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Limit theorems for patterns in
ranked tree-child networks

Tsan-Cheng Yu

(Joint work with Michael Fuchs and Hexuan Liu)

National Chengchi University

AofA, Taipei, June 28th, 2023
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Studying properties of shape statistics for random models that are
used to describe the evolutionary relationship between species is an
important topic in biology.
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For phylogenetic trees, which are used to model non-reticulate
evolution, many such studies have been performed and the
stochastic behavior of, e.g., pattern counts are known in great
detail.
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On the other hand, for phylogenetic networks, which are used to
model reticulate evolution, very little is known about the number
of occurrences of patterns when the networks from a given class
are randomly sampled.
1999.)
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Rooted binary phylogenetic networks

A rooted, binary phylogenetic network is a directed acyclic graph
(DAG) without double edges such that every node falls into one of
the following four categories:

▶ A (unique) root which has in-degree 0 and out-degree 1;
▶ Leaves which have in-degree 1 and out-degree 0 and which are

bijectively labeled by {1, 2, ..., n}
▶ Tree nodes which are nodes of in-degree 1 and out-degree 2;
▶ Reticulations which are nodes of in-degree 2 and out-degree 1.
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An example of rooted binary phylogenetic network
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Tree-Child networks

Definition
A phylogenetic network is called tree-child network if every
non-leaf node has at least one child which is not a reticulation.
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a tree child network a phylogenetic network but not a tree-child network
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For a tree-child network, we call a tree-node a branching event and
a reticulation node with its two parents a reticulation event. The
vertical edges in this depiction are subsequently be called lineages.

branching event

(a)

reticulation event

(b)

Figure: The branching and reticulation event used in the construction of
ranked tree-child networks.
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Definition
A tree-child network is called rankable if it has recursively evolved
starting from a branching event by attaching in each step either a
branching event or a reticulation event. A rankable tree-child
network together with a ranking of its events is called a ranked
tree-child network (RTCN).
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(a) (b)

t = 1

t

Figure: An example of rankable tree-child network and a way to have a
ranked tree-child network.
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Figure: An example of rankable tree-child network and a way to have a
ranked tree-child network.
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Figure: An example of rankable tree-child network and a way to have a
ranked tree-child network.
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Figure: An example of rankable tree-child network and a way to have a
ranked tree-child network.
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Figure: An example of rankable tree-child network and a way to have a
ranked tree-child network.
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Figure: An example of rankable tree-child network and a way to have a
ranked tree-child network.
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Figure: An example of rankable tree-child network and a way to have a
ranked tree-child network.
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A tree-child network that is not rankable.
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We need two definitions, when introducing results on ranked
tree-child networks:

▶ a cherry is a tree node with both children leaves (or
equivalently, a branching event with both outgoing lineages
external);

▶ a trident is a reticulation event with all three outgoing
lineages external.
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Denote Cn (resp. Tn) the number of cherries (resp. tridents) in a
uniform random ranked tree-child network with n leaves.
Theorem (Bienvenu, Lambert, and Steel in 2022)

1. Cn weakly converges to the Poisson distribution with
parameter 1/4, i.e.,

cn
d−−→ Poisson(1/4),

as n → ∞.

2. Tn
n

P−−→ 1
7 , (n → ∞),

where P−−→ denotes convergence in probability.
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Theorem (Fuchs, Liu, Yu)
For the number of tridents Tn in a random ranked tree-child
network with n leaves, we have

Tn − n/7√
24n/637

d−−→ N(0, 1)

where N(0, 1) denotes the standard normal distribution.
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Patterns of height 2

(i)

(ii)

(a) (b) (c)

(i)

(iii)

(i)

(ii)

(ii)

(iv) (v)

Figure: All patterns of height 2. The number of occurrences of these
patterns in a ranked tree-child network with a large number of leaves is
as follows: (a) These two do not occur; (b) These five occur only
sporadically; (c) These two occur frequently.
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Theorem (Fuchs, Liu, Yu)
Denote by Xn the number of occurrences of a (fixed) pattern of
height 2 in a random ranked tree-child networks with n leaves.
Then, we have the following limit law results.

(A) For the patterns in Figure 9-(a), we have that the
limit law of Xn is degenerate. More precisely,

Xn
L1−→ 0, (n → ∞).

(B) For the patterns in Figure 9-(b), we have

Xn
d−→ Poisson(λ), (n → ∞),

where
(b-i) (b-ii) (b-iii) (b-iv) (b-v)

λ 1/8 1/28 1/56 1/14 1/28
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(C) For the patterns in Figure 9-(c), we have

Xn − µn
σ
√

n
d−→ N(0, 1), (n → ∞),

where (µ, σ2) = (4/77, 4575916/137582445) and
(µ, σ2) = (2/77, 2930764/137582445) for the
patterns from Figure 9-(c-i) and Figure 9-(c-ii),
respectively.
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Outline of proof

A B typetype type C

(a) (b)

typeD

Figure: (a) The pattern of height 3 which contains two overlapping
patterns from Figure 9-(b-i); (b) The types of patterns considered in the
proof of the Poisson limit law for the pattern in Figure 9-(b-i); in order
that every external lineage belongs exactly to one type, a pattern of type
B is not allowed to be contained in a pattern of type A; also, the lineage
in type D is not an external lineage in A, B or C.
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Outline of proof

type A type B type C probability
A −1 0 +1 3a/n2

−1 +1 +1 2a/n2

B 0 −1 +1 4b/n2

C 0 0 0 2c/n2

D 0 0 +1 (n − 5a − 4b − 2c)/n2

Table: The change of the number of patterns of type A, type B and type
C (see Figure 10-(b)) when the next event is a branching event.

A B typetype type C typeD︸ ︷︷ ︸
. . . . . . . . . . . .

a

︸ ︷︷ ︸
b

︸ ︷︷ ︸
c

︸ ︷︷ ︸
n− 5a− 4b− 2c
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Outline of proof

Figure: The change of the number of patterns of type A and type B (see
Figure 10-(b)) when the next event is a reticulation event.
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Outline of proof

Lemma
Denote by Yn and X̃n the number of occurrences of patterns of
type A and type B, respectively, in a random ranked tree-child
network with n leaves. Then, for r, s, t ≥ 0, we have

E(Yr
n+1X̃s

n+1Ct
n+1) =

(
1 − 5r + 4s + 2t

n

)2
E(Yr

nX̃s
nCt

n) +
t
nE(Y

r
nX̃s

nCt−1
n ) +

4s
n E(Yr+1

n X̃s−1
n Ct

n)

+
4s
n E(Yr

nX̃s−1
n Ct+1

n ) +
Rn
n2 , (1)
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Outline of proof

where Rn is given by

t(2 − 5r − 4s − 2t)E(Yr
nX̃s

nCt−1
n ) + 4rE(Yr−1

n X̃s
nCt+2

n )

− 2s(1 + 10r + 8s + 4t)E(Yr+1
n X̃s−1

n Ct
n) + 2stE(Yr+1

n X̃s−1
n Ct−1

n )

− 8sE(Yr
nX̃s−1

n Ct+2
n ) + 4s(2 − 5r − 4s − 2t)E(Yr

nX̃s−1
n Ct+1

n )

+ 4s(s − 1)E(Yr+2
n X̃s−2

n Ct
n) + 8s(s − 1)E(Yr+1

n X̃s−2
n Ct+1

n ).
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Outline of proof

A B typetype type C

(a) (b)

type D

Figure: (a) The pattern of height 3 which contains two overlapping
patterns from Figure 9-(c-i); (b) The types of pattern considered in the
proof of the normal limit law for the pattern in Figure 9-(c-i); in order
that every external lineage belongs exactly to one type, a pattern of type
B resp. C is not allowed to be contained in a pattern of type A resp. B
and A; also, the lineage in type D is not an external lineage in A, B or C.
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Outline of proof

type A type B type C probability
A −1 0 0 3a/n2

−1 +1 0 4a/n2

B 0 −1 0 3b/n2

0 −1 +1 2b/n2

C 0 0 −1 3c/n2

D 0 0 0 (n − 7a − 5b − 3c)/n2

Table: The change of the number of patterns of type A,B and C (see
Figure 12-(b)) when the next event is a branching event.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Outline of proof

Figure: The change of the number of patterns of type A,B and C (see
Figure 12-(b)) when the next event is a reticulation event which is
attached to one or two patterns of type X with X ∈ {A,B,C,D}.
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Outline of proof
Lemma
Denote by Xn and Yn the number of occurrences of the patterns
from Figure 9-(c-i) and Figure 12-(a), respectively, in a random
ranked tree-child network with n leaves. Moreover, set
µn := E(Tn), ρn := E(Xn), τn := E(Yn) and
T̄n := Tn − µn, X̄n := Xn − ρn, Ȳn := Yn − τn. Then, for all
r, s, t ≥ 0, we have

E(Ȳr
n+1X̄s

n+1T̄t
n+1) =

(
1 − 7r + 5s + 3t

n

)2
E(Ȳr

nX̄s
nT̄t

n) + Rn (2)

with
Rn =

∑
(s′,r′,t′)

E(Ȳr′
n X̄s′

n T̄t′
n )Λr′,s′,t′(n), (3)

where the sum runs over (s′, r′, t′) which are of a smaller
lexicographic order than (s, r, t) and Λr′,s′,t′(n) admits the complete
asymptotic expansion:
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Outline of proof

Λr′,s′,t′(n) ∼
∞∑
ℓ=0

λr′,s′,t′,ℓ
nℓ , (n → ∞). (4)

Moreover, all terms in (3) with
(r′ + s′ + t′)/2 − ℓ ≥ (r + s + t)/2 − 1 are given by

4s
n E(Ȳr

nX̄s−1
n T̄t+1

n ) +
8r
7nE(Ȳ

r−1
n X̄s

nT̄t+1
n ) +

(
r
2

)
80092
540225E(Ȳ

r−2
n X̄s

nT̄t
n)

+

(
s
2

)
21916
29645E(Ȳ

r
nX̄s−2

n T̄t
n) +

(
t
2

)
24
49E(Ȳ

r
nX̄s

nT̄t−2
n )

− 128
539stE(Ȳr

nX̄s−1
n T̄t−1

n )− 32
343 rtE(Ȳr−1

n X̄s
nT̄t−1

n )

+
712
3773 rsE(Ȳr−1

n X̄s−1
n T̄t

n). (5)
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Conjecture
Let F be a fringe pattern. Denote by P resp. P1 and P2 the
patterns which are obtained from it by removing the last event.
(Here, the second case is only possible if the last event is a
reticulation event and the pattern gets disconnected when this
event is removed.) Then, we have the following cases.
(a) If P is a normal pattern, then F is a Poisson pattern; in all

other cases for P, the pattern F is a degenerate pattern.

P P
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(b) If P1 and P2 are both normal patterns, then F is also a normal
pattern; if P1 is a normal pattern and P2 is a Poisson pattern
or vice versa, then F is a Poisson pattern; in all remaining
cases for P1 and P2, F is a degenerate pattern.

P2P1
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Thank you!


