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Motivation

▶ Modern data are often of high dimension and complex.

▶ A typical approach is to represent the data as vectors or matrices.

▶ Unconstrained vector/matrix representation is not able to reveal the

hidden structure in the data.

▶ We need to figure out how to decompose data into different “modes” in

order to have a deeper understanding of the data.

▶ Modes of Variation: data variation in different modes, i.e., variation in

length, direction, etc.
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Example

Figure: Orbits in the space of all triangles [1, Fig. 1.9].
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Triangle Example

▶ If we use a 3 × 2 matrix to represent a triangle, we are not able to easily

tell whether two triangles are different in size, orientation, position, or

shape.

▶ Size: a ∈ R+ (1 degree of freedom)

▶ Position: o ∈ R2 (2 degrees of freedom)

▶ Orientation: θ ∈ [0, 2π] (1 degree of freedom)

▶ The remaining degrees 6 − 1 − 2 − 1 = 2 are responsible for shape.

▶ What is the space for shapes?
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What is Object Data?

▶ Traditionally, the samples are represented as vectors or matrices.

▶ Constrained vectors/matrices are able to represent the data more

accurately.

▶ Example: vector with unity length ⇒ direction

▶ Usually, the constraints make the sample space non-Euclidean.

▶ Object data are those residing on a non-Euclidean space, e.g., a curved

space.
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Connectivity Matrix

Figure: Functional Connectivity Matrix [2, Fig. 3].
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Phylogenetic Tree

Figure: Phylogenetic Tree [3].
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Shape

Figure: Example of planar shapes [4, Fig. 4.5].
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Sample Space of Object Data

▶ The sample spaces of the object data are all non-Euclidean: the tree

space, the space of SPD matrices, the shape space, etc.

▶ Vector operations, e.g., addition and scalar multiplication, are no longer

valid.

▶ How can we compute some simple statistics, e.g., mean?
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Invariance and Equivariance

▶ Invariance: When the samples are transformed, the inference remains

unchanged.

▶ Equivariance: When the samples are transformed, the inference

changes accordingly.

▶ Example:

▶ Sample mean is equivariant to translation and scale

▶ Variance is invariant to translation but equivariant to scale

▶ Invariance/Equivariance allow us to transform the data to make

inference easier.
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Location-Scale Invariance and Equivariance

▶ The t-test is invariant to location-scale transformations.

⇒ We can standardize the data without changing the conclusion.

▶ Linear regression is also invariant/equivariant to location-scale

transformations.

▶ What invariance/equivariance to object data have?

⇒ It depends on the sample space of the object data.
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Invariance/Equivariance for Object Data

▶ Scale/rotation/translation invariance for shapes.

▶ Antipodal invariance for directions.

▶ Rotation/affine invariance for SPD matrices.
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An Example: The Shape of the Corpus Callosum

▶ The shape of the CC varies with age, sex, intellectual ability, etc.

▶ Its size and shape are also associated with disease progression of

some neurodevelopmental disorders, such as autism and

Schizophrenia.

Figure: The shape of a corpus callosum [5].
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Statistical Questions about Shapes

Figure: The CC shapes of male

(blue) and female (magenta).

How can we answer some statistical

questions about shapes? For example,

▶ Test H0: Shape of Female = Shape of

Male.

▶ What variations in shape are associated

with sex?

▶ What is the relationship between age

and the shape of CC?
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What do we need to analyze object data?

▶ Suppose now we have some observations X1, . . . ,Xn from the sample

space X .

▶ What is the most important notion we need for X in order to perform

statistical analysis?

▶ probability distribution?

▶ sample mean?

▶ expectation/variance?

▶ The most fundamental one is a distance, or any measure of

dissimilarity.
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Recall: what is a distance?

A distance d : X × X → [0,∞) is a function such that

1. d(x, y) ≥ 0 and d(x, y) = 0 iff x = y,

2. d(x, y) = d(y, x), and

3. d(x, y) ≤ d(x, z) + d(y, z) for any x, y, z ∈ X .

▶ The pair (X , d) is called a metric space.

▶ A distance has more than what we need; in many cases, a divergence

also works.

▶ We will see what we can achieve with only a distance function.
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Fréchet Mean

▶ Let (X , d) be a metric space and x1, . . . , xn ∈ X .

▶ Define F : X → [0,∞) by

F(m) =

n∑
i=1

d2(xi,m).

▶ This is called the Fréchet variance at m.

▶ The set of minimizers of F is called the Fréchet mean set of x1, . . . , xn.
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Example: X = R

▶ Let X = R and d(x, y) = |x − y|.

▶ Then F(m) =
∑n

i=1(xi − m)2.

▶ The Fréchet mean of x1, . . . , xn is

argmin
m∈R

n∑
i=1

(xi − m)2 =
1
n

n∑
i=1

xi = x̄.

▶ The Fréchet mean is a generalization of the arithmetic mean to general

metric spaces.
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Example: Circle

▶ Let X = S1 = {(x, y) : x2 + y2 = 1} ⊆ R2 and d(x1, x2) = arccos(xT
1 x2), i.e.,

the angle between x1 and x2.
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Fréchet Mean

▶ In general, there is no unique sample mean for x1, . . . , xn ∈ X .

▶ However, if

1. X has non-positive sectional curvatures, or

2. x1, . . . , xn are “not far from each other”,

the FM of x1, . . . , xn is unique.

▶ Examples of non-positively curved spaces: Rd, SPD(d), etc.

▶ Examples of positively curved spaces: sphere, etc.

▶ For circles/spheres, if all the samples are in the same hemisphere, the

FM is unique.
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What can we do with FM?

Figure: The CC shapes of male

(blue) and female (magenta).

Test H0: Shape of Female = Shape of

Male.

1. Compute the FM of shapes for two

groups: X̄M and X̄F.

2. Compute the distance dobs = d(X̄M, X̄F).

3. Use permutation test to obtain a p-value.
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Geodesic

▶ For x0, x1 ∈ X , a geodesic γ(t) with γ(0) = x0 and γ(1) = x1 is a curve

such that Lengtht∈[0,1](γ) = d(x0, x1).

▶ On a manifold M, a geodesic can also be determined by a point x ∈ M

and a tangent vector v ∈ TxM.

▶ Given x ∈ M and v ∈ TxM, the geodesic is the solution to the

differential equation γ′(0) = v with the initial condition γ(0) = x.
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Example: Geodesics on a Sphere

▶ Let Sn = {x ∈ Rn+1 : ∥x∥ = 1}. The geodesic for x ∈ Sn and v ∈ TxSn is

γ(t) = cos(∥v∥t)x + sin(∥v∥t)
v
∥v∥

.

▶ For a sphere, the geodesic is a segment of a great circle.
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Exp/Log Map for a Manifold

▶ Let M be a manifold and TxM be the tangent space of M at x.

▶ TxM is a vector space.

▶ γv(t) is a geodesic starting at x with direction v.

Figure: The tangent space at x.

23



Exp/Log Map for a Manifold

▶ Exponential map: Expx : TxM → M (always exists).

▶ Log Map: Logx : M → TxM (exists only on a neighborhood of x).

▶ In fact, d(xi, xj) = ∥Logxi
(xj)∥ provided that the log map exists.

Figure: The Log/Exp map [6, Fig. 1].
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Principal Geodesic Analysis

▶ Find a FM µ.

▶ Project all the data onto TµM using the Log map.

▶ Perform PCA on the tangent space.

Figure: Principal Geodesic Analysis [7].
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Geodesic Regression

▶ Suppose now we have {xi, yi}n
i=1 where xi ∈ R and yi ∈ M.

▶ We want to model the relationship between xi and yi.

Figure: Geodesic Regression [8].
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Geodesic Regression

▶ Model:

y = Expp(xv + ϵ), ϵ ∼ N(0, σ2I) (1)

▶ The point p ∈ M is the “intercept” and v ∈ TpM is the “slope”.

▶ Suppose Logp exists. Model (1) is equivalent to

Logpy = xv + ϵ,

that is, it is the linear regression on the tangent space TpM.
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Linearization

▶ When the sample space is a manifold, we can use the Exp/Log map to

map the samples to a vector space back and forth.

▶ The vector space is often the tangent space at an FM.

▶ On the tangent space, we can apply the usual statistical methods.

▶ Example: PCA and linear regression on the tangent space.
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Problems with linearization

▶ The linearization technique works well only when the samples are

clustered.

▶ There is no natural coordinate system on the tangent space.

▶ Linearization relies on the FM, which might not be unique.

▶ Linearization loses the geometrical information of the sample space.
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Extrinsic Methods

▶ In many cases, the sample space is embedded in a higher dimensional

Euclidean space.

▶ For example, x1, . . . , xn ∈ S2 ⊆ R3 are represented as 3-dim vectors but

they are actually on a 2-dim manifold (sphere).

▶ What if we consider

x̃ =
x̄
∥x̄∥

, where x̄ =
1
n

n∑
i=1

xi ?

▶ Will it be the same as FM(x1, . . . , xn)? In general, no.

▶ FM(x1, . . . , xn) is also called an intrinsic mean, and x̃ is called an

extrinsic mean.

30



Extrinsic Methods

▶ Suppose we have X1, . . . ,Xn ∈ M ⊆ Rd where M is a k-dim manifold

and k ≪ d.

▶ We can simply treat the Xi’s as d-dim vectors.

▶ However, d is larger than the actual dimension of Xi’s and hence we

might need a larger model.

31



Conclusion

▶ For object data, we can do some basic statistical analysis with only the

notion of a distance.

▶ Geodesics and other more advanced geometric concepts are also

helpful.

▶ Linearization and extrinsic approaches are good first steps. However,

they work well only when the data are clustered.
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