Introduction	Characterization	First bijection	Second bijection	Conclusion
0000000	000	000		O

Bijections between planar maps and planar linear normal λ -terms with connectivity condition

Wenjie Fang LIGM, Université Gustave Eiffel arXiv:2202.03542

27 June 2023, AofA 2023, Academia Sinica

Introduction •0000000	Characterization	First bijection	Second bijection	Conclusion O
A crash	$course on \lambda_{-co}$	laulus		

A λ -term is:

- Atom: variables x, y, z, \ldots ;
- Application t u: apply a λ -term t to u as a function;
- Abstraction $\lambda x.t$: turn a λ -term t into a function of x.

 λ -calculus, which is Turing complete, consists of:

- α -renaming: changing the name of a variable;
- β -reduction: $(\lambda x.t) \ u \rightarrow_{\beta} t[x \leftarrow u];$
- (sometimes) η -conversion: $\lambda x.t \ x \Leftrightarrow_{\eta} t.$

 β -reduction admits unique normal form (no β -redex) if there is one.

λ -terms, according to a combinatorialist

 λ -term: unary-binary tree (skeleton) + variable-abstraction map Linear λ -term: the variable-abstraction map being bijective (so closed)

 $t = \lambda u.\lambda v.u(\lambda w.\lambda x.\lambda z.v(w(x(\lambda y.y)))z(\lambda k.k))$

(RL-)planar term: counter-clockwise variable-abstraction map Linear planar : unique choice, so just unary-binary tree!

Introduction	Characterization	First bijection Second	bijection	Conclusion O
Know	n enumeration of vari	ous families of λ	-terms	
9 9 9	closed: no free variable unitless: no closed sub-term normal: no β -reduction, <i>i.e.</i> ,	avoiding		
	λ -terms	Maps	OEIS	
	linear planar unitless unitless planar	general cubic planar cubic bridgeless cubic bridgeless planar cubic	A062980 A002005 A267827 c A000309	
	eta -normal linear/ \sim eta-normal planar eta -normal unitless linear/ \sim eta-normal unitless planar	general planar bridgeless bridgeless planar	A000698 A000168 A000699 A000260	

Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, LICS 2018

A lot of people and work: Bodini, Courtiel, Gardy, Giorgetti, Jacquot, Yeats, Zeilberger, ...

Combinatorial maps: (nice) drawings of graphs on a surface

We only consider rooted map, *i.e.*, with a marked corner. Notions in graph theory: planar, loopless, bipartite, ...

Introduction	Characterization	First bijection	Second bijection	Conclusion O
Connectivity	condition			

Noam Zeilberger and Jason Reed (CLA 2019)

How about connectivity of the diagram on planar linear normal terms?

k-connected: breaking k-1 edges does not split the graph

- 1-connected: all (connected by their skeleton)
- 2-connected: unitless (bridge ⇔ closed sub-term)
- 3-connected: ???

Motivated by type theory.

Conjecture (Zeilberger-Reed, 2019)

The number of 3-connected planar linear normal $\lambda\text{-terms}$ with n+2 variables is

$$\frac{2^n}{(n+1)(n+2)}\binom{2n+1}{n},$$

which also counts bipartite planar maps with n edges (A000257).

Introduction

Characterization

First bijection

Second bijection

Conclusion

Our contribution (1)

Katarzyna Grygiel and Guan-Ru Yu (CLA 2020): combinatorial characterization of 3-connected terms, partial bijective results

Theorem (F. 2023)

There is a direct bijection between 3-connected planar linear normal λ -terms with n + 2 variables and bipartite planar maps with n edges.

What we do using bijections:

- Transfer of statistics (also about applications in λ -terms)
- Generating functions and probabilistic results also for free!

Proposition (F. 2023, from known results on maps by Liskovet)

Let $X_n = \#$ initial abstractions of a uniformly random 3-connected planar linear normal λ -term. When $n \to \infty$,

$$\mathbb{P}[X_n = k] \to \frac{k-1}{3} \binom{2k-2}{k-1} \left(\frac{3}{16}\right)^{k-1}$$

Introduction	Characterization	First bijection	Second bijection	Conclusion O
Our contrib	ution (2)			

Theorem (F. 2023)

There is a direct bijection from planar linear normal λ -terms to planar maps, with its restriction to unitless terms giving loopless planar maps.

λ -terms	Maps	OEIS
eta -normal linear/ \sim	general	A000698
eta-normal planar	planar	A000168
eta -normal unitless linear/ \sim	bridgeless	A000699
eta-normal unitless planar	loopless planar	A000260

Known recursive bijection in (Zeilberger and Giorgetti, 2015) via LR-planar terms (clockwise, not stable by β -reduction...)

Introduction 0000000	Characterization ●○○	First bijection	Second bijection	Conclusion O
From λ -term	ms to unary-bir	nary trees		

Linear planar λ -terms \Leftrightarrow unary-binary trees (with conditions)

Three statistics for a unary-binary tree S:

- unary(S): # unary nodes (abstractions)
- leaf(S): # leaves (variables)
- excess(S): leaf(S) unary(S) (free variables)
- $S_u: \mathsf{sub-tree} \text{ of } S \text{ induced by } u$
 - Linear (or closed) \Leftrightarrow excess(S) = 0
 - 1-connected (well-scoped) \Leftrightarrow excess $(S_u) \ge 0$ for all u
 - 2-connected (or unitless) $\Leftrightarrow excess(S_u) > 0$ for all u non-root

Characterization of 3-connectedness (1)

Proposition (Grygiel and Yu, CLA 2020)

Let S be the skeleton of a 3-connected planar linear λ -term, then the left child of the first binary node is a leaf.

Reduced skeleton: the right sub-tree of the first binary node

Characterization of 3-connectedness (2)

Proposition (Proposed by Grygiel and Yu, CLA 2020)

S is the reduced skeleton of a 3-connected planar linear normal λ -term iff

- (Normality) The left child of a binary node in S is never unary;
- (3-connectedness) For every binary node u with v its right child, excess $(S_v) > \#$ consecutive unary nodes above u.

Clearly necessary, but also sufficient!

Introduction	Characterization	First bijection ●○○	Second bijection	Conclusion O
Degree trees	5			

Degree tree: a plane tree T with a labeling ℓ on nodes with

- u is a leaf $\Rightarrow \ell(u) = 0$;
- u has children $v_1, \ldots v_k \Rightarrow s(u) \ell(v_1) \le \ell(u) \le s(u)$, where $s(u) = k + \sum_{i=1}^k \ell(v_i)$.

Contribution of each child : 1 (itself) + $\ell(v_i)$ (its label)

Except for the first child: from 1 to its due contribution.

Edge labeling ℓ_{Λ} : the subtracted contribution (interchangeable with ℓ !)

First bijection (1/2): 3-connected terms \Leftrightarrow degree trees

• Contribution of u to its parent = excess of its right sub-tree

● Unary nodes on right child ⇔ Subtraction on left child

First bijection (2/2): degree trees \Leftrightarrow bipartite planar maps

Existing direct bijection (F., 2021), using an exploration

Also related to Chapoton's new intervals in the Tamari lattice Some statistics correspondences:

- Unary chains of length $k \Leftrightarrow$ edge label $k \Leftrightarrow$ faces of degree 2k
- Initial unary chain \Leftrightarrow root label \Leftrightarrow degree of root face

Introduction 0000000	Characterization	First bijection	Second bijection ●○○	Conclusion O
Connected	d terms and tr	rees		

Recall the conditions:

- 1-connected $\Leftrightarrow \operatorname{excess}(S_u) \ge 0$ for all u
- 2-connected $\Leftrightarrow \operatorname{excess}(S_u) > 0$ for all u non-root

v-trees: a plane tree T with a labeling ℓ on nodes with

- Leaf $u \Rightarrow \ell(u) \in \{0, 1\};$
- Non-root u with children $v_1, \ldots, v_k \Rightarrow 0 \le \ell(u) \le 1 + \sum_{i=1}^k \ell(v_i)$

A v-tree is positive if there is no label 0.

Introduction 0000000	Characterization	First bijection	Second bijection	Conclusion O
Second b	ijection (1/2)			

Excess of the **right child**! $0 \Leftrightarrow$ closed sub-term

Direct bijection = "de-recusifying" a "new" recursive decomposition outv_U: #vertices on outer face -1 (catalytic statistics)

Introduction 0000000	Characterization	First bijection	Second bijection	Conclusion
Recapitulati	on			

λ -terms	Maps	OEIS
eta -normal linear/ \sim	general	A000698
eta-normal planar	planar	A000168
eta -normal unitless linear/ \sim	bridgeless	A000699
eta-normal unitless planar	loopless planar	A000260
eta-normal 3-connected planar	bipartite planar	A000257

Nearly the same bijection

Higher connectivity? Other enumeration consequences?

And types (1, 2, 9, 52, 344, 2482, 19028, 152570, 1266340, ...) ?

Introduction 0000000	Characterization	First bijection	Second bijection	Conclusion
Recapitulat	ion			

λ -terms	Maps	OEIS
eta -normal linear/ \sim	general	A000698
eta-normal planar	planar	A000168
eta -normal unitless linear/ \sim	bridgeless	A000699
eta-normal unitless planar	loopless planar	A000260
eta-normal 3-connected planar	bipartite planar	A000257

Nearly the same bijection

Higher connectivity? Other enumeration consequences?

And types (1, 2, 9, 52, 344, 2482, 19028, 152570, 1266340, ...) ?

Thank you for listening!