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A crash course on λ-calculus

A ¼-term is:

Atom: variables x, y, z, . . .;

Application t u: apply a ¼-term t to u as a function;

Abstraction ¼x.t: turn a ¼-term t into a function of x.

¼-calculus, which is Turing complete, consists of:

³-renaming: changing the name of a variable;

´-reduction: (¼x.t) u→β t[x← u];

(sometimes) ¸-conversion: ¼x.t x⇔η t.

´-reduction admits unique normal form (no ´-redex) if there is one.
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λ-terms, according to a combinatorialist

¼-term: unary-binary tree (skeleton) + variable-abstraction map

Linear ¼-term: the variable-abstraction map being bijective (so closed)

t = λu.λv.u(λw.λx.λz.v(w(x(λy.y)))z(λk.k))

(RL-)planar term: counter-clockwise variable-abstraction map

Linear planar : unique choice, so just unary-binary tree!
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Known enumeration of various families of λ-terms

closed: no free variable
unitless: no closed sub-term

normal: no ´-reduction, i.e., avoiding

. . .

. . .

. . .

¼-terms Maps OEIS

linear general cubic A062980
planar planar cubic A002005
unitless bridgeless cubic A267827
unitless planar bridgeless planar cubic A000309

´-normal linear/∼ general A000698
´-normal planar planar A000168
´-normal unitless linear/∼ bridgeless A000699
´-normal unitless planar bridgeless planar A000260

Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, LICS 2018

A lot of people and work: Bodini, Courtiel, Gardy, Giorgetti, Jacquot,
Yeats, Zeilberger, . . .
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What is a map?

Combinatorial maps: (nice) drawings of graphs on a surface

sphere/planar (g = 0) torus (g = 1)

We only consider rooted map, i.e., with a marked corner.

Notions in graph theory: planar, loopless, bipartite, ...
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Connectivity condition

Noam Zeilberger and Jason Reed (CLA 2019)

How about connectivity of the diagram on planar linear normal terms?

k-connected: breaking k − 1 edges does not split the graph

1-connected: all (connected by their skeleton)

2-connected: unitless (bridge ⇔ closed sub-term)

3-connected: ???

Motivated by type theory.

Conjecture (Zeilberger–Reed, 2019)

The number of 3-connected planar linear normal ¼-terms with n+ 2
variables is

2n

(n+ 1)(n+ 2)

(

2n+ 1

n

)

,

which also counts bipartite planar maps with n edges (A000257).
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Our contribution (1)

Katarzyna Grygiel and Guan-Ru Yu (CLA 2020): combinatorial
characterization of 3-connected terms, partial bijective results

Theorem (F. 2023)

There is a direct bijection between 3-connected planar linear normal
¼-terms with n+ 2 variables and bipartite planar maps with n edges.

What we do using bijections:

Transfer of statistics (also about applications in ¼-terms)

Generating functions and probabilistic results also for free!

Proposition (F. 2023, from known results on maps by Liskovet)

Let Xn = # initial abstractions of a uniformly random 3-connected
planar linear normal ¼-term. When n → ∞,

P[Xn = k] →
k − 1

3

(

2k − 2

k − 1

)(

3

16

)k−1

.

7 / 18



Introduction Characterization First bijection Second bijection Conclusion

Our contribution (2)

Theorem (F. 2023)

There is a direct bijection from planar linear normal ¼-terms to planar
maps, with its restriction to unitless terms giving loopless planar maps.

¼-terms Maps OEIS

´-normal linear/∼ general A000698
´-normal planar planar A000168
´-normal unitless linear/∼ bridgeless A000699
´-normal unitless planar loopless planar A000260

Known recursive bijection in (Zeilberger and Giorgetti, 2015) via
LR-planar terms (clockwise, not stable by ´-reduction...)
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From λ-terms to unary-binary trees

Linear planar ¼-terms ⇔ unary-binary trees (with conditions)

Three statistics for a unary-binary tree S:

unary(S): # unary nodes (abstractions)

leaf(S): # leaves (variables)

excess(S): leaf(S)− unary(S) (free variables)

Su: sub-tree of S induced by u

Linear (or closed) ⇔ excess(S) = 0

1-connected (well-scoped) ⇔ excess(Su) ≥ 0 for all u

2-connected (or unitless) ⇔ excess(Su) > 0 for all u non-root
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Characterization of 3-connectedness (1)

Proposition (Grygiel and Yu, CLA 2020)

Let S be the skeleton of a 3-connected planar linear ¼-term, then the left
child of the first binary node is a leaf.

· · ·

· · ·

· · ·

· · ·

Reduced skeleton: the right sub-tree of the first binary node
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Characterization of 3-connectedness (2)

Proposition (Proposed by Grygiel and Yu, CLA 2020)

S is the reduced skeleton of a 3-connected planar linear normal ¼-term iff

(Normality) The left child of a binary node in S is never unary;

(3-connectedness) For every binary node u with v its right child,
excess(Sv) > # consecutive unary nodes above u.

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Clearly necessary, but also sufficient!
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Degree trees

Degree tree: a plane tree T with a labeling ℓ on nodes with

u is a leaf ⇒ ℓ(u) = 0;

u has children v1, . . . vk ⇒ s(u)− ℓ(v1) ≤ ℓ(u) ≤ s(u), where

s(u) = k +
∑

k

i=1
ℓ(vi).

Contribution of each child : 1 (itself) + ℓ(vi) (its label)

Except for the first child: from 1 to its due contribution.

0

0 0

2

1

3

6

6

0

00 0

2

2

5

1

(T, ℓ)

3

2

2 2

ℓΛ

Edge labeling ℓΛ: the subtracted contribution (interchangeable with ℓ !)
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First bijection (1/2): 3-connected terms ⇔ degree trees

0

0 0

2

1

3

6

6

0

00 0

2

2

5

1

φ(S) = (T, ℓ)

3

2

2 2

ℓΛ

S

3

2

2

2

Contribution of u to its parent = excess of its right sub-tree

Unary nodes on right child ⇔ Subtraction on left child

13 / 18



Introduction Characterization First bijection Second bijection Conclusion

First bijection (2/2): degree trees ⇔ bipartite planar maps

(A1) (A2) (A3)

eM

. . .

. . .

u

v

. . .

. . .
eT

u

v

3

2

2 2

M TM(M)

=

. . .

eM . . .

u

v

w

. . .

. . .
eT

u

v

w

. . .

. . .
eM

2m

u

v
ℓΛ(eT ) = m

. . .

. . .

eT

v

uM

uT

3

2

2

2

Existing direct bijection (F., 2021), using an exploration

Also related to Chapoton’s new intervals in the Tamari lattice

Some statistics correspondences:

Unary chains of length k ⇔ edge label k ⇔ faces of degree 2k

Initial unary chain ⇔ root label ⇔ degree of root face
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Connected terms and trees

Recall the conditions:

1-connected ⇔ excess(Su) ≥ 0 for all u

2-connected ⇔ excess(Su) > 0 for all u non-root

v-trees: a plane tree T with a labeling ℓ on nodes with

Leaf u ⇒ ℓ(u) ∈ {0, 1};

Non-root u with children v1, . . . , vk ⇒ 0 ≤ ℓ(u) ≤ 1 +
∑

k

i=1
ℓ(vi)

2

2

1

1

0

10

A v-tree is positive if there is no label 0.
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Second bijection (1/2)

(leaf, unary)

(6, 5)

(1, 1)

(3, 1)

(2, 1)

(1, 1)

(7, 5)

(6, 4)

(6, 3)

(5, 1)

(4, 1)

λu.λv.u(λw.λx.λz.v(w(x(λy.y)))z(λk.k))

(1, 0)

(6, 2)

2

2

1

1

0

100

1

0

1

2

2

1

Excess of the right child! 0 ⇔ closed sub-term
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Second bijection (2/2)

Direct bijection = “de-recusifying” a “new” recursive decomposition

outvU : #vertices on outer face −1 (catalytic statistics)

v
· · ·

e

v
· · ·

cc1 = c2

e

c

c1

c2
v

· · ·

e

v
· · ·

v
′

e

U U

U U

ℓ(u) = outvU (U)

ℓ(u) = outvU (U)u

u

M

Λ′(M)

1

2

0

1
0

1

2

2

1

1

0

10

Loop ⇔ component with 1 outer node ⇔ label 0 in tree

Restriction to loopless planar maps ⇔ unitless terms
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Recapitulation

λ-terms Maps OEIS

β-normal linear/∼ general A000698
β-normal planar planar A000168
β-normal unitless linear/∼ bridgeless A000699
β-normal unitless planar loopless planar A000260
β-normal 3-connected planar bipartite planar A000257

Nearly the same bijection

Higher connectivity? Other enumeration consequences?

And types (1, 2, 9, 52, 344, 2482, 19028, 152570, 1266340, ...) ?

18 / 18



Introduction Characterization First bijection Second bijection Conclusion

Recapitulation

λ-terms Maps OEIS

β-normal linear/∼ general A000698
β-normal planar planar A000168
β-normal unitless linear/∼ bridgeless A000699
β-normal unitless planar loopless planar A000260
β-normal 3-connected planar bipartite planar A000257

Nearly the same bijection

Higher connectivity? Other enumeration consequences?

And types (1, 2, 9, 52, 344, 2482, 19028, 152570, 1266340, ...) ?

Thank you for listening!
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