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Maximum weight matching

Let G be a finite graph.

A matching M of G is a subgraph of G such that all vertices
have degree at most 1.

Put i.i.d. Exp(1) weights (we) on the edges.

For a matching M , define W (M) =
∑

e∈M we.

Maximum weight matching MG: the matching M such that
W (M) is maximized.

Define WG = W (MG).

Goal: Understand MG and WG when G is “large”.
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Recurrence relation

Aldous–Steele: To understand MG and WG, can look for a
recurrence relation.

What happens if we remove a vertex v from G?

Two cases: either v ∈ MG or v 6∈ MG.

Hence

WG = max{WG\{v}, max
u:u∼v

(w(uv) + WG\{u,v})}.

Define the bonus at v in G by B(v,G) = WG−WG\{v}. Then

B(v,G) = max
u:u∼v

{w(uv) − B(u,G \ {v}), 0}

= max
u:u∼v

(w(uv) − B(u,G \ {v}))+.
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Previous results

Aldous–Steele ’04:

Showed that lim
n→∞

EWGn

n
exists, where Gn is uniform random

tree with n vertices.

Actually holds for any continuous distribution, and has an
explicit formula if we ∼ Exp(1).

Rough idea: Remove an edge from a finite tree Gn, view
these components as rooted trees G1

n(e) and G2
n(e) (with

roots being the vertices of e).

If e 6∈ MGn , then WGn = WG1
n(e)

+ WG2
n(e)

.

Otherwise, it equals
we + (WG1

n(e)
− B(o1, G

1
n(e))) + (WG2

n(e)
− B(o2, G

2
n(e))).

Thus e ∈ MGn iff we > B(o1, G
1
n(e)) + B(o2, G

2
n(e)).
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Previous results

So
WGn =

∑
e∈E(Gn)

we1{we>B(o1,G1
n(e))+B(o2,G2

n(e))}.

Taking expectation,

EWGn = (n− 1)Ew1{w>B(o1,G1
n(e))+B(o2,G2

n(e))},

where e = (o1,o2) ∼ Unif(E(Gn)).

Can show that B(o1, G
1
n(e)), B(o2, G

2
n(e)) converge in

distribution, and their distributions satisfy some fixed point
equations.
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Previous results

Gamarnik–Nowicki–Swirszcz ’06:

Show the same conclusion when Gn is sparese Erdős–Rényi
random graph or random r-regular graph.

For random r-regular graph, consider the distributional
equation

Law(Bi) = Law

(
max
1≤j≤r

(wj −Bj)+

)
, (1)

where wj are i.i.d. with the same distribution as we, Bi are
i.i.d. Also, all wj and Bj are independent.
If (1) has a unique solution, then the limit equals

1

2
E

[
r∑

i=1

wi1{wi−Bi=max1≤j≤r(wj−Bj)>0}

]
,

If we ∼ Exp(1), then (1) has a unique solution. Not known
for general distribution.
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Previous results

Also showed a correlation decay result: if e, e′ ∼ Unif(E(Gn))
are independent (where Gn is Erdős–Rényi or r-regular), and
if (1) has a unique solution, then

lim
n→∞

[
P(e, e′ ∈ MGn)− P(e ∈ MGn)P(e′ ∈ MGn)

]
= 0.
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Previous results

Cao 21’:

For sparse Erdős–Rényi graph, if we ∼ Exp(1), then

WGn − EWGn√
Var(WGn)

⇒ N(0, 1).

Based on Stein’s method. Make use of a distributional
equation similar to (1) to show a form of decorrelation.
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Previous results

L.-Sen ’22+:

Consider a “regularized” version: for β > 0, define

Fn(β) = log

 ∑
M matching in Gn

exp

(
β
∑
e∈M

we

) .

When β →∞, then Fn(β)/β →WGn .

For any (Gn) such that the maximal degree is uniformly
bounded and for any edge weight distribution with
E|we|2+ε <∞, under some growth assumption on (Gn),
Fn(β) obeys a Gaussian CLT.

No tree / random structure needed in this case.
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Correlation decay

Notation: BR
v (G) = {u : dist(u, v) ≤ R}.

Theorem (L.-Sen, ’23+)

Let G be a finite graph with maximum degree bounded above by
D. Let v ∈ V (G). Suppose that for some R ≥ 1, BR

v (G) is a tree.
Then there exists c > 0 (depending only on D) such that

E(B(v,G)− B(v,BR
v (G)))2 ≤ e−cR.

Recall {v ∈ MG} = {B(v,G) > 0}.
If G is locally-tree like, then {v ∈ MG} essentially depends
only on a neighborhood of v → correlation decay.
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Rough idea

Recall:

B(v,G) = max
u:u∼v

(w(uv) − B(u,G \ {v}))+.

If G is a tree, (w(uv))u:u∼v, (B(u,G \ {v}))u:u∼v are
independent.

In this case, by memeoryless property, B(v,G) = max
u:u∼v

Wuξu

in distribution, where Wu ∼ Exp(1), ξu ∼ Ber(pu), and Wu,
ξu are independent.

Same holds for the children v1, . . . , vk of v.

Can show: (pv1, . . . , pvk) 7→ pv is essentially a contraction. So
if two vertices are far away, the “information” of the ξ’s
cannot be passed to each other.

=⇒ B(v,G) depends essentially on local neighborhood of v.
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Rough idea

For general G such that v has a tree neighborhood, make use
of monotonicity of bonuses.

Can squeeze B(v,BR
v (G)) ≤ B(v,G) ≤ B(v,BR

v (G)), where
B, B are bonuses by putting extreme boundary conditions on
∂BR

v (G).

Contraction =⇒ B(v,BR
v (G)) ≈ B(v,BR

v (G)).
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Application 1: law of large numbers

Theorem (L.-Sen, ’23+)

Suppose that (Gn) is a sequence of random graphs with
|V (Gn)| = n and maximal degree D that converges locally weakly
to a rooted (random) tree (T, o). Then

lim
n→∞

EWGn

n
→ 1

2
E

[∑
v:v∼o

w(ov)1{(ov)∈MT }

]
.

One has
EWGn

n
=

1

2
E
[∑

u,v:u∼v w(uv)1{(uv)∈MGn}

n

]
=

1

2
E

[ ∑
v:v∼on

w(onv)1{(onv)∈MGn}

]
, where on ∼ Unif(V (Gn)).

Can make sense of MT by correlation decay. (For fixed e,
1{e∈MBRo (T )

} will stabilize for large R.)
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Application 2: quenched central limit theorem

Define

ρR(G) =
{e ∈ E(G) : the R-neighborhood of e is not a tree}

|E(G)|
.

Using Stein’s method, we can show a central limit theorem.

Theorem (L.-Sen, ’23+)

Let G be a finite graph with maximum degree ≤ D. There exist
constants C, c > 0 depending only on D such that for all
1 ≤ R ≤ |V (G)|,

sup
t∈R

∣∣∣∣∣P
(

WG − EWG√
Var(WG)

≤ t

)
− Φ(t)

∣∣∣∣∣
≤ C(ρR(G)1/2 + (DR/|V (G)|)1/4 + e−cR),

where Φ is the CDF of a standard Gaussian.
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Application 3: annealed central limit theorem

Theorem (L.-Sen, ’23+)

Let d1, d2, . . . be positive, integer-valued i.i.d. that are uniformly
bounded. Let Gn be a uniformly chosen random simple graph with
degree sequence (d1, . . . , dn). Then

WGn − EWGn√
Var(WGn)

⇒ N(0, 1).

Previous CLT: only weights are random.

This CLT: both weights and graphs are random. More
involved!

Difficulty: the distribution of Gn is complicated.

Wai-Kit Lam Maximum weight matching 15 / 20



Idea of proof of the annealed CLT

Decompose

WGn − EWGn√
Var(WGn

)
=

WGn − EwWGn√
Varw(WGn

)
·

√
EVarw(WGn)

Var(WGn
)
·

√
Varw(WGn)

EVarw(WGn
)

+
EwWGn

− EWGn√
Var(EwWGn

)
·

√
Var(EwWGn

)

Var(WGn
)
.

Conditional on Gn,
WGn−EwWGn√

Varw(WGn )
⇒ N(0, 1) by the quenched

CLT. (The convergence depends mainly on D but not Gn.)(√
EVarw(WGn )
Var(WGn )

)2
+
(√

Var(EwWGn )
Var(WGn )

)2
= 1.

Can show (not easy):
Varw(WGn )
EVarw(WGn )

→ 1 in probability.

Remains to show:
EwWGn−EWGn√

Var(EwWGn )
⇒ N(0, 1).
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Idea of proof of the annealed CLT

Want:
EwWGn−EWGn√

Var(EwWGn )
⇒ N(0, 1).

Configuration model (Bollobás): Put di many half-edges at
vertex i, and connect the half-edges uniformly at random → a
uniformly random multigraph Cn with degree sequence
(d1, . . . , dn).

Janson ’20: Under some assumptions, one can transfer a CLT
on Cn to one on Gn.

Remains to show
EwWCn−EWCn√

Var(EwWCn )
⇒ N(0, 1).
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Idea of proof of the annealed CLT

Want:
EwWCn−EWCn√

Var(EwWCn )
⇒ N(0, 1).

Barbour–Röllin ’19: If Yn can be written as a sum that
depends only on local neighborhoods of vertices in Cn, then
(under some technical assumptions)

Yn−ECnYn√
VarCn (Yn)

⇒ N(0, 1).

However EwWCn does not just depend on local
neighborhoods.

Yet, thanks to correlation decay, it can be approximated by a
random variable that depends only on local neighborhoods.
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Open problems

Universality? Can we extend the results to general
distributions?

Can we allow the maximal degree →∞ as n→∞?

Maximum weight matching on graphs that are not locally
tree-like?

A better understanding on the structure of the maximum
weight matching?

Wai-Kit Lam Maximum weight matching 19 / 20



Thank you!
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