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Why study trees?

▶ They are simple.

▶ They have many nice properties.

▶ They are useful.
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Trees are useful
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Random trees

A random tree with 50 vertices.
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Random tree models

Random trees play a role in many areas, from computational
biology (phylogenetic trees) to the study of algorithms (search
trees).

Depending on the specific application, various random models have
been brought forward, such as:

▶ Uniform models (e.g. uniformly random unlabelled trees),

▶ Branching processes (e.g. Galton–Watson trees),

▶ Increasing tree models (e.g. recursive trees),

▶ Models based on random strings or permutations (e.g. tries,
binary search trees).
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Uniform models

The simplest type of model uses the uniform distribution on the
set of trees of a given order within a specified family (e.g. the
family of all labelled trees, all unlabelled trees or all binary trees).

The analysis of such models often involves exact counting and
generating functions.

In particular, this is the case for simply generated families of trees.
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Simply generated families

On the set of all rooted ordered (plane) trees, we impose a weight
function by first specifying a sequence 1 = w0,w1,w2, . . . and then
setting

w(T ) =
∏
i≥0

w
Ni (T )
i ,

where Ni (T ) is the number of vertices of outdegree i in T . Then
we pick a tree of given order n at random, with probabilities
proportional to the weights. For instance,

▶ w0 = w1 = w2 = · · · = 1 generates random plane trees,

▶ w0 = w2 = 1 (and wi = 0 otherwise) generates random binary
trees,

▶ wi = 1
i! generates random rooted labelled trees.
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Branching processes
A classical branching model to generate random trees is the
Galton–Watson tree model: fix a probability distribution on the set
{0, 1, 2, . . .}.

▶ Start with a single vertex, the root.

▶ At time t, all vertices at level t (i.e., distance t from the root)
produce a number of children, independently at random
according to the fixed distribution (some of the vertices might
therefore not have children at all).

▶ A random Galton–Watson tree of order n is obtained by
conditioning the process.

Simply generated trees and Galton–Watson trees are essentially
equivalent. For example, a geometric distribution for branching will
result in a random plane tree, a Poisson distribution in a random
rooted labelled tree.
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Branching processes

Construction of a random binary tree according to the
Galton–Watson model: each vertex has either no children or
precisely two.

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

Uppsala University | S. Wagner



Branching processes

Construction of a random binary tree according to the
Galton–Watson model: each vertex has either no children or
precisely two.

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

Uppsala University | S. Wagner



Branching processes

Construction of a random binary tree according to the
Galton–Watson model: each vertex has either no children or
precisely two.

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

Uppsala University | S. Wagner



Branching processes

Construction of a random binary tree according to the
Galton–Watson model: each vertex has either no children or
precisely two.

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

Uppsala University | S. Wagner



Branching processes

Construction of a random binary tree according to the
Galton–Watson model: each vertex has either no children or
precisely two.

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

Uppsala University | S. Wagner



Branching processes

Construction of a random binary tree according to the
Galton–Watson model: each vertex has either no children or
precisely two.

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

Uppsala University | S. Wagner



Simply generated and Galton–Watson trees
An example:

Consider the Galton–Watson process based on a geometric
distribution with P(X = k) = pqk (where p = 1 − q).

The tree above has probability

p7(pq)2(pq2)2(pq3)2 = p13q12,

as does every rooted ordered tree with 13 vertices.
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Random increasing trees

Another random model that produces very different shapes uses the
following simple process, which generates random recursive trees:

▶ Start with the root, which is labelled 1.

▶ The n-th vertex is attached to one of the previous vertices,
uniformly at random.

In this way, the labels along any path that starts at the root are
increasing. Clearly, there are (n − 1)! possible recursive trees of
order n, and there are indeed interesting connections to
permutations.

The model can be modified by not choosing a parent uniformly at
random, but depending on the current outdegrees (to generate, for
example, binary increasing trees or preferential attachment trees).
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Random increasing trees

Construction of a recursive tree with 10 vertices:
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Processes based on random strings

In computer science, tries (short for retrieval trees) are a popular
data structure for storing strings over a finite alphabet. A random
binary trie is obtained as follows:

▶ Create n random binary strings of sufficient length, so that
they are all distinct (for all practical purposes, one can assume
that their length is infinite).

▶ All strings whose first bit is 0 are stored in the left subtree,
the others in the right subtree.

▶ This procedure is repeated recursively.
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Processes based on random strings

An example of a trie:

0010 . . .

0101 . . . 0110 . . .

1010 . . .
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Tree parameters
Many different parameters of trees have been studied in the
literature, such as

▶ the number of leaves,

▶ the number of vertices of a given degree,

▶ the path length (total distance of all vertices from the root),

▶ the Wiener index (sum of distances between all pairs of
vertices),

▶ the independence number, domination number, and similar
quantities,

▶ the order of the automorphism group,

▶ the number of subtrees,

▶ the number of independent sets or matchings,

▶ the spectrum.
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A general question

Given a family of trees (a random tree model) and a tree
parameter, what can we say about . . .

▶ . . . the average value of the parameter among all trees with n
vertices?

▶ . . . the variance or higher moments?

▶ . . . the distribution?

These questions become particularly relevant when n is large.
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Some examples of parameters

The tree above has 11 leaves, 2 “cherries”, path length 44,
384 automorphisms and 3945 subtrees.
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Distribution of parameters: some examples

2 4 6 8 10 12 14
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Distribution of the number of leaves in plane trees with 15 vertices.
Plane trees with n vertices and k leaves are counted by the
Narayana numbers Nn,k = 1

n−1

(n−1
k

)(n−1
k−1

)
.
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Distribution of parameters: some examples

150 200 250 300 350 400

Distribution of the path length in (pruned) binary trees with 30
vertices.
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Distribution of parameters: some examples

500 1000 1500 2000 2500

Distribution of the number of subtrees in labelled trees with 15
vertices.
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Additive functionals: a general concept
A tree parameter is called an additive functional if it can be
computed by adding its values for all the branches and adding a
“toll function” that also depends on the tree.

B1 B2 Bk. . .
T =

F (T ) = F (B1) + F (B2) + · · · + F (Bk) + f (T ).

Remark
The recursion remains true for the tree T = • of order 1 if we
assume without loss of generality that f (•) = F (•).
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An equivalent definition

The fringe subtree Tv associated with a vertex v of a tree T is the
subtree consisting of v and all its descendants.

One can see by induction that the recursion

F (T ) = F (B1) + F (B2) + · · · + F (Bk) + f (T )

is equivalent to the formula

F (T ) =
∑
v

f (Tv ).
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Some examples
▶ The number of leaves, corresponding to the toll function

f (T ) =

{
1 |T | = 1,

0 otherwise.

▶ More generally, the number of occurrences of a fixed rooted
tree H:

f (T ) =

{
1 T ≃ H,

0 otherwise.

▶ The number of vertices whose outdegree is a fixed number k:

f (T ) =

{
1 if the root of T has outdegree k ,

0 otherwise.
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Some more examples
▶ The path length, i.e., the sum of the distances from the root

to all vertices, can be obtained from the toll function
f (T ) = |T | − 1:

P(T ) =
k∑

i=1

(P(Bi ) + |Bi |) = |T | − 1 +
k∑

i=1

P(Bi ).

▶ The log-product of the subtree sizes, also called the “shape
functional”, corresponds to f (T ) = log |T |. It is related to
the number of linear extensions:

LE(T ) =

(
|T | − 1

|B1|, |B2|, . . . , |Bk |

) k∏
i=1

LE(Bi ),

thus

log
|T |!

LE(T )
= log |T | +

n∑
i=1

log
|Bi |!

LE(Bi )
.
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Even more examples
▶ The size of the automorphism group: if c1, c2, . . . , cr are the

multiplicities of the different isomorphism classes of branches,
we have

|Aut(T )| =
k∏

i=1

|Aut(Bi )| ·
r∏

j=1

cj !,

thus

log |Aut(T )| =
k∑

i=1

log |Aut(Bi )| +
r∑

j=1

log(cj !).

▶ The multiplicity of some eigenvalue λ:

Nλ(T ) =
k∑

i=1

Nλ(Bi ) + ϵλ(T ),

where ϵλ(T ) ∈ {−1, 0, 1}.
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Back to AofA 2012 . . .

The number of subtrees (connected induced subgraphs) was first
studied for simply generated trees by Meir and Moon in 1983. For
labelled trees, the average number of subtrees is asymptotically
equal to (e/(e − 1))3/2en/e .

The asymptotic behaviour of the variance can be computed along
the same lines to be of asymptotic order Kn for a constant
K ≈ 2.15483 > e2/e , so the “standard” normalisation does not
yield a limiting distribution.
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The number of subtrees
However, the logarithm of the number of subtrees fits the
framework of additive functionals!

It is somewhat more convenient to work with the number s1(T ) of
subtrees that contain the root.
The following recursion in terms of the branches B1,B2, . . . ,Bk

holds:

s1(T ) =
k∏

i=1

(1 + s1(Bi )).

Hence

log(1 + s1(T )) =
k∑

i=1

log(1 + s1(Bi )) + log(1 + s1(T )−1).
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The number of subtrees

log(1 + s1(T )) =
k∑

i=1

log(1 + s1(Bi )) + log(1 + s1(T )−1).

This means that log(1 + s1(T )) is additive with toll function
f (T ) = log(1 + s1(T )−1).

▶ A priori estimates show that f (T ) is exponentially small on
average if T is a large tree.

▶ This suffices to show that log(1 + s1(T )) satisfies a central
limit theorem, along with convergence of all moments.

▶ For the total number of subtrees s(T ), we have
log s(T ) = log(1 + s1(T )) + O(log |T |).
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The number of subtrees

Theorem (SW, AofA 2012)

The logarithm log s(Tn) of the number of subtrees of a random
labelled tree Tn of order n is asymptotically normally distributed,
with mean and variance asymptotically equal to µn and σ2n
respectively, where the numerical values of µ and σ2 are µ ≈ 0.35
and σ2 ≈ 0.04, respectively.

Remark
Computing the constants is surprisingly tricky: they are given by
infinite sums that converge poorly.
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The number of subtrees

The method also applies to a related parameter, the average
subtree size: it can also be seen as an additive parameter with (on
average) exponentially small toll function.

This condition also applies to other natural examples, but turns
out to be a lot stronger than necessary.
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General results

Theorem (SW 2012/2015, Holmgren + Janson 2014/2015,
Janson 2016, Holmgren + Janson + Šileikis 2016/2017,
Ralaivaosaona + SW 2016/2019, Ralaivaosaona + Šileikis +
SW 2018/2020, Janson 2022)

Under suitable technical conditions, an additive functional F on a
family of trees satisfies a central limit theorem:

There exist constants µ and σ2 such that mean and variance of
F (Tn) for a random tree Tn with n vertices are µn ∼ µn and
σ2
n ∼ σ2n.

Moreover, the renormalised random variable

Xn =
F (Tn) − µn√

σ2n

converges weakly to a standard normal distribution.
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Ralaivaosaona + SW 2016/2019, Ralaivaosaona + Šileikis +
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General results

What are “suitable technical conditions”?

There are three main types of conditions:

▶ The toll function f only depends on the size of the tree.

▶ The toll function f is “small” (at least on average) for large
trees.

▶ The toll function f is “local” (only depends on a small
neighbourhood of the root), at least approximately.
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General results

Proofs involve:

▶ combinatorial techniques (explicit counting, generating
functions, analytic combinatorics, . . . )

▶ probabilistic techniques (growth processes, urn models,
method of moments, . . . )
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Examples covered
Many different examples are covered by one or more of the
conditions:

▶ the number of leaves (N),

▶ the number of vertices of degree k (N),

▶ the number of fringe subtrees of a given type (N),

▶ the number of subtrees (L),

▶ the number of independent sets (L),

▶ the number of matchings (L),

▶ the independence number (N),

▶ the domination number (N),

▶ the average subtree size (N),

▶ the number of automorphisms (L),

▶ the multiplicity of eigenvalues (N).

(N) = normal (L) = lognormal
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Non-Gaussian limits

When the toll function is not sufficiently small, then non-Gaussian
limit distributions can be observed. Perhaps the most prominent
examples are the path length (sum of distances from the root) and
the related Wiener index (sum of all distances).

For simply generated trees/conditioned Galton–Watson trees and
Pólya trees (rooted unordered trees), limits that can be expressed
in terms of a Brownian excursion are observed.
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Path length and Wiener index

Theorem (Takács 1993, Janson 2003, SW 2012)

For conditioned Galton–Watson trees (whose offspring distribution
has finite variance) and for uniformly random Pólya trees, there
exists a constant µ > 0 such that the path length D(Tn) and the
Wiener index W (Tn) of a random tree Tn with n vertices have
means µD

n ∼ µn3/2 and µW
n ∼ µ

2n
5/2 respectively.
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Path length and Wiener index

Theorem (cont.)

Moreover, the random variables

Xn =
D(Tn)

µn3/2
and Yn =

W (Tn)

µn5/2

converge weakly to random variables given in terms of a
normalised Brownian excursion e(t) on [0, 1]:√

8

π

∫ 1

0
e(t) dt and

√
8

π

∫∫
0<s<t<1

(
e(s)+e(t)−2 min

s≤u≤t
e(u)

)
ds dt.
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Path length and Wiener index

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

The Airy distribution: limiting distribution of the path length.
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Power toll functions

The path length corresponds essentially to the toll function
f (T ) = |T |.

The more general case f (T ) = |T |α has been studied in detail as
well, as discussed in Jim Fill’s talk (Fill + Kapur 2004, Fill +
Flajolet + Kapur 2005, Delmas + Dhersin + Sciauveau 2018,
Abraham + Delmas + Nassif 2022, Fill + Janson 2022, Fill +
Janson + SW 2023+).

A phase transition can be observed at Reα = 0.
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Some more recent applications of additive
functionals

▶ Hackl + Heuberger + Kropf + Prodinger 2018: cutting and
pruning procedures

▶ Go le↪biewski + Magner + Szpankowski 2019: entropy of
random tree classes

▶ Komjáthy + Ódor 2021: metric dimension

▶ Disanto + Fuchs + Paningbatan + Rosenberg 2022:
ancestral configurations of species trees

▶ Seelbach-Benkner + SW 2022: tree compression algorithms
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Directions for future research

▶ Random tree models that have not been covered yet,

▶ Tree-like graph classes,

▶ Parameters that are not covered by any of the existing general
conditions,

▶ General schemes for additive parameters whose limit
distributions are not normal,

▶ Parameters that follow different types of recursion (e.g.: max
instead of

∑
).
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