Limit theorems for patterns in ranked tree-child networks

Tsan-Cheng Yu

(Joint work with Michael Fuchs and Hexuan Liu)

National Chengchi University

AofA, Taipei, June 28th, 2023

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Studying properties of shape statistics for random models that are used to describe the evolutionary relationship between species is an important topic in biology.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

For phylogenetic trees, which are used to model non-reticulate evolution, many such studies have been performed and the stochastic behavior of, e.g., pattern counts are known in great detail.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

On the other hand, for phylogenetic networks, which are used to model reticulate evolution, very little is known about the number of occurrences of patterns when the networks from a given class are randomly sampled. 1999.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Rooted binary phylogenetic networks

A rooted, binary phylogenetic network is a directed acyclic graph (DAG) without double edges such that every node falls into one of the following four categories:

- ► A (unique) root which has in-degree 0 and out-degree 1;
- Leaves which have in-degree 1 and out-degree 0 and which are bijectively labeled by {1, 2, ..., n}
- Tree nodes which are nodes of in-degree 1 and out-degree 2;
- Reticulations which are nodes of in-degree 2 and out-degree 1.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

An example of rooted binary phylogenetic network

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Tree-Child networks

Definition

A phylogenetic network is called *tree-child network* if every non-leaf node has at least one child which is not a reticulation.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

a tree child network

a phylogenetic network but not a tree-child network

For a tree-child network, we call a tree-node a branching event and a reticulation node with its two parents a reticulation event. The vertical edges in this depiction are subsequently be called lineages.

Figure: The branching and reticulation event used in the construction of ranked tree-child networks.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

A tree-child network is called *rankable* if it has recursively evolved starting from a branching event by attaching in each step either a branching event or a reticulation event. A rankable tree-child network together with a ranking of its events is called a *ranked tree-child* network (*RTCN*).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

A tree-child network that is not rankable.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

We need two definitions, when introducing results on ranked tree-child networks:

 a cherry is a tree node with both children leaves (or equivalently, a branching event with both outgoing lineages external);

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

a trident is a reticulation event with all three outgoing lineages external.

(b)

t

Denote C_n (resp. T_n) the number of cherries (resp. tridents) in a uniform random ranked tree-child network with *n* leaves.

Theorem (Bienvenu, Lambert, and Steel in 2022)

1. C_n weakly converges to the Poisson distribution with parameter 1/4, i.e.,

$$c_n \xrightarrow{d} Poisson(1/4),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

as $n \to \infty$.

2.
$$\frac{T_n}{n} \xrightarrow{\mathbb{P}} \frac{1}{7}, (n \to \infty),$$

where $\xrightarrow{\mathbb{P}}$ denotes convergence in probability.

Theorem (Fuchs, Liu, Yu)

For the number of tridents T_n in a random ranked tree-child network with n leaves, we have

$$\frac{T_n - n/7}{\sqrt{24n/637}} \xrightarrow{d} N(0,1)$$

where N(0,1) denotes the standard normal distribution.

Patterns of height 2

Figure: All patterns of height 2. The number of occurrences of these patterns in a ranked tree-child network with a large number of leaves is as follows: (a) These two do not occur; (b) These five occur only sporadically; (c) These two occur frequently.

Theorem (Fuchs, Liu, Yu)

Denote by X_n the number of occurrences of a (fixed) pattern of height 2 in a random ranked tree-child networks with n leaves. Then, we have the following limit law results.

(A) For the patterns in Figure 9-(a), we have that the limit law of X_n is degenerate. More precisely,

$$X_n \xrightarrow{L_1} 0, \qquad (n \to \infty).$$

(B) For the patterns in Figure 9-(b), we have

$$X_n \stackrel{d}{\longrightarrow} \operatorname{Poisson}(\lambda), \qquad (n \to \infty),$$

(C) For the patterns in Figure 9-(c), we have

$$rac{X_n - \mu n}{\sigma \sqrt{n}} \stackrel{d}{\longrightarrow} N(0, 1), \qquad (n o \infty),$$

where $(\mu, \sigma^2) = (4/77, 4575916/137582445)$ and $(\mu, \sigma^2) = (2/77, 2930764/137582445)$ for the patterns from Figure 9-(c-i) and Figure 9-(c-ii), respectively.

Figure: (a) The pattern of height 3 which contains two overlapping patterns from Figure 9-(b-i); (b) The types of patterns considered in the proof of the Poisson limit law for the pattern in Figure 9-(b-i); in order that every external lineage belongs exactly to one type, a pattern of type B is not allowed to be contained in a pattern of type A; also, the lineage in type D is not an external lineage in A, B or C.

	type A	type B	type C	probability
A	-1	0	+1	3 <i>a/ n</i> ²
	-1	+1	+1	2 <i>a/ n</i> ²
В	0	-1	+1	4 <i>b/ n</i> ²
С	0	0	0	$2c/n^2$
D	0	0	+1	$(n-5a-4b-2c)/n^2$

Table: The change of the number of patterns of type A, type B and type C (see Figure 10-(b)) when the next event is a branching event.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ()~

	type A	type B	type C	probability
A	-1	0	0	$20an^2$
	-2	0	0	$9a(a-1)/n^2$
A & A	-2	+1	0	$12a(a-1)/n^2$
	-2	+2	0	$4a(a-1)/n^2$
B	0	-1	0	$12b/n^{2}$
B& B	0	-2	0	$16b(b-1)/n^2$
C	0	0	-1	$2c/n^2$
C & C	+1	0	-2	$4c(c-1)/n^2$
D & D	0	0	0	$(n - 5a - 4b - 2c)(n - 5a - 4b - 2c - 1)/n^2$
A & B	-1	-1	0	$24ab/n^2$
	-1	0	0	$16ab/n^2$
A & C	-1	+1	-1	$12ac/n^2$
	-1	+2	-1	$8ac/n^2$
A & D	-1	0	0	$6a(n-5a-4b-2c)/n^2$
	-1	+1	0	$4a(n-5a-4b-2c)/n^2$
B & C	0	0	-1	$16bc/n^2$
B & D	0	-1	0	$8b(n-5a-4b-2c)/n^2$
C & D	0	+1	-1	$4c(n-5a-4b-2c)/n^2$

Figure: The change of the number of patterns of type A and type B (see Figure 10-(b)) when the next event is a reticulation event.

Lemma

Denote by Y_n and \tilde{X}_n the number of occurrences of patterns of type A and type B, respectively, in a random ranked tree-child network with n leaves. Then, for r, s, t ≥ 0 , we have

$$\mathbb{E}(Y_{n+1}^{t}\tilde{X}_{n+1}^{s}C_{n+1}^{t}) = \left(1 - \frac{5r + 4s + 2t}{n}\right)^{2}\mathbb{E}(Y_{n}^{t}\tilde{X}_{n}^{s}C_{n}^{t}) + \frac{t}{n}\mathbb{E}(Y_{n}^{t}\tilde{X}_{n}^{s}C_{n}^{t-1}) + \frac{4s}{n}\mathbb{E}(Y_{n}^{t}\tilde{X}_{n}^{s-1}C_{n}^{t+1}) + \frac{R_{n}}{n^{2}}, \qquad (1)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where R_n is given by

$$\begin{split} t(2-5r-4s-2t) &\mathbb{E}(Y_n^r \tilde{X}_n^s C_n^{t-1}) + 4r \mathbb{E}(Y_n^{r-1} \tilde{X}_n^s C_n^{t+2}) \\ &- 2s(1+10r+8s+4t) \mathbb{E}(Y_n^{r+1} \tilde{X}_n^{s-1} C_n^t) + 2st \mathbb{E}(Y_n^{r+1} \tilde{X}_n^{s-1} C_n^{t-1}) \\ &- 8s \mathbb{E}(Y_n^r \tilde{X}_n^{s-1} C_n^{t+2}) + 4s(2-5r-4s-2t) \mathbb{E}(Y_n^r \tilde{X}_n^{s-1} C_n^{t+1}) \\ &+ 4s(s-1) \mathbb{E}(Y_n^{r+2} \tilde{X}_n^{s-2} C_n^t) + 8s(s-1) \mathbb{E}(Y_n^{r+1} \tilde{X}_n^{s-2} C_n^{t+1}). \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Figure: (a) The pattern of height 3 which contains two overlapping patterns from Figure 9-(c-i); (b) The types of pattern considered in the proof of the normal limit law for the pattern in Figure 9-(c-i); in order that every external lineage belongs exactly to one type, a pattern of type B resp. C is not allowed to be contained in a pattern of type A resp. B and A; also, the lineage in type D is not an external lineage in A, B or C.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

	type A	type B	type C	probability
A	-1	0	0	$3a/n^2$
	-1	+1	0	$4a/n^2$
В	0	$^{-1}$	0	3 <i>b</i> / <i>n</i> ²
	0	-1	+1	2 <i>b</i> / <i>n</i> ²
С	0	0	-1	$3c/n^2$
D	0	0	0	$(n-7a-5b-3c)/n^2$

Table: The change of the number of patterns of type A, B and C (see Figure 12-(b)) when the next event is a branching event.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

	type A	type B	type C	probability
Α	-1	0	+1	$14a/n^2$
	-1	0	+2	$8a/n^{2}$
	$^{-1}$	+1	0	$16a/n^{2}$
	$^{-1}$	$^{+1}$	$^{+1}$	$4a/n^2$
	-1	0	0	$4a(a-1)/n^2$
	$^{-2}$	0	+1	$a(a-1)/n^2$
A & A	$^{-2}$	+1	0	$4a(a-1)/n^2$
Асл	$^{-2}$	+1	+1	$8a(a-1)/n^2$
	-2	+2	0	$16a(a-1)/n^2$
	$^{-2}$	+2	+1	$16a(a-1)/n^2$
	0	0	0	$8b/n^2$
B	0	-1	$^{+1}$	$10b/n^{2}$
	0	-1	+2	$2b/n^2$
	0	-1	0	$4b(b-1)/n^2$
	0	-1	$^{+1}$	$8b(b-1)/n^2$
B&B	0	-2	$^{+1}$	$b(b-1)/n^2$
Dab	0	$^{-2}$	+2	$4b(b-1)/n^2$
	0	$^{-2}$	+3	$4b(b-1)/n^2$
	+1	-2	0	$4b(b-1)/n^2$
C	0	0	0	$6c/n^2$
	0	0	-1	$c(c-1)/n^2$
C & C	0	+1	$^{-2}$	$4c(c-1)/n^2$
	+1	0	$^{-2}$	$4c(c-1)/n^2$
D & D	0	0	+1	$(n-7a-5b-3c)(n-7a-5b-3c-1)/n^2$

Figure: The change of the number of patterns of type A, B and C (see Figure 12-(b)) when the next event is a reticulation event which is attached to one or two patterns of type X with $X \in \{A, B, C, D\}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Lemma

Denote by X_n and Y_n the number of occurrences of the patterns from Figure 9-(c-i) and Figure 12-(a), respectively, in a random ranked tree-child network with n leaves. Moreover, set

 $\mu_n := \mathbb{E}(T_n), \rho_n := \mathbb{E}(X_n), \tau_n := \mathbb{E}(Y_n)$ and $\overline{T}_n := T_n - \mu_n, \overline{X}_n := X_n - \rho_n, \overline{Y}_n := Y_n - \tau_n$. Then, for all $r, s, t \ge 0$, we have

$$\mathbb{E}(\bar{Y}_{n+1}^{r}\bar{X}_{n+1}^{s}\bar{T}_{n+1}^{t}) = \left(1 - \frac{7r + 5s + 3t}{n}\right)^{2}\mathbb{E}(\bar{Y}_{n}^{r}\bar{X}_{n}^{s}\bar{T}_{n}^{t}) + R_{n} \quad (2)$$

with

$$R_n = \sum_{(s',r',t')} \mathbb{E}(\bar{Y}'_n \bar{X}^{s'}_n \bar{T}^{t'}_n) \Lambda_{r',s',t'}(n), \qquad (3)$$

where the sum runs over (s', r', t') which are of a smaller lexicographic order than (s, r, t) and $\Lambda_{r',s',t'}(n)$ admits the complete asymptotic expansion:

$$\Lambda_{r',s',t'}(n) \sim \sum_{\ell=0}^{\infty} \frac{\lambda_{r',s',t',\ell}}{n^{\ell}}, \qquad (n \to \infty).$$
(4)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Moreover, all terms in (3) with $(r'+s'+t')/2-\ell \geq (r+s+t)/2-1$ are given by

$$\frac{4s}{n} \mathbb{E}(\bar{Y}_{n}^{r} \bar{X}_{n}^{s-1} \bar{T}_{n}^{t+1}) + \frac{8r}{7n} \mathbb{E}(\bar{Y}_{n}^{r-1} \bar{X}_{n}^{s} \bar{T}_{n}^{t+1}) + \binom{r}{2} \frac{80092}{540225} \mathbb{E}(\bar{Y}_{n}^{r-2} \bar{X}_{n}^{s} \bar{T}_{n}^{t}) \\
+ \binom{s}{2} \frac{21916}{29645} \mathbb{E}(\bar{Y}_{n}^{r} \bar{X}_{n}^{s-2} \bar{T}_{n}^{t}) + \binom{t}{2} \frac{24}{49} \mathbb{E}(\bar{Y}_{n}^{r} \bar{X}_{n}^{s} \bar{T}_{n}^{t-2}) \\
- \frac{128}{539} st \mathbb{E}(\bar{Y}_{n}^{r} \bar{X}_{n}^{s-1} \bar{T}_{n}^{t-1}) - \frac{32}{343} rt \mathbb{E}(\bar{Y}_{n}^{r-1} \bar{X}_{n}^{s} \bar{T}_{n}^{t-1}) \\
+ \frac{712}{3773} rs \mathbb{E}(\bar{Y}_{n}^{r-1} \bar{X}_{n}^{s-1} \bar{T}_{n}^{t}).$$
(5)

Conjecture

Let F be a fringe pattern. Denote by P resp. P_1 and P_2 the patterns which are obtained from it by removing the last event. (Here, the second case is only possible if the last event is a reticulation event and the pattern gets disconnected when this event is removed.) Then, we have the following cases.

(a) If P is a normal pattern, then F is a Poisson pattern; in all other cases for P, the pattern F is a degenerate pattern.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

(b) If P₁ and P₂ are both normal patterns, then F is also a normal pattern; if P₁ is a normal pattern and P₂ is a Poisson pattern or vice versa, then F is a Poisson pattern; in all remaining cases for P₁ and P₂, F is a degenerate pattern.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Thank you!

(ロ)、(型)、(E)、(E)、 E) の(()