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Background

Classical univariate records Multivariate records

Univariate records

Definition
Let (Xn)n≥1 be a sequence of i.i.d. real-valued random variables
with a common cumulative distribution function F. An
observation Xn is called a record if its value exceeds that of all
previous observations, i.e., Xn > Xm for all 1 ≤ m ≤ n − 1.

To simplify our models by avoiding ties, we assume that F is a
continuous function hereafter.

Based on the fundamental work about univariate records due to
Alfréd Rényi, their probabilistic properties are extensively
studied in the literature; a rather encyclopedic treatment of this
subject can be found in Arnold, Balakrishnan, and Nagaraja
(1998).
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Background

Classical univariate records Multivariate records

Motivation

Dominance relation

For two vectors x = (x1, . . . , xd) and y = (y1, . . . , yd) in Rd, we
write x ≺ y to indicate that xi < yi for all i ∈ {1, . . . , d}. The
notation x ≻ y means that y ≺ x.

Consider a sequence of i.i.d. random vectors (X(n))n≥1 taking
values in Rd. If we go beyond one-dimensional Euclidean
space, a natural way to define multivariate records would be
that a multivariate record (or simply record) occurs at epoch n if
X(n) ≻ X(m) for all 1 ≤ m ≤ n − 1.
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Background

Classical univariate records Multivariate records

Motivation

Suppose the components of each observation are also
independent, each having a continuous distribution function Fi,
i = 1, . . . , d. It is elementary to see from the previous definition
that

P(X(n) is a multivariate record) =
(

1
n

)d

=
1
nd .

If d ≥ 2, the first Borel-Cantelli lemma shows that there are at
most finitely many such records with probability one. Hence the
asymptotic results concerning such records are not that
interesting.
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Background

Classical univariate records Multivariate records

An illustration of Pareto records in R2
≥0

In order to have a model that produces sufficiently many
records, we consider Pareto records (formal definition later) in
our project.

Record-setting region

Bivariate Pareto records in R2
≥0
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Classical univariate records Multivariate records

Multivariate Pareto records: definitions

Definition

Let (X(n))n≥1 be a sequence of i.i.d. random vectors in Rd.

1 The nth observation X(n) is called a Pareto record (or
record) if X(n) ̸≺ X(i) for 1 ≤ i ≤ n − 1.

2 For 1 ≤ i ≤ n, the ith observation X(i) is called a remaining
record (or current record, or maximum) at epoch n if
X(i) ̸≺ X(j) for all 1 ≤ j ≤ n.

3 For 1 ≤ k ≤ n, the nth observation X(n) is said to break k
Pareto records if there exist precisely k observations X(j)

with 1 ≤ j ≤ n − 1 such that X(j) is a current record at
epoch n − 1 and X(j) ≺ X(n).
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Multivariate Pareto records: notations

Key notations
1 Let rn(d) denote the number of remaining Pareto records in

Rd at epoch n; together these form the stochastic process
r(d) = (rn(d))n≥1.

2 Let Kn(d) denote the number of remaining records in Rd at
epoch n − 1 broken by the nth observation X(n). If X(n) is
not a record, then set Kn(d) = −1. We call the process
K(d) := (Kn(d))n≥1 the record-breaking process.

When there is no confusion about the dimension d of the
ambient space for r(d) and K(d), we will suppress the
dependence on d and write these processes as r = (rn)n≥1 and
K = (Kn)n≥1 instead.
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A graphical illustration for notations

r1 = 1

K1 = 0

r2 = 2

K2 = 0

r3 = 2

K3 = −1

r4 = 3

K4 = 0

This is a broken record.

r5 = 3

K5 = 1

r6 = 3

K6 = −1

r7 = 2

K7 = 2
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Classical univariate records Multivariate records

Models of our interest

In the study of record-breaking, we are interested in two models
where i.i.d. observations (X(n))n≥1 are uniformly distributed in

1 the d-dimensional unit cube Cd := [0, 1]d;
2 the d-dimensional unit simplex

Sd := {x = (x1, . . . , xd) ∈ Rd : xi ≥ 0 for all i ∈ [d] and ∥x∥ℓ1 ≤ 1}.

Note that our first model covers the case where all the
components of each observation are collectively independent,
each may in fact have a different continuous distribution.

Our second model serves as a prototype for negatively
associated coordinates in each observation.

Ao Sun Models of our interest June 30, 2023 11
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Classical univariate records Multivariate records

Previous work

cube case: exact and asymptotic expressions for E rn(d), and
those for Var rn(3) (Var rn(2) follows from the variance of
Poisson-binomial sum). Barndorff-Nielsen and Sobel (1966)
cube case: asymptotics for the variance of rn(d) for general d.
Bai et al. (1998)
asymptotic normality and Berry–Esseen bounds are proved for
rn(2) associated with i.i.d. samples uniformly distributed in more
general planar regions. Bai et al. (2001) and Bai, Hwang, and
Tsai (2003)
cube case: asymptotic normality for rn(d) for general d–a very
sketchy proof. Baryshnikov (2000)

cube case: asymptotic normality and Berry–Esseen bounds for
rn(d) for general d by Stein’s method; simplex case: claimed
without a proof. Bai et al. (2005)
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Classical univariate records Multivariate records

Previous work

cube case: analysis of an importance sampling algorithm to
generate Pareto records. Fill and Naiman (2019)
cube case: frontiers for the record-setting region. Fill and
Naiman (2020)
cube case: limiting distribution for the conditional distribution of
Kn(2) given Kn(2) ≥ 0. Fill (2021)

cube case: limiting distribution for the conditional distribution of
Kn(d) given Kn(d) ≥ 0 by the method of moments (conditionally).
Fill (2023)

Ao Sun Previous work June 30, 2023 13
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Limit laws for multivariate record-breaking

Motivation Record-breaking for general d

Empirical experiment for observations in C2

The study of the record-breaking process K(d) was motivated
by the empirical data in the following table in Fill and Naiman
(2019, Table 1):

k Nk p̃k

0 50,334 0.50334
1 24,667 0.24667
2 12,507 0.12507
3 6,335 0.06335
4 3,040 0.03040
5 1,571 0.01571
· · · · · · · · ·

Results of simulation experiment in which 100,000 bivariate records
are generated. The number of records that break k current records is
denoted by Nk, and p̃k = Nk/100,000 is the fraction of the 100,000
records that break k records.

Ao Sun Empirical experiment for observations in C2 June 30, 2023 15



Limit laws for multivariate record-breaking

Motivation Record-breaking for general d

Empirical pattern and previous work

The data in that table reveal a Geometric(1/2) pattern for the
proportion of the 100,000 bivariate records that break k records
when i.i.d. samples are uniformly distributed in the unit square
[0, 1]2.

Through analytical method, Fill (2021) proves that the
conditional distribution of Kn(2) given Kn(2) ≥ 0 indeed
converges weakly to Geometric(1/2).

Fill (2021) only partially explains the pattern, as it doesn’t reveal
the limiting behavior of the fraction p̃k directly. See more in the
section about ratio limit theorem.

Ao Sun Empirical pattern and previous work June 30, 2023 16
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Limit laws for multivariate record-breaking

Motivation Record-breaking for general d

Description of the limiting distribution for general d

What is the limit law of L(Kn(d) |Kn(d) ≥ 0) for general d?

We can in fact compute the limit laws explicitly for both of our
models when d = 2 (you have seen it for the cube case; the
simplex case will be discussed later). As far as we know, there
are no closed form expressions for them when d ≥ 3. Instead,
we describe these limit distributions as simple Exponential
mixtures of distributions expressed in terms of Poisson point
processes.The mixture is Exponential in the cube case, but not
in the simplex case.

Ao Sun Description of the limiting distribution for general d June 30, 2023 17
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Motivation Record-breaking for general d

Description of the limiting distribution

W

W ∼ Exponential(1), set W = (W1/d, . . . ,W1/d).

A unit-rate homogeneous Poisson point process in the set
{y ∈ Rd

>0 : y ̸≺ W}.
Find the minima from the Poisson point process.Count the number of minima that dominate W.

Ao Sun Description of the limiting distribution June 30, 2023 18
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Motivation Record-breaking for general d

Limiting distribution for the cube case

Cube Theorem [Fill (2023), S and Fill (2023+)]

Let (X(n))n≥1 be a sequence of i.i.d. random vectors, each uniformly
distributed in the unit cube Cd. Then Kn, conditionally given Kn ≥ 0,
converges in distribution as n → ∞ to the law of Kcube ≡ Kcube(d),
where

L(Kcube) is the mixture EL(KW).

Here W has Exponential(1) distribution, and for w = (w1/d, . . . ,w1/d)

Kw := number of minima that dominate w ∈ Rd
>0

in a unit-rate homogeneous Poisson point process (PPP) in the set

{y ∈ Rd
>0 : y ̸≺ w}.

Ao Sun Limiting distribution for the cube case June 30, 2023 19
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Limiting distribution for the simplex case

Simplex Theorem [S and Fill (2023+)]

Let (X(n))n∈N be a sequence of i.i.d. random vectors, each uniformly
distributed in the unit simplex Sd, then Kn, conditionally given Kn ≥ 0,
converges in distribution as n → ∞ to the law of Ksimplex ≡ Ksimplex(d),
where

L(Ksimplex) is the mixture EL(K′
V).

Here V has the same distribution as Z1/d, where the random variable
Z is distributed as Gamma(1/d, 1), and for v = (v/d, . . . , v/d)

K′
v := number of minima that dominate v ∈ Rd

in a homogeneous Poisson point process with rate d! in the set

{y ∈ Rd : y+ ≥ 0, y ̸≺ v}.

Ao Sun Limiting distribution for the simplex case June 30, 2023 20
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Motivation Record-breaking for general d

Remark

The Cube Theorem has been proved in Fill (2023) largely
analytically using the method of moments (conditionally). The
treatment therein requires evaluating the higher-order moments
of both the conditional distribution of Kn and its limiting
distribution; this approach relies on intricate calculations and
provides little insight as to why the particular weak limit in the
Cube Theorem should emerge.

Ao Sun Remark June 30, 2023 21
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Remark

Our probabilistic arguments are quite robust. They can be
adapted easily to prove the Simplex Theorem without too much
additional effort. We also find that the Poisson point process
appearing in the description of the limiting distribution is
essentially a consequence of the so-called “law of rare events”
or “law of small numbers”, i.e., the Poisson approximation to the
binomial distribution. We anticipate that probabilistic approach
would make other extensions (e.g. sampling from Dirichlet
distribution, etc.) fairly routine.

Ao Sun Remark June 30, 2023 22
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Notations

Definition
The (open) positive orthant translated by x is defined as the set

O+
x := {y ∈ Rd : y ≻ x}.

The (open) negative orthant translated by x is defined as the set

O−
x := {y ∈ Rd : y ≺ x}.

Ao Sun Notations June 30, 2023 23
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Heuristics: convergence of random measures

Let S be a locally compact Polish space, and B(S) be the Borel
σ-algebra on S. Let λ be Lebesgue measure on R.

Proposition [Resnick (2008, Proposition 3.21)]

For each n ∈ N, suppose that (Xn,j)j∈N is a sequence of i.i.d.
random variables taking values in (S,B(S)). Let µ be a
nonnegative σ-finite Radon measure on B(S). Define

Nn :=

∞∑
j=1

δ(j/n,Xn,j),

and N is a Poisson random measure (PRM) on R≥0 × S with
mean measure λ⊗ µ. Then Nn converges weakly to N if and
only if

nP(Xn,1 ∈ ·) w→ µ on S.

Ao Sun Heuristics: convergence of random measures June 30, 2023 24
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Unit cube: a heuristic argument for the Poisson point process

We consider record-small values (which we will call small records, for
short) in this case.

Conditionally given X(n) = x(n) and Kn ≥ 0, the random vectors
X(1), . . . ,X(n−1) are i.i.d., their common distribution is uniform on
Cd \ O−

x(n) .

Scaling each observation by a factor n1/d, and suppose n1/dx(n) → x
(We choose the factor n1/d for simplicity, in the actual proof, we scale
each component of x(n) by a different carefully chosen factor to make
this true) as n → ∞. Then, by previous proposition, the conditional
distribution of the random measure

n−1∑
i=1

δn1/dX(i)

converges weakly to the PRM on Rd
>0 \ O−

x with mean measure λ.
Ao Sun Unit cube: a heuristic argument for the Poisson point process June 30, 2023 25
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Record breaking in R2

Unit square Unit isosceles right triangle

Unit square: bivariate records

In connection with the Cube Theorem, we identify a
time-homogeneous Markov jump process hidden behind the
Poisson point process in the limiting distribution. We then use
this process to prove the main Geometric(1/2) result in Fill
(2021) as a corollary to the Cube Theorem.

Corollary 1

Let (X(n))n≥1 be a sequence of i.i.d. random vectors, each
uniformly distributed in the unit square C2. Then the distribution
of Kcube(2) is Geometric(1/2) with support Z≥0.
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Record breaking in R2

Unit square Unit isosceles right triangle

An illustration of the Markov jump process

w w

1

X2

X1

X3

X0

In this realization of the Poisson point process of the Cube Theorem,
the minima are marked in green. The observations X1 and X2 are the
two minima that dominate w.
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Record breaking in R2

Unit square Unit isosceles right triangle

Unit simplex: bivariate records

One can transform minima in R2 to those in R, an intensively
studied subject, by employing concomitants. In this way, we
identify the distribution of Ksimplex ≡ Ksimplex(2) in terms of
common distributions as a corollary to the Simplex Theorem.

The probability generating function of Ksimplex is

E sKsimplex = 2s−2 +
1 − 2s−2

2 − s
.

Corollary 2 [S and Fill (2023+)]

P(Ksimplex(2) = k) =
1
4
(ln 2)k

k!
+

1
2k+1 − 1

2k+3

k∑
j=0

(2 ln 2)j

j!
.

This term predominates asymptotically due to cancellations!
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Record breaking in R2

Unit square Unit isosceles right triangle

An illustration of the projection idea

v

x = v/2

y = v/2
ξ2

ξ1

In the Poisson point process of the Simplex Theorem above, all but
one of the minima are marked in green. Exactly one of the minima
(marked in violet) dominates the point v marked in red.
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Perfect sampling algorithms

From an unbounded region to a bounded one

Since generating Pareto records has a high computational cost
(especially in high dimensions), in order to study the empirical
behavior of the record-breaking process, one might be
interested in perfectly simulating L(Kcube(d)) or L(Ksimplex(d)).

Recall that Kcube(2) has the Geometric(1/2) distribution; one
can easily and efficiently simulate from this distribution. In light
of Corollary 2, it is also elementary to simulate from the
distribution of Ksimplex(2).

For general d, the limiting distribution is described in terms of a
Poisson point process in a unbounded region. We need to
come up with a way to reduce it to sampling from a bounded
region.

Ao Sun From an unbounded region to a bounded one June 30, 2023 32
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Perfect sampling algorithms

A perfect simulation algorithm: cube case

A routine for generating an observation from L(Kcube(d)) is
described as follows. A similar routine works for generating
observations from L(Ksimplex(d)).

Generate a random variable W = w from the Exponential(1)
distribution.
Independently generate d independent
Exponential(w(d−1)/d) random variables ξ1 = x1, . . . , ξd = xd.
Independently simulate a unit-rate Poisson process in the
region

d∏
i=1

[0,w1/d + xi]
\ d∏

i=1

[0,w1/d].

Determine and record the number of minima from this
Poisson process that dominate (w1/d, · · · ,w1/d) as a
sample from L(Kcube(d)).
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Perfect sampling algorithms

An illustration for the perfect simulation algorithm in R2

w

x2

x1

Generate W = w from Exponential(1) and set w = (w1/2,w1/2).
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Perfect sampling algorithms

An illustration for the perfect simulation algorithm in R2

w

x2

x1

Original: a unit-rate homogeneous Poisson point process in the
set

{y ∈ Rd
>0 : y ̸≺ w}

.
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Perfect sampling algorithms

An illustration for the perfect simulation algorithm in R2

w
x2

x1

Now: independently generate two independent
Exponential(w1/2) random variables ξ1 = x1 and ξ2 = x2.
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Perfect sampling algorithms

An illustration for the perfect simulation algorithm in R2

w
x2

x1

Independently simulate a unit-rate Poisson process in the
region enclosed in green.
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Perfect sampling algorithms

An illustration for the perfect simulation algorithm in R2

w

x2

x1

Count the number of minima from the process that dominate w.
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Thank you!
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