Correlation decay and limit theorems for maximum weight matching on sparse random graphs

Wai-Kit Lam
National Taiwan University
AofA 2023
(Based on an ongoing project with Arnab Sen)

Maximum weight matching

- Let G be a finite graph.
- A matching M of G is a subgraph of G such that all vertices have degree at most 1 .
- Put i.i.d. $\operatorname{Exp}(1)$ weights $\left(w_{e}\right)$ on the edges.
- For a matching M, define $W(M)=\sum_{e \in M} w_{e}$.
- Maximum weight matching M_{G} : the matching M such that $W(M)$ is maximized.
- Define $\mathrm{W}_{G}=W\left(\mathrm{M}_{G}\right)$.
- Goal: Understand M_{G} and W_{G} when G is "large".

Recurrence relation

- Aldous-Steele: To understand M_{G} and W_{G}, can look for a recurrence relation.
- What happens if we remove a vertex v from G ?
- Two cases: either $v \in \mathrm{M}_{G}$ or $v \notin \mathrm{M}_{G}$.
- Hence

$$
\mathrm{W}_{G}=\max \left\{\mathrm{W}_{G \backslash\{v\}}, \max _{u: u \sim v}\left(w_{(u v)}+\mathrm{W}_{G \backslash\{u, v\}}\right)\right\}
$$

- Define the bonus at v in G by $\mathrm{B}(v, G)=\mathrm{W}_{G}-\mathrm{W}_{G \backslash\{v\}}$. Then

$$
\begin{aligned}
\mathrm{B}(v, G) & =\max _{u: u \sim v}\left\{w_{(u v)}-\mathrm{B}(u, G \backslash\{v\}), 0\right\} \\
& =\max _{u: u \sim v}\left(w_{(u v)}-\mathrm{B}(u, G \backslash\{v\})\right)_{+} .
\end{aligned}
$$

Previous results

Aldous-Steele '04:

- Showed that $\lim _{n \rightarrow \infty} \frac{\mathbb{E W} W_{G_{n}}}{n}$ exists, where G_{n} is uniform random tree with n vertices.
- Actually holds for any continuous distribution, and has an explicit formula if $w_{e} \sim \operatorname{Exp}(1)$.
- Rough idea: Remove an edge from a finite tree G_{n}, view these components as rooted trees $G_{n}^{1}(e)$ and $G_{n}^{2}(e)$ (with roots being the vertices of e).
- If $e \notin \mathrm{M}_{G_{n}}$, then $\mathrm{W}_{G_{n}}=\mathrm{W}_{G_{n}^{1}(e)}+\mathrm{W}_{G_{n}^{2}(e)}$.
- Otherwise, it equals

$$
w_{e}+\left(\mathrm{W}_{G_{n}^{1}(e)}-\mathrm{B}\left(o_{1}, G_{n}^{1}(e)\right)\right)+\left(\mathrm{W}_{G_{n}^{2}(e)}-\mathrm{B}\left(o_{2}, G_{n}^{2}(e)\right)\right) .
$$

- Thus $e \in \mathrm{M}_{G_{n}}$ iff $w_{e}>\mathrm{B}\left(o_{1}, G_{n}^{1}(e)\right)+\mathrm{B}\left(o_{2}, G_{n}^{2}(e)\right)$.

Previous results

- So

$$
\mathrm{W}_{G_{n}}=\sum_{e \in E\left(G_{n}\right)} w_{e} \mathbf{1}_{\left\{w_{e}>\mathrm{B}\left(o_{1}, G_{n}^{1}(e)\right)+\mathrm{B}\left(o_{2}, G_{n}^{2}(e)\right)\right\}}
$$

- Taking expectation,

$$
\mathbb{E W}_{G_{n}}=(n-1) \mathbb{E} w \mathbf{1}_{\left\{w>\mathrm{B}\left(\mathbf{o}_{1}, G_{n}^{1}(\mathbf{e})\right)+\mathrm{B}\left(\mathbf{o}_{2}, G_{n}^{2}(\mathbf{e})\right)\right\}},
$$

where $\mathbf{e}=\left(\mathbf{o}_{1}, \mathbf{o}_{2}\right) \sim \operatorname{Unif}\left(E\left(G_{n}\right)\right)$.

- Can show that $\mathrm{B}\left(\mathbf{o}_{1}, G_{n}^{1}(\mathbf{e})\right), \mathrm{B}\left(\mathbf{o}_{2}, G_{n}^{2}(\mathbf{e})\right)$ converge in distribution, and their distributions satisfy some fixed point equations.

Previous results

Gamarnik-Nowicki-Swirszcz '06:

- Show the same conclusion when G_{n} is sparese Erdős-Rényi random graph or random r-regular graph.
- For random r-regular graph, consider the distributional equation

$$
\begin{equation*}
\operatorname{Law}\left(B_{i}\right)=\operatorname{Law}\left(\max _{1 \leq j \leq r}\left(w_{j}-B_{j}\right)_{+}\right) \tag{1}
\end{equation*}
$$

where w_{j} are i.i.d. with the same distribution as w_{e}, B_{i} are i.i.d. Also, all w_{j} and B_{j} are independent.

If (1) has a unique solution, then the limit equals

$$
\frac{1}{2} \mathbb{E}\left[\sum_{i=1}^{r} w_{i} \mathbf{1}_{\left\{w_{i}-B_{i}=\max _{1 \leq j \leq r}\left(w_{j}-B_{j}\right)>0\right\}}\right],
$$

- If $w_{e} \sim \operatorname{Exp}(1)$, then (1) has a unique solution. Not known for general distribution.

Previous results

- Also showed a correlation decay result: if $e, e^{\prime} \sim \operatorname{Unif}\left(E\left(G_{n}\right)\right)$ are independent (where G_{n} is Erdős-Rényi or r-regular), and if (1) has a unique solution, then

$$
\lim _{n \rightarrow \infty}\left[\mathbb{P}\left(e, e^{\prime} \in \mathrm{M}_{G_{n}}\right)-\mathbb{P}\left(e \in \mathrm{M}_{G_{n}}\right) \mathbb{P}\left(e^{\prime} \in \mathrm{M}_{G_{n}}\right)\right]=0
$$

Previous results

Cao 21':

- For sparse Erdős-Rényi graph, if $w_{e} \sim \operatorname{Exp}(1)$, then

$$
\frac{\mathrm{W}_{G_{n}}-\mathbb{E} \mathrm{W}_{G_{n}}}{\sqrt{\operatorname{Var}\left(\mathrm{~W}_{G_{n}}\right)}} \Rightarrow N(0,1)
$$

- Based on Stein's method. Make use of a distributional equation similar to (1) to show a form of decorrelation.

Previous results

L.-Sen '22+:

- Consider a "regularized" version: for $\beta>0$, define

$$
F_{n}(\beta)=\log \left(\sum_{M \text { matching in } G_{n}} \exp \left(\beta \sum_{e \in M} w_{e}\right)\right)
$$

- When $\beta \rightarrow \infty$, then $F_{n}(\beta) / \beta \rightarrow \mathrm{W}_{G_{n}}$.
- For any $\left(G_{n}\right)$ such that the maximal degree is uniformly bounded and for any edge weight distribution with $\mathbb{E}\left|w_{e}\right|^{2+\varepsilon}<\infty$, under some growth assumption on $\left(G_{n}\right)$, $F_{n}(\beta)$ obeys a Gaussian CLT.
- No tree / random structure needed in this case.

Correlation decay

Notation: $\mathbb{B}_{v}^{R}(G)=\{u: \operatorname{dist}(u, v) \leq R\}$.

Theorem (L.-Sen, '23+)

Let G be a finite graph with maximum degree bounded above by D. Let $v \in V(G)$. Suppose that for some $R \geq 1, \mathbb{B}_{v}^{R}(G)$ is a tree.
Then there exists $c>0$ (depending only on D) such that

$$
\mathbb{E}\left(\mathrm{B}(v, G)-\mathrm{B}\left(v, \mathbb{B}_{v}^{R}(G)\right)\right)^{2} \leq e^{-c R}
$$

- Recall $\left\{v \in \mathrm{M}_{G}\right\}=\{\mathrm{B}(v, G)>0\}$.
- If G is locally-tree like, then $\left\{v \in \mathrm{M}_{G}\right\}$ essentially depends only on a neighborhood of $v \rightarrow$ correlation decay.

Rough idea

- Recall:

$$
\mathrm{B}(v, G)=\max _{u: u \sim v}\left(w_{(u v)}-\mathrm{B}(u, G \backslash\{v\})\right)_{+}
$$

- If G is a tree, $\left(w_{(u v)}\right)_{u: u \sim v},(\mathrm{~B}(u, G \backslash\{v\}))_{u: u \sim v}$ are independent.
- In this case, by memeoryless property, $\mathrm{B}(v, G)=\max _{u: u \sim v} W_{u} \xi_{u}$ in distribution, where $W_{u} \sim \operatorname{Exp}(1), \xi_{u} \sim \operatorname{Ber}\left(p_{u}\right)$, and W_{u}, ξ_{u} are independent.
- Same holds for the children $v 1, \ldots, v k$ of v.
- Can show: $\left(p_{v 1}, \ldots, p_{v k}\right) \mapsto p_{v}$ is essentially a contraction. So if two vertices are far away, the "information" of the ξ 's cannot be passed to each other.
- $\Longrightarrow \mathrm{B}(v, G)$ depends essentially on local neighborhood of v.

Rough idea

- For general G such that v has a tree neighborhood, make use of monotonicity of bonuses.
- Can squeeze $\underline{\mathrm{B}}\left(v, \mathbb{B}_{v}^{R}(G)\right) \leq \mathrm{B}(v, G) \leq \overline{\mathrm{B}}\left(v, \mathbb{B}_{v}^{R}(G)\right)$, where $\underline{\mathrm{B}}, \overline{\mathrm{B}}$ are bonuses by putting extreme boundary conditions on $\partial \mathbb{B}_{v}^{R}(G)$.
- Contraction $\Longrightarrow \underline{\mathrm{B}}\left(v, \mathbb{B}_{v}^{R}(G)\right) \approx \overline{\mathrm{B}}\left(v, \mathbb{B}_{v}^{R}(G)\right)$.

Application 1: law of large numbers

Theorem (L.-Sen, '23+)

Suppose that $\left(G_{n}\right)$ is a sequence of random graphs with $\left|V\left(G_{n}\right)\right|=n$ and maximal degree D that converges locally weakly to a rooted (random) tree (T, o). Then

$$
\lim _{n \rightarrow \infty} \frac{\mathbb{E W}_{G_{n}}}{n} \rightarrow \frac{1}{2} \mathbb{E}\left[\sum_{v: v \sim o} w_{(o v)} \mathbf{1}_{\left\{(o v) \in \mathrm{M}_{T}\right\}}\right]
$$

- One has $\frac{\mathbb{E} W_{G_{n}}}{n}=\frac{1}{2} \mathbb{E}\left[\frac{\sum_{u, v: u \sim v} w_{(u v)} \mathbf{1}_{\left\{(u v) \in \mathrm{M}_{\left.G_{n}\right\}}\right.}}{n}\right]=$

$$
\frac{1}{2} \mathbb{E}\left[\sum_{v: v \sim o_{n}} w_{\left(o_{n} v\right)} \mathbf{1}_{\left\{\left(o_{n} v\right) \in \mathrm{M}_{G_{n}}\right\}}\right], \text { where } o_{n} \sim \operatorname{Unif}\left(V\left(G_{n}\right)\right) .
$$

- Can make sense of M_{T} by correlation decay. (For fixed e, $1_{\left\{e \in \mathrm{M}_{\mathbb{B}_{o}^{R}(T)}\right\}}$ will stabilize for large R.)

Application 2: quenched central limit theorem

Define

$$
\rho_{R}(G)=\frac{\{e \in E(G): \text { the } R \text {-neighborhood of } e \text { is not a tree }\}}{|E(G)|} .
$$

Using Stein's method, we can show a central limit theorem.

Theorem (L.-Sen, '23+)

Let G be a finite graph with maximum degree $\leq D$. There exist constants $C, c>0$ depending only on D such that for all $1 \leq R \leq|V(G)|$,

$$
\begin{aligned}
& \sup _{t \in \mathbb{R}}\left|\mathbb{P}\left(\frac{\mathrm{~W}_{G}-\mathbb{E W}_{G}}{\sqrt{\operatorname{Var}\left(\mathrm{~W}_{G}\right)}} \leq t\right)-\Phi(t)\right| \\
& \quad \leq C\left(\rho_{R}(G)^{1 / 2}+\left(D^{R} /|V(G)|\right)^{1 / 4}+e^{-c R}\right)
\end{aligned}
$$

where Φ is the CDF of a standard Gaussian.

Application 3: annealed central limit theorem

Theorem (L.-Sen, '23+)

Let d_{1}, d_{2}, \ldots be positive, integer-valued i.i.d. that are uniformly bounded. Let \mathbb{G}_{n} be a uniformly chosen random simple graph with degree sequence $\left(d_{1}, \ldots, d_{n}\right)$. Then

$$
\frac{\mathbf{W}_{\mathbb{G}_{n}}-\mathbb{E W}_{\mathbb{G}_{n}}}{\sqrt{\operatorname{Var}\left(\mathrm{~W}_{\mathbb{G}_{n}}\right)}} \Rightarrow N(0,1)
$$

- Previous CLT: only weights are random.
- This CLT: both weights and graphs are random. More involved!
- Difficulty: the distribution of \mathbb{G}_{n} is complicated.

Idea of proof of the annealed CLT

- Decompose

$$
\begin{aligned}
\frac{\mathrm{W}_{\mathbb{G}_{n}}-\mathbb{E W}_{\mathbb{G}_{n}}}{\sqrt{\operatorname{Var}\left(\mathrm{~W}_{\mathbb{G}_{n}}\right)}}= & \frac{\mathrm{W}_{\mathbb{G}_{n}}-\mathbb{E}_{w} \mathrm{~W}_{\mathbb{G}_{n}}}{\sqrt{\operatorname{Var}_{w}\left(\mathrm{~W}_{\mathbb{G}_{n}}\right)}} \cdot \sqrt{\frac{\mathbb{E} \operatorname{Var}_{w}\left(\mathrm{~W}_{\mathbb{G}_{n}}\right)}{\operatorname{Var}\left(\mathrm{W}_{\mathbb{G}_{n}}\right)}} \cdot \sqrt{\frac{\operatorname{var}_{w}\left(\mathrm{~W}_{\mathbb{G}_{n}}\right)}{\mathbb{E V a r}_{w}\left(\mathrm{~W}_{\mathbb{G}_{n}}\right)}} \\
& +\frac{\mathbb{E}_{w} \mathrm{~W}_{\mathbb{G}_{n}}-\mathbb{E} \mathrm{W}_{\mathbb{G}_{n}}}{\sqrt{\operatorname{Var}\left(\mathbb{E}_{w} \mathrm{~W}_{\mathbb{G}_{n}}\right)}} \cdot \sqrt{\frac{\operatorname{Var}\left(\mathbb{E}_{w} \mathrm{~W}_{\mathbb{G}_{n}}\right)}{\operatorname{Var}\left(\mathrm{W}_{\mathbb{G}_{n}}\right)}} .
\end{aligned}
$$

- Conditional on $\mathbb{G}_{n}, \frac{\mathrm{~W}_{\mathbb{G}_{n}}-\mathbb{E}_{w} \mathrm{~W}_{\mathbb{G}_{n}}}{\sqrt{\operatorname{Var}_{w}\left(\mathrm{~W}_{\mathbb{G}_{n}}\right)}} \Rightarrow N(0,1)$ by the quenched CLT. (The convergence depends mainly on D but not \mathbb{G}_{n}.)
- $\left(\sqrt{\frac{\operatorname{EVar}_{w}\left(\mathrm{~W}_{\mathbb{G}_{n}}\right)}{\operatorname{Var}\left(\mathrm{W}_{\mathbb{G}_{n}}\right)}}\right)^{2}+\left(\sqrt{\frac{\operatorname{Var}\left(\mathbb{E}_{w} \mathrm{~W}_{\mathbb{G}_{n}}\right)}{\operatorname{Var}\left(\mathrm{W}_{\mathbb{G}_{n}}\right)}}\right)^{2}=1$.
- Can show (not easy): $\frac{\operatorname{Var}_{w}\left(\mathrm{~W}_{\mathbb{G}_{n}}\right)}{\mathbb{E} \operatorname{Var}_{w}\left(\mathrm{~W}_{\mathbb{G}_{n}}\right)} \rightarrow 1$ in probability.
- Remains to show: $\frac{\mathbb{E}_{w} W_{\mathbb{G}_{n}}-\mathbb{E W}_{\mathbb{G}_{n}}}{\sqrt{\operatorname{Var}\left(\mathbb{E}_{w} \mathrm{~W}_{\mathbb{G}_{n}}\right)}} \Rightarrow N(0,1)$.

Idea of proof of the annealed CLT

- Want: $\frac{\mathbb{E}_{w} W_{\mathbb{G}_{n}}-\mathbb{E W}_{\mathbb{G}_{n}}}{\sqrt{\operatorname{Var}\left(\mathbb{E}_{w} \mathrm{~W}_{\mathbb{G}_{n}}\right)}} \Rightarrow N(0,1)$.
- Configuration model (Bollobás): Put d_{i} many half-edges at vertex i, and connect the half-edges uniformly at random \rightarrow a uniformly random multigraph \mathbb{C}_{n} with degree sequence $\left(d_{1}, \ldots, d_{n}\right)$.
- Janson '20: Under some assumptions, one can transfer a CLT on \mathbb{C}_{n} to one on \mathbb{G}_{n}.
- Remains to show $\frac{\mathbb{E}_{w} \mathrm{~W}_{\mathbb{C}_{n}}-\mathbb{E W}_{\mathbb{C}_{n}}}{\sqrt{\operatorname{Var}\left(\mathbb{E}_{w} \mathrm{~W}_{\mathbb{C}_{n}}\right)}} \Rightarrow N(0,1)$.

Idea of proof of the annealed CLT

- Want: $\frac{\mathbb{E}_{w} \mathrm{~W}_{\mathbb{C}_{n}}-\mathbb{E W}_{\mathbb{C}_{n}}}{\sqrt{\operatorname{Var}\left(\mathbb{E}_{w} \mathrm{~W}_{\mathbb{C}_{n}}\right)}} \Rightarrow N(0,1)$.
- Barbour-Röllin '19: If Y_{n} can be written as a sum that depends only on local neighborhoods of vertices in \mathbb{C}_{n}, then (under some technical assumptions) $\frac{Y_{n}-\mathbb{E}_{\mathbb{C}_{n}} Y_{n}}{\sqrt{\operatorname{Var}_{\mathbb{C}_{n}}\left(Y_{n}\right)}} \Rightarrow N(0,1)$.
- However $\mathbb{E}_{w} \mathrm{~W}_{\mathbb{C}_{n}}$ does not just depend on local neighborhoods.
- Yet, thanks to correlation decay, it can be approximated by a random variable that depends only on local neighborhoods.

Open problems

- Universality? Can we extend the results to general distributions?
- Can we allow the maximal degree $\rightarrow \infty$ as $n \rightarrow \infty$?
- Maximum weight matching on graphs that are not locally tree-like?
- A better understanding on the structure of the maximum weight matching?

Thank you!

