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Sometimes we cannot solve an enumeration problem, and we
wonder why that is.

Could it be that the problem is just too difficult?

If yes, is there a way to measure the problem’s difficulty without
solving it?
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The following three classes of power series will be interesting for us.
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Nonrationality

Back to our main question: if we do not know a power series, how
do we prove that it is not rational?

We will use the main law of combinatorial asymptotics: if
F (z) =

∑
n≥0 fnz

n is a combinatorial generating function, then the
exponential growth rate of its coefficients fn is equal to 1/R, where
R is the radius of convergence of F around 0.



Supercriticality

Definition
Let F and G be two generating functions with nonnegative real
coefficients that are analytic at 0, and let us assume that
G (0) = 0. Then the relation

F (z) =
1

1− G (z)

is called supercritical if G (RG ) > 1, where RG is the radius of
convergence of G .

Analytical meaning: As the coefficients of G (z) are nonnegative,
G (RG ) > 1 implies that G (α) = 1 for some α ∈ (0,RG ). So, F
has a singular point before G does, and so the exponential growth
rate of the coefficients of F is larger than that of G .
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Combinatorial meaning:
F (z) = 1/(1− G (z)) = 1 + G (z) + G (z)2 + G (z)3 + · · · , so if F
counts structures that can have several components, then G is the
generating function of those structures that have only one such
component.

For instance, let F (z) be the generating function for the number of
ways to tile a 1× n path with red and blue tiles of size 1× 1 and
green, white, and yellow tiles of size 1× 2. Then G (z) = 2z + 3z2,
implying that RG = ∞ and G (RG ) = ∞ > 1, and

F (z) =
1

1− 2z − 3z2
.
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Rational functions and supercriticality

Theorem
Let G (z) be a rational power series with nonnegative real
coefficients that satisfies G (0) = 0. Then the relation

F (z) =
1

1− G (z)

is supercritical.

Proof.
If G (z) is a polynomial, then RG = ∞, so G (RG ) = ∞ > 1, and
our claim is proved. Otherwise, G (z) is a rational function that
has at least one singularity, and all its singularities are poles. Let
RG be a singularity of smallest modulus. Then G (RG ) = ∞ > 1,
completing our proof.



Our Main Application: Permutation Patterns

Permutation patterns are a good example here because

1. they are very widely studied,

2. their generating functions are mostly unknown, and

3. their is a long-standing, difficult conjecture about their
generating functions.



In other words, in order to prove that some generating function F
is not rational, it is sufficient to show that if

F (z) =
1

1− G (z)
,

then the relation between F and G is not supercritical.

And one way to do that is by showing that F and G have the same
convergence radius, or, equivalently, their coefficients have the
same exponential order.



Pattern Containment

We say that a permutation p1p2 · · · pn contains the shorter
permutation q1q2 · · · qk as a pattern if there is a subsequence of
entries in p that relate to each other as the entries of q.

That is, p contains q as a pattern if there is a subsequence of k
entries pi1pi2 · · · pik so that pia < pib if and only if qa < qb.
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Example

The permutation p = 57821346 contains the pattern q = 132 as
shown in the figure.
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Figure: Containing the pattern 132.
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What is known about Aq(z)?

Very little is known about the generating function Aq(z) of the
numbers Avn(q) of the number of permutations avoiding q.

The known results are on two special cases, short patterns, and
monotone patterns.
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Short patterns:

If q is of length three, then Avn(q) =
(2n
n

)
/(n + 1), so

Aq(z) =
1−

√
1− 4z

2z
,

which is algebraic.

If q = 1342, then

Avq(z) =
2z

1 + 20z − 8z2 − (1− 8z)3/2
,

which is algebraic again.
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Monotone patterns

If q = 12 · · · k, then Aq(z) is D-finite.

However, if k > 2 is even, then Aq(z) is not algebraic.
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Size

The celebrated Marcus - Tardos theorem shows that for all q, there
exists a constant cq so that

Avn(q) ≤ cnq .

The best value of cq is not known.
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Explicit formulae are known for Avn(1342) and Avn(1234).

Due to some trivial and some non-trivial equivalences, this means
that the only patterns of length four for which an explicit formula
is not known is 1324 and its reverse 4231. For that pattern, we do
not know even the exponential growth rate of the sequence
Avn(q), or how nice the generating function Aq(z) is.
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The Zeilberger-Noonan conjecture, single pattern case

Let Avn(q) be the number of permutations of length n that avoid
the pattern q.

Conjecture

(Z-N, 1997) For all q, the sequence Avn(q) is polynomially
recursive. Equivalently, the generating function Aq(z) of the
sequence is D-finite.

Note that for the case of multiple patterns, the conjecture has
been disproved by Igor Pak and Scott Garrabrant.



Our result

We cannot decide the Z-N conjecture for single patterns, but we
can prove, in two slightly different ways, that for most patterns,
Aq(z) is not rational.

We say that a permutation p is skew indecomposable if it is not
possible to cut p into two parts so that each entry before the cut is
larger than each entry after the cut.
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For instance, p = 3142 is skew indecomposable, but r = 346512 is
not as we can cut it into two parts by cutting between entries 5
and 1, to obtain 3465|12.

If p is not skew indecomposable, then there is a unique way to cut
p into nonempty skew indecomposable strings s1, s2, · · · , sℓ of
consecutive entries so that each entry of si is larger than each
entry of sj if i > j .
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For instance, p = 67|435|2|1 has four skew blocks, while skew
indecomposable permutations have one skew block.
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Theorem
Let q be a skew indecomposable pattern that does not end in its
largest entry. Then Aq(z) is not rational.

It is clear that p avoids q if and only if each of the skew blocks of
p avoids q.

Figure: The skew blocks of p.



This means that

Aq(z) =
1

1− Aq,1(z)

holds, where Aq,1(z) is the generating function of the skew
indecomposable q-avoiders.

Remember, we have seen that if Aq(z) is rational, this means that
the two generating functions cannot have the same convergence
radius, so their coefficients cannot have the same exponential
order.



Let p be of length n, and let p avoid q. Now affix a new entry
n + 1 at the end of p. The new permutation p′ still avoids q, but
is also skew indecomposable.

So, if Avn,1(q) is the number of skew indecomposable q-avoiders,
then

Avn,1(q) ≤ Avn(q) ≤ Avn+1,1(q),

so the sequences Avn(q) and Avn+1,q have the same exponential
order.

This contradiction completes our proof.



What are the patterns for which this does not work

The preceding argument shows that if q is skew indecomposable,
and does not end in its largest entry, then Aq(z) is not rational.

It is not difficult to prove that a bit more is true.



What are the patterns for which this does not work

The preceding argument shows that if q is skew indecomposable,
and does not end in its largest entry, then Aq(z) is not rational.

It is not difficult to prove that a bit more is true.



Theorem
Let q be a skew indecomposable pattern of length k so that at
least one of the following conditions hold.

1. q does not start with the entry 1, or

2. q does not end with the entry k, or

3. q is Wilf-equivalent to a skew indecomposable pattern that
satisfies at least one of the first two conditions.

Then Aq(z) is not rational.

For instance, q = 12 · · · k does not satisfy the first two conditions,
but it is Wilf-equivalent to 2134 · · · k, that does (if k > 2).
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Note that Aq(z) = 1/(1− z) is trivally rational if q = 12.

So the shortest pattern for which we cannot decide the question of
rationality is

1324.
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A slightly different proof

It can be shown that for patterns as in the previous theorem, the
inequality

Avn,2(q) ≤ Avn,1(q)

holds, where Avn,i (q) is the number of permutations of length n
avoiding q with i skew blocks.

If Aq,1(z) is rational, then its dominant singularity z0 is a pole. So

lim
z→z0

Aq,1(z) = ∞.
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Therefore, there exists a z1 ∈ (0, z0) so that Aq,1(z1) > 1.

This implies that

Aq,2(z1) = (Aq,1(z1))
2 > Aq,1(z1).

This contradicts∑
n≥1

Avn,1(q)z
n
1 = A1,q(z1) ≥ A2,q(z1) =

∑
n≥2

Avn,2(q)z
n
1 ,

that holds since all coefficients are non-negative.
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Another approach

We know that coefficients of rational generating functions satisfy
the rule

an ∼ b · cn · nd ,

where c is a nonnegative real number, and d is a natural number.

However, for pattern avoiding permutations,

An(q)Am(q) ≤ An+m(q),

which implies that d = 0 must hold.



Non-algebraicity

A classic result of Jungen says that if a complex power series
f =

∑
n≥0 fnz

n is algebraic, and

fn ∼ c
αn

nd
,

then d is not a positive integer.
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The following result is due to Amitaj Regev.

Theorem
For all k ≥ 2, there exists a constant γk so that the asymptotic
equality

Avn(k · · · 21) ≃ γk
(k − 1)2n

n(k2−2k)/2

holds.

So the generating function for such permutations is not algebraic if
k is even. This is the only nonrationality result for single pattern
avoidance.
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A lemma by Alin Bostan

Lemma
Let f (z) =

∑
n≥0 fnz

n be a power series with nonnegative real
coefficients that is analytic at the origin. Let us assume that
constants c , C , K and m exist so that m > 1 is an integer, and for
all positive integers n, the chain of inequalities

c
Kn

nm
≤ fn ≤ C

Kn

nm
(1)

holds. Then f (z) is not an algebraic power series.



An application

Let Sn(q, 1) denote the set of permutations of length n that
contain exactly one copy of the pattern q, and let
Sn(q) := Sn(q, 0). Let Sn(k · · · 21, 1) = |Sn(q, 1)|.

In joint work with Alex Burstein, we have recently proved the
following.

Theorem
There exists an injection

Fk : Sn(k · · · 21, 1) → Sn+2(k · · · 21).
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Because of our injection, Sn(k · · · 21, 1) ≤ Avn+2((k − 1)k · · · 21)),
while it is obvious that

Sn(k · · · 21, 1) ≥ Avn−k(k · · · 21).

So the exponential order of the sequence Sn(k · · · 21, 1) is the
same as that of the sequence Avn(k · · · 21), that is, (k − 1)2n.



And, we proved that the conditions of Bostan’s lemma hold, that
is, the growth rate of the sequence Sn(k · · · 21, 1) is squeezed
between two constant multiples of

(k − 1)2n

n(k2−2k)/2
.

If k is even, that means that the exponent in the denominator is an
integer, so the generating function of Sn(k · · · 21, 1) is not
algebraic.
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