f)|Dn]
)]

=E

[
sup

f∈Fk

E
[(

Sn(f) − S′
n(f)

)∣∣∣Dn

]]

≤E
[
E
[

max
f∈Fk

(
Sn(f) − S′

n(f)
)∣∣∣Dn

]]
=E

[
max
f∈Fk

(Sn(f) − S′
n(f))

]
.



I We have E
[
supf∈Fk

(Sn(f) − S(f))
]

≤ E [maxf∈Fk
(Sn(f) − S′

n(f))].

I It follows from McDiarmid’s (1989) inequality that

P

(
sup

f∈Fk

(Sn(f) − S(f)) − max
f∈Fk

(Sn(f) − S′
n(f)) ≥ ε

)

≤ P

(
sup

f∈Fk

(Sn(f) − S(f)) − max
f∈Fk

(Sn(f) − S′
n(f))

−E

[
sup

f∈Fk

(Sn(f) − S(f)) − max
f∈Fk

(Sn(f) − S′
n(f))

]
≥ ε

)

≤ exp
{

− nε2

c0M2

}
for some constant c0 > 0.

I Therefore, we obtain

sup
f∈Fk

(Sn(f) − S(f)) ≤ max
f∈Fk

(Sn(f) − S′
n(f)) + O

(
1√
n

)
with high probability.



Maximal Discrepancy (MD)

I In practice, the lack of the ghost sample invalidates the direct estimation of
maxf∈Fk

(Sn(f) − S′
n(f)).

I We partition the sample into two nonoverlapping and roughly equal-sized
subsamples; for example, the sample Dn is partitioned into two subsamples
D

(1)
n/2 = {(Y2i−1, X2i−1)}n/2

i=1 and D
(2)
n/2 = {(Y2i, X2i)}n/2

i=1.

I We define the maximal discrepancy complexity penalty as

CMD
n (k; α) ≡ max

f∈Fk

 2
n

n/2∑
i=1

s(Y2i−1, X2i−1, f) − 2
n

n/2∑
i=1

s(Y2i, X2i, f)


+ 24Mχn(k; α).



I We define the maximal discrepancy complexity penalty as

CMD
n (k; α) ≡ max

f∈Fk

 2
n

n/2∑
i=1

s(Y2i−1, X2i−1, f) − 2
n

n/2∑
i=1

s(Y2i, X2i, f)


+ 24Mχn(k; α).

I Recap:
1 Heuristic Idea: Cn(k) ' Sn(f̂k) − S(f̂k)︸ ︷︷ ︸

magnitude of overfitting

2 Sn(f̂k) − S(f̂k) ≤ sup
f∈Fk

(Sn(f) − S(f))︸ ︷︷ ︸
maximal magnitude of overfitting

3 With high probability,

Sn(f̂k) − S(f̂k)︸ ︷︷ ︸
magnitude of overfitting

≤ sup
f∈Fk

(Sn(f) − S(f))

≤ max
f∈Fk

(
Sn(f) − S′

n(f)
)

+ O
(

1√
n

)
.



I We define the maximal discrepancy complexity penalty as

CMD
n (k; α) ≡ max

f∈Fk

 2
n

n/2∑
i=1

s(Y2i−1, X2i−1, f) − 2
n

n/2∑
i=1

s(Y2i, X2i, f)


+ 24Mχn(k; α).

I Let Vk be the Vapnik-Chervonenkis (VC) dimension of the class
{x 7→ sign(f(x) − c(x)) : f ∈ Fk}. The technical term

χn(k; α) ≡
√

(1 + α) log{Vk}
2n

is included in the penalty to guarantee that ζ(α) ≡
∑∞

k=1 V
−(1+α)

k is
summable for some α0. The tuning parameter α > 0 can be selected by the
tenfold cross-validation method.



Pseudo-Random Maximal Discrepancy

I We draw a sequence (σ1, σ2, . . . , σn/2) of i.i.d. Rademacher random variables
that are independent of Dn; that is, P(σi = 1) = P(σi = −1) = 1/2.

I We consider the pseudo-random maximal discrepancy complexity penalty
(without a technical term)

max
f∈Fk

2
n

n/2∑
i=1

σi

(
s(Y2i−1, X2i−1, f) − s(Y2i, X2i, f)

)
.

I The previous maximal discrepancy complexity penalty is a special case.



Rademacher Complexity (RC)
Rademacher complexity (Koltchinskii (2001) and Bartlett et al. (2002)) is
commonly used to construct a data-dependent penalty in the traditional binary
classification.

Let {σi}n
i=1 be a sequence of i.i.d. Rademacher random variables that are

independent of Dn.

E

[
sup

f∈Fk

(Sn(f) − S(f))
]

≤E

[
max
f∈Fk

(
Sn(f) − S′

n(f)
)]

=E

[
max
f∈Fk

1
n

n∑
i=1

(
s(Yi, Xi, f) − s(Y ′

i , X′
i, f)
)]

=E

[
max
f∈Fk

1
n

n∑
i=1

σi

(
s(Yi, Xi, f) − s(Y ′

i , X′
i, f)
)]

≤E

[
max
f∈Fk

1
n

n∑
i=1

σis(Yi, Xi, f)

]
+ E

[
max
f∈Fk

1
n

n∑
i=1

(−σi)s(Y ′
i , X′

i, f)

]

=E

[
max
f∈Fk

2
n

n∑
i=1

σis(Yi, Xi, f)

]
.



I E
[
supf∈Fk

(Sn(f) − S(f))
]

≤ E
[
maxf∈Fk

2
n

∑n
i=1 σis(Yi, Xi, f)

]
I Applying McDiarmid’s (1989) inequality, we have

sup
f∈Fk

(Sn(f) − S(f)) ≤ E

[
max
f∈Fk

2
n

n∑
i=1

σis(Yi, Xi, f)
∣∣∣Dn

]
︸ ︷︷ ︸

empirical Rademacher complexity

+ O
(

1√
n

)

with high probability.

We define the simulated Rademacher complexity penalty as

CRC
n (k; α, m) ≡ 1

m

m∑
j=1

(
max
f∈Fk

2
n

n∑
i=1

σ
(j)
i s(Yi, Xi, f)

)
+ γm,n(M)χn(k; α),

where {σ(j)}m
j=1 = {(σ(j)

1 , σ
(j)
2 , . . . , σ

(j)
n )}m

j=1 is the collection of i.i.d.
Rademacher random vectors that are independent of Dn, and γm,n is a
deterministic function that satisfies

γm,n(M) =

{
40M, if n ≤ m < ∞,

(16ℓ + 40)M, if n/(ℓ + 1)2 ≤ m < n/ℓ2 and ℓ ∈ N.

I γm,n is designed to control the extra randomness introduced by {σ(j)}m
j=1.



Bootstrap Complexity (BC)

I Note that σ
d= 2B − 1, where B ∼ Ber(1/2).

I The simulated Rademacher complexity penalty (without a technical term)
satisfies

1
m

m∑
j=1

(
max
f∈Fk

2
n

n∑
i=1

σ
(j)
i s(Yi, Xi, f)

)

d= 2
m

m∑
j=1

(
max
f∈Fk

1
n

n∑
i=1

(2B
(j)
i − 1)s(Yi, Xi, f)

)
.

I Fromont (2007) suggests using bootstrap to construct a complexity penalty.



We define the bootstrap complexity penalty as

CBC
n (k; α, m) ≡

(
n

n − 1

)n 1
m

m∑
j=1

(
max
f∈Fk

1
n

n∑
i=1

(
W

(j)
n,i − 1

)
s(Yi, Xi, f)

)
+ γ′

m,n(M)χn(k; α),

where {W
(j)
n }m

j=1 = {(W (j)
n,1, W

(j)
n,2, . . . , W

(j)
n,n)}m

j=1 is the collection of i.i.d.
multinomial vectors with parameters n and (1/n, 1/n, . . . , 1/n) such that
{W

(j)
n }m

j=1 is independent of Dn, and

γ′
m,n(M) =

{
56M, if n ≤ m < ∞,

(32ℓ + 56)M, if n/(ℓ + 1)2 ≤ m < n/ℓ2 and ℓ ∈ N.

I γ′
m,n is designed to control the extra randomness introduced by {W

(j)
n }m

j=1.



Theoretical Properties of the UMPR

I Recap: S(f) = E[b(X)[Y + 1 − 2c(X)]sign(f(X) − c(X))|Dn]

I Let S∗ ≡ S(p∗) be the maximal expected utility and S∗
k ≡ supf∈Fk

S(f) for
each k.

I S∗ − S∗
k : approximation error for Fk

I E[S(f̃n)]: generalized expected utility of the UMPR



Theorem 1
Suppose that (i) the data Dn = {(Yi, Xi)}n

i=1 are i.i.d., (ii) Fk is a VC-subgraph
class with VC index Vk for each k, (iii) ζ(α0) < ∞ for some α0, and (iv)
Assumptions A1-A4 hold.

If the UMPR f̃n is constructed based on the penalty CRC
n with tuning parameter

α0, then we have for any n ∈ N,

S∗ − E[S(f̃n)]

≤ min
k

{
(S∗ − S∗

k) + E
[
CRC

n (k; α0, m)
]}

+ γm,n(M)
√

1 + log{2ζ(α0)}
2n

.

Trade-off:
approximation error S∗ − S∗

k ↓
k ↑ ⇒

expected complexity penalty E
[
CRC

n (k; α0, m)
]

↑



Corollary 1

Suppose that the assumptions of Theorem 1 hold. If in addition m/n ≥ 1/ℓ̄2 for
some positive integer ℓ̄, then there are positive constants κ1 and κ2 only
depending on M , and κ3 depending on (M, ℓ̄) such that for each k ∈ N and
n ≥ 8,

E
[
CRC

n (k; α0, m)
]

≤ κ1

√
Vk

n
+ κ2Vk

(log{n})2

n
+ κ3

√
1 + α0

√
log {Vk}

n
.

Moreover, the UMPR f̃n constructed based on the penalty CRC
n with tuning

parameter α0 satisfies

lim
n→∞

S(f̃n) = S∗ with probability one

for any distribution of (Y, X) such that limk→∞ S∗
k = S∗.

I Using the other penalties to construct the UMPR, we obtain similar results.



Proposition 1

Suppose Assumptions A1 and A2 hold. For any (measurable) deterministic
function f : X 7→ R, we have

S∗ − S(f) = 4E
[
b(X)[p∗(X) − c(X)](1[p∗(X)≥c(X)] − 1[f(X)≥c(X)])

]
≥ 0

and

S∗ − S(f) ≤ 4E [b(X)|p∗(X) − f(X)|] ≤ 16M sup
x∈X

|p∗(x) − f(x)|.

I For each k ∈ N,
0 ≤ S∗ − S∗

k︸ ︷︷ ︸
approximation

error

≤ 16M inf
f∈Fk

sup
x∈X

|p∗(x) − f(x)|︸ ︷︷ ︸
uniform distance

between p∗ and Fk

.

I If we specify Fk = Pk, then
inf

f∈Fk

sup
x∈X

|f(x) − p∗(x)| → 0 as k → ∞

whenever p∗ is continuous on the compact support X ⊆ Rd.
(Stone-Weierstrass approximation theorem)



Monte Carlo Experiments

We consider the simulation designs in Elliott and Lieli (2013).

DGP1 The covariate X follows the distribution 5 · beta(1, 1.3) − 2.5 and p∗(X) = Λ(−0.5X + 0.2X3)
where Λ is the standard logistic function; i.e., Λ(u) = (1 + exp {−u})−1 for all u ∈ R;

Pref.1 b(X) = 20 and c(X) = 0.5;

Pref.2 b(X) = 20 and c(X) = 0.5 + 0.025X;

DGP2 Both covariates X1 and X2 are independent and uniformly distributed on [−3.5, 3.5] and
p∗(X1, X2) = Λ(Q(1.5X1 + 1.5X2)), where
Q(u) = (1.5 − 0.1u) exp{−(0.25u + 0.1u2 − 0.04u3)}.

Pref.3 b(X1, X2) = 20 and c(X1, X2) = 0.75;

Pref.4 b(X1, X2) = 20 + 40 · 1[|X1+X2|<1.5] and c(X1, X2) = 0.75.

Preference



I For the UMPR with any aforementioned penalty, we specify the hierarchy
{Fk}∞

k=1 of classes as Fk = Pk for k ∈ {1, 2} and Fk = P3 for all k ≥ 3.

I For the AIC and BIC, we specify the hierarchy {Fk}∞
k=1 of classes as

Fk = Λ(Pk) for k ∈ {1, 2} and Fk = Λ(P3) for all k ≥ 3, where
Λ(Pk) ≡ {x 7→ Λ(f(x)) : f ∈ Pk} for each k ∈ N.

I We also compute the tenfold cross-validatory LASSO (Tibshirani (1996))
with optimization taken over the class Λ(P3) and ℓ1-norm SVM (Fung and
Mangasarian (2004)) with optimization taken over the class P3.



Least Absolute Shrinkage and Selection Operator

Cubic Lasso-logit (i.e., cubic ML-logit with an ℓ1 penalty)

max
θ

1
n

n∑
i=1

{(
1 + Yi

2

)
log p(Xi;θ) +

(
1 − Yi

2

)
log[1 − p(Xi;θ)]

}
− λ‖θ‖1

I DGP 1: p(x;θ) ≡ Λ
(
θ0 + θ1x + θ2x2 + θ3x3),

‖θ‖1 =
∑3

i=0 |θi|

I DGP 2: p(x;θ) ≡ Λ
(

θ0 + θ1x1 + θ2x2 + θ3x2
1 + θ4x2

2 + θ5x1x2

+θ6x3
1 + θ7x3

2 + θ8x2
1x2 + θ9x1x2

2

)
,

‖θ‖1 =
∑9

i=0 |θi|



Support Vector Machine

Lasso-logit (i.e., logistic loss with an ℓ1 penalty)

max
θ

1
n

n∑
i=1

{(
1 + Yi

2

)
log p(Xi;θ) +

(
1 − Yi

2

)
log[1 − p(Xi;θ)]

}
− λ‖θ‖1

= − min
θ

1
n

n∑
i=1

log [1 + exp (−Yif(Xi;θ))]︸ ︷︷ ︸
logistic loss

+λ‖θ‖1

where p(x;θ) = Λ(f(x;θ)) and f(x;θ) is a polynomial in x with coefficient θ.

ℓ1-norm SVM (i.e., Hinge loss with an ℓ1 penalty)

min
θ

1
n

n∑
i=1

max{0, 1 − Yif(Xi;θ)}︸ ︷︷ ︸
Hinge loss

+λ‖θ‖1

⇒ SVM prediction rule f̂SVM(x) ≡ Λ(f(x; θ̂SVM))

Note that ŷ ≡ sign(f(x; θ̂SVM)) = sign(f̂SVM(x) − 1/2).



We compute the relative generalized expected utility of a prediction rule f†
n

RGEU(f†
n) ≡ E[S(f†

n)]
S∗

where S∗ ≡ supf S(f) = S(p∗).

The relative expected utility can be approximated via simulation:

RGEU(f
†
n) = E

[
S(f†

n)
S(p∗)

]
'

1
S

S∑
j=1

Sℓ,j(f†
n|Dn,j)

Sℓ,j(p∗)
,

▶ Sℓ,j(f†
n|Dn,j) is the j-th (out-of-sample) empirical utility with size ℓ of f†

n, constructed by the j-th
in-sample Dn,j with size n,

▶ Sℓ,j(p∗) is the j-th (out-of-sample) empirical utility with size ℓ of p∗, and

▶ S is the number of simulation replications.

We set n ∈ {500, 1000}, m = 10, ℓ = 5000, and S = 500. Details



Table 1: Relative Generalized Expected Utility of UMPR, AIC, BIC, LASSO and SVM

DGP1 p∗(x) = Λ(−0.5x + 0.2x3)

n = 500

Preference b(x) = 20 and c(x) = 0.5 b(x) = 20 and c(x) = 0.5 + 0.025x

UMPR MD SMD RC BC MD SMD RC BC
65.36 66.68 66.86 65.74 55.00 58.87 58.58 57.65

Information AIC BIC AIC BIC
Criterion 93.93 89.95 94.70 88.81

ℓ1-Penalty LASSO SVM LASSO SVM
60.60 87.77 65.62 83.91

n = 1000

Preference b(x) = 20 and c(x) = 0.5 b(x) = 20 and c(x) = 0.5 + 0.025x

UMPR MD SMD RC BC MD SMD RC BC
69.32 72.51 72.23 71.75 63.30 67.12 67.01 65.81

Information AIC BIC AIC BIC
Criterion 97.21 97.13 97.48 97.29

ℓ1-Penalty LASSO SVM LASSO SVM
68.82 93.26 78.92 91.14



DGP2 p∗(x1, x2) = Λ(Q(1.5x1 + 1.5x2)) where Q(u) = 1.5−0.1u
exp{0.25u+0.1u2−0.04u3}

n = 500

Preference b(x1, x2) = 20 and c(x1, x2) = 0.75 b(x1, x2) = 20 + 40 · 1[|x1+x2|<1.5]
and c(x1, x2) = 0.75

UMPR MD SMD RC BC MD SMD RC BC
68.55 69.52 69.47 69.11 50.41 53.87 53.32 52.90

Information AIC BIC AIC BIC
Criterion 60.07 60.27 33.20 30.90

ℓ1-Penalty LASSO SVM LASSO SVM
59.75 26.86 32.93 5.92

n = 1000

Preference b(x1, x2) = 20 and c(x1, x2) = 0.75 b(x1, x2) = 20 + 40 · 1[|x1+x2|<1.5]
and c(x1, x2) = 0.75

UMPR MD SMD RC BC MD SMD RC BC
71.09 ↑ 71.91 ↑ 71.97 ↑ 71.89 ↑ 57.13 ↑ 59.61 ↑ 60.08 ↑ 58.96 ↑

Information AIC BIC AIC BIC
Criterion 59.72 ↓ 59.06 ↓ 31.49 ↓ 28.16 ↓

ℓ1-Penalty LASSO SVM LASSO SVM
59.68 ↓ 25.93 ↓ 29.08 ↓ 5.10 ↓



Pretest

I For k ∈ {2, 3}, consider
{

H
(k)
0 : S∗

(k−1) = S∗
k

H
(k)
1 : S∗

(k−1) < S∗
k

I Test statistic is developed by Elliott and Lieli (2013).

A general-to-specific approach:

k̂(G → S) =

{
1, if neither H

(3)
0 nor H

(2)
0 is rejected,

max
{

k ∈ {2, 3} : H
(k)
0 is rejected against H

(k)
1

}
, otherwise.

A specific-to-general approach:

k̂(S → G) =

{
3, if both H

(3)
0 and H

(2)
0 are rejected,

min
{

k ∈ {2, 3} : H
(k)
0 is not rejected against H

(k)
1

}
− 1, otherwise.



Cross-Validation
I We randomly partition the data Dn into T roughly equal-sized sets. Let

τ : {1, 2, . . . , n} → {1, 2, . . . , T} be the indexing function such that the
observation (Yi, Xi) is in the validation set τ(i).

I For each k ∈ {1, 2, 3} and t ∈ {1, 2, . . . , T}, we calculate the MU estimator
based on D

(−t)
n by

f̂
(−t)
k ∈ arg max

f∈Fk

∑
i:τ(i)6=t

s(Yi, Xi, f).

I The cross-validated value of k is defined as

k̂n = arg max
k∈{1,2,3}

T∑
t=1

∑
i:τ(i)=t

s(Yi, Xi, f̂
(−t)
k ).

I The cross-validated MU estimator is the MU estimator selected from Fk̂n

based on Dn; specifically,

f̂CV
k̂n

∈ arg max
f∈Fk̂n

Sn(f).



Table 2: Relative Generalized Expected Utility of UMPR, Pretest, and Cross-Validation

DGP1 p∗(x) = Λ(−0.5x + 0.2x3)

n = 500

Preference b(x) = 20 and c(x) = 0.5 b(x) = 20 and c(x) = 0.5 + 0.025x

UMPR MD SMD RC BC MD SMD RC BC
65.36 66.68 66.86 65.74 55.00 58.87 58.58 57.65

Pretest S→G G→S S→G G→S
59.27 62.69 45.63 48.69

Cross-Validation 61.30 50.42

n = 1000

Preference b(x) = 20 and c(x) = 0.5 b(x) = 20 and c(x) = 0.5 + 0.025x

UMPR MD SMD RC BC MD SMD RC BC
69.32 72.51 72.23 71.75 63.30 67.12 67.01 65.81

Pretest S→G G→S S→G G→S
62.60 65.20 50.14 53.52

Cross-Validation 64.81 55.19



DGP2 p∗(x1, x2) = Λ(Q(1.5x1 + 1.5x2)) where Q(u) = 1.5−0.1u
exp{0.25u+0.1u2−0.04u3}

n = 500

Preference b(x1, x2) = 20 and c(x1, x2) = 0.75 b(x1, x2) = 20 + 40 · 1[|x1+x2|<1.5]
and c(x1, x2) = 0.75

UMPR MD SMD RC BC MD SMD RC BC
68.55 69.52 69.47 69.11 50.41 53.87 53.32 52.90

Pretest S→G G→S S→G G→S
68.72 68.34 50.62 49.91

Cross-Validation 67.30 48.26

n = 1000

Preference b(x1, x2) = 20 and c(x1, x2) = 0.75 b(x1, x2) = 20 + 40 · 1[|x1+x2|<1.5]
and c(x1, x2) = 0.75

UMPR MD SMD RC BC MD SMD RC BC
71.09 71.91 71.97 71.87 57.13 59.61 60.08 58.96

Pretest S→G G→S S→G G→S
70.90 71.20 56.64 56.48

Cross-Validation 69.93 54.51



Conclusion

We propose a method of model selection in the framework of maximum utility
estimation.
I The maximum utility estimation proposed by Elliott and Lieli (2013) can be

viewed as cost-sensitive binary classification.

I Applying the structural risk minimization in machine learning, we construct a
utility-maximizing prediction rule (UMPR) to alleviate the in-sample
overfitting of MU estimation.

I Under regularity conditions, the expected utility of the UMPR converges to
the maximal expected utility if the approximation error goes to zero.

I Simulation results show that the UMPR, in comparison to some common
estimators (AIC, BIC, LASSO, ℓ1-norm SVM) may have larger relative
expected utility if the conditional probability of the binary outcome is
misspecified.
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Frisch (1933, Econometrica):

But there are several aspects of the quantitative approach to economics,
and no single one of these aspects, taken by itself, should be confounded
with econometrics. Thus, econometrics is by no means the same as eco-
nomic statistics.... Experience has shown that each of these three view-
points, that of statistics, economic theory, and mathematics, is necessary,
but not by itself a sufficient, condition for a real understanding of the quan-
titative relations in modern economic life. It is the unification of all three
that is powerful. And it is this unification that constitutes econometrics.

computer science: Turing machine (1936), von Neumann architecture (1945)

Varian (2014, JEP):

In fact, my standard advice to graduate students these days is go to
the computer science department and take a class in machine learning....
There have been very fruitful collaborations between computer scientists
and statisticians in the last decade or so, and I expect collaborations
between computer scientists and econometricians will also be productive
in the future.
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