Tree Rooted Planar Graphs

Michael Drmota

Institute of Discrete Mathematics and Geometry
Vienna University of Technology
A 1040 Wien, Austria
michael.drmota@tuwien.ac.at
http://www.dmg.tuwien.ac.at/drmota/
joint work with Marc Noy, Clement Requilé and Juanjo Rué

AofA 2023, Taipei, June 29, 2023.

Planar Maps

A planar map is a connected planar graph, possibly with loops and multiple edges, together with an embedding in the plane.
A map is rooted if a vertex v and an edge e incident with v are distinguished, and are called the root-vertex and root-edge, respectively. The face to the right of e is called the root-face and is usually taken as the outer face.

Planar Maps

$m_{n} \ldots$ number of rooted planar maps with n edges [Tutte]

$$
m_{n}=\frac{2(2 n)!}{(n+2)!n!} 3^{n}
$$

The proof is given with the help of generating functions and the socalled quadratic method.

Asymptotics:

$$
m_{n} \sim \frac{2}{\sqrt{\pi}} \cdot n^{-5 / 2} 12^{n}
$$

Generating Function:

$$
m(z)=\sum_{n \geq 0} m_{n} z^{n}=-\frac{1}{54 z^{2}}\left(1-18 z-(1-12 z)^{3 / 2}\right)
$$

Tree Rooted Planar Maps

A tree rooted planar map is a planar map with a distinguished spanning tree.

Tree Rooted Planar Maps

Counting Result by Mullin (1967)

$M_{n, k} \ldots$ number of tree-rooted maps with n edges and $k+1$ vertices:

$$
M_{n, k}=\frac{(2 n)!}{k!(k+1)!(n-k)!(n-k+1)!}
$$

$M_{n} \ldots$ number of tree-rooted maps with n edges:

$$
\begin{aligned}
M_{n} & =\sum_{k=0}^{n} M_{n, k}=\frac{(2 n)!}{((n+1)!)^{2}} \sum_{k=0}^{n}\binom{n+1}{k}\binom{n+1}{n-k} \\
& =\frac{(2 n)!}{((n+1)!)^{2}}\binom{2 n+2}{n}=C_{n} C_{n+1} \sim \frac{4^{2 n+1}}{\pi n^{3}}
\end{aligned}
$$

where $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ denotes the n-th Catalan number
[Natural bijection to pairs of trees by Bernaradi 2007]

Tree Rooted Planar Maps

Expected number of spanning trees

The average number of spanning trees in planar maps of size n

$$
=\frac{M_{n}}{m_{n}}=\frac{C_{n} C_{n+1}}{\frac{2 \cdot 3 n}{n+2} C_{n}} \sim \frac{2}{\sqrt{\pi n}}\left(\frac{4}{3}\right)^{n}
$$

Tree Rooted Planar Maps

Generating Functions

$$
\begin{gathered}
M(s, t)=\sum_{n, k} M_{n, k} s^{n} t^{k}=\sum_{n, k} \frac{(2 n)!}{k!(k+1)!(n-k)!(n-k+1)!} s^{n} t^{k} \\
M(s, 1)=\sum_{n \geq 0} C_{n} C_{n+1} s^{n}={ }_{3} F_{2}\left(\frac{1}{2}, 1, \frac{3}{2} ; 2,3 ; 16 s\right) .
\end{gathered}
$$

(3 $F_{2} \ldots$ hypergeometric series)

Tree Rooted Planar Maps

Generating Functions

$M_{0}(s, t) \ldots$ GF for tree-rooted maps, where the root edge is not contained in the spanning tree
$M_{1}(s, t) \ldots$ GF for tree-rooted maps, where the root edge is contained in the spanning tree

$$
\begin{gathered}
M_{0}(s, t)=1+\sum_{n \geq 1} \sum_{k=0}^{n}\left(1-\frac{k}{n}\right) \frac{(2 n)!}{k!(k+1)!(n-k)!(n-k+1)!} s^{n} t^{k} \\
M_{1}(s, t)=\sum_{n \geq 1} \sum_{k=0}^{n} \frac{k}{n} \frac{(2 n)!}{k!(k+1)!(n-k)!(n-k+1)!} s^{n} t^{k} \\
M(s, t)=M_{0}(s, t)+M_{1}(s, t) \\
M_{0}(s, 1)=1+M_{1}(s, 1)
\end{gathered}
$$

Vertex Labelled Planar Graphs

Asymptotic number of planar graphs

Theorem [Gimenez-Noy]
Let c_{n} denote the number of connected vertex labelled planar graphs with n vertices. Then we have

$$
c_{n} \sim c n^{-7 / 2} \gamma^{n} n!
$$

with (analytically describable) $c \approx 0.41043 \cdot 10^{-5}$ and $\gamma \approx 27.2268$.

Tree Rooted Vertex Labelled Planar Graphs

THEOREM [D+Noy+Requilé+Rué]

Let C_{n} denote the number of vertex-labeled connected and tree-rooted planar graphs with n vertices. Then we have

$$
C_{n} \sim \bar{c} n^{-4} \bar{\gamma}^{n} n!
$$

where the constants $\bar{c}>0$ and $\bar{\gamma}>\gamma$ can be numerically calculated to any given precision.

Hence, the average number of spanning trees in planar graphs of size n

$$
=\frac{C_{n}}{c_{n}} \sim \frac{\bar{c} / c}{\sqrt{n}}\left(\frac{\bar{\gamma}}{\gamma}\right)^{n}
$$

Strategy of the Proof

Tree Rooted 2-Connected Planar Maps

$N(z, t) \ldots$ GF of tree rooted 2 -connected planar maps

Lemma

$$
M(s, t)=1+s(1+t) M(s, t)^{2}+N\left(s M(s, t)^{2}, t\right)
$$

Tree Rooted 2-Connected Planar Maps

$N_{0}(z, t) \ldots$ GF for 2-connected tree-rooted maps, where the root edge is not contained in the spanning tree
$N_{1}(z, t) \ldots$ GF for 2-connected tree-rooted maps, where the root edge is contained in the spanning tree

Lemma

$$
\begin{aligned}
& M_{0}(s, t)=1+s M(s, t)^{2}+N_{0}\left(s M(s, t)^{2}, t\right) \\
& M_{1}(s, t)=t s M(s, t)^{2}+N_{1}\left(s M(s, t)^{2}, t\right)
\end{aligned}
$$

Tree Rooted 3-Connected Planar Maps

$T_{0}(u, v) \ldots$ GF for 3-connected tree-rooted maps, where the root edge is not contained in the spanning tree
$T_{1}(u, v) \ldots$ GF for 3-connected tree-rooted maps, where the root edge is contained in the spanning tree

Lemma

$$
\begin{aligned}
& D_{0}=z+\frac{t D_{0}^{2}}{1+t D_{0}}+\frac{D_{0} D_{1}\left(D_{1}+2\right)}{\left(1+D_{1}\right)^{2}}+\frac{T_{0}\left(D_{1}, t D_{0} / D_{1}\right)}{t D_{1}} \\
& D_{1}=z+\frac{t D_{0} D_{1}\left(t D_{0}+2\right)}{\left(1+t D_{0}\right)^{2}}+\frac{D_{1}^{2}}{1+D_{1}}+\frac{T_{1}\left(D_{1}, t D_{0} / D_{1}\right)}{t D_{0}}
\end{aligned}
$$

where $D_{0}(z, t)=N_{0}(z, t) /(t z)$ and $D_{1}(z, t)=N_{1}(z, t) /(t z)$.

Tree Rooted 3-Connected Planar Maps

By Tutte-decomposition:

$$
\begin{aligned}
D_{0} & =z+S_{0}+P_{0}+H_{0} \\
D_{1} & =z+S_{1}+P_{1}+H_{1} \\
S_{0} & =t D_{0}\left(D_{0}-S_{0}\right) \\
S_{1} & =t D_{0}\left(D_{1}-S_{1}\right)+t D_{1}\left(D_{0}-S_{0}\right) \\
P_{0} & =\frac{D_{0}-P_{0}}{\left(1-\left(D_{1}-P_{1}\right)\right)^{2}}-\left(D_{0}-P_{0}\right) \\
P_{1} & =\frac{\left(D_{1}-P_{1}\right)^{2}}{1-\left(D_{1}-P_{1}\right)} \\
H_{0} & =\frac{T_{0}\left(D_{1}, t D_{0} / D_{1}\right)}{t D_{1}} \\
H_{1} & =\frac{T_{1}\left(D_{1}, t D_{0} / D_{1}\right)}{t D_{0}}
\end{aligned}
$$

Tree-rooted 3-connected planar graphs

By Whitney's theorem, tree-rooted 3-connected planar graphs have a unique embedding into the plane. Therefore they coincide with tree-rooted 3-connected planar maps.

Tree-rooted 2-connected planar networks

$\bar{D}_{0}(x, y) \ldots$ GF for 2-connected "tree-rooted" planar networks, where only the north pole is not contained in the spanning tree
$\bar{D}_{1}(x, y) \ldots$ GF for 2-connected tree-rooted planar networks

Lemma

$$
\begin{aligned}
\bar{D}_{1} & =(1+y) \exp \left(\frac{x \bar{D}_{0} \bar{D}_{1}\left(2+x \bar{D}_{0}\right)}{\left(1+x \bar{D}_{0}\right)^{2}}+\frac{T_{1}\left(\bar{D}_{1}, x \bar{D}_{0} / \bar{D}_{1}\right)}{2 x \bar{D}_{0}}\right)-1 \\
\bar{D}_{0} & =\frac{2 x^{2} \bar{D}_{0} \bar{D}_{1}\left(y+(1+y) \bar{D}_{0}\right)}{2 x \bar{D}_{1}\left(1+x \bar{D}_{0}\right)(1+y)}\left(1+\bar{D}_{1}\right) \\
& +\frac{x\left(2 y \bar{D}_{1}+(1+y)\left(\bar{D}_{0} T_{0}\left(\bar{D}_{1}, x \bar{D}_{0} / \bar{D}_{1}\right)+T_{1}\left(\bar{D}_{1}, x \bar{D}_{0} / \bar{D}_{1}\right)\right)\right)}{2 x \bar{D}_{1}\left(1+x \bar{D}_{0}\right)(1+y)}\left(1+\bar{D}_{1}\right)
\end{aligned}
$$

Tree-rooted 2-connected planar networks

By Tutte-decomposition:

$$
\begin{aligned}
& \bar{D}_{0}=y+\bar{S}_{0}+\bar{P}_{0}+\bar{H}_{0}, \\
& \bar{D}_{1}=y+\bar{S}_{1}+\bar{P}_{1}+\bar{H}_{1}, \\
& \bar{S}_{0}=x \bar{D}_{0}\left(\bar{D}_{0}-\bar{S}_{0}\right) \\
& \bar{S}_{1}=x \bar{D}_{0}\left(\bar{D}_{1}-\bar{S}_{1}\right)+x \bar{D}_{1}\left(\bar{D}_{0}-\bar{S}_{0}\right), \\
& \bar{P}_{0}=y\left(\exp \left(\bar{S}_{1}+\bar{H}_{1}\right)-1\right)+\left(\bar{S}_{0}+\bar{H}_{0}\right)\left((y+1) \exp \left(\bar{S}_{1}+\bar{H}_{1}\right)-1\right), \\
& \bar{P}_{1}=y\left(\exp \left(\bar{S}_{1}+\bar{H}_{1}\right)-1\right)+\exp \left(\bar{S}_{1}+\bar{H}_{1}\right)-1-\left(\bar{S}_{1}+\bar{H}_{1}\right), \\
& \bar{H}_{0}=\frac{T_{0}\left(\bar{D}_{1}, t \bar{D}_{0} / \bar{D}_{1}\right)}{2 x \bar{D}_{1}}, \\
& \bar{H}_{1}=\frac{T_{1}\left(\bar{D}_{1}, t \bar{D}_{0} / \bar{D}_{1}\right)}{2 x \bar{D}_{0}} .
\end{aligned}
$$

Tree-rooted 2-connected planar graphs

$B(x, y) \ldots$ GF for 2-connected tree-rooted planar graphs

Lemma

$$
B_{y}(x, y)=\frac{x^{2}}{2}
$$

$$
+\frac{x^{2}}{2(1+y)}\left(\bar{D}_{0}(x, y)+\bar{D}_{1}(x, y)-2 y-y \exp \left(\bar{S}_{1}(x, y)+\bar{H}_{1}(x, y)\right)+y\right)
$$

where

$$
\begin{aligned}
\bar{S}_{1}(x, y) & =\frac{x \bar{D}_{0}(x, y) \bar{D}_{1}(x, y)\left(2+x \bar{D}_{0}(x, y)\right)}{\left(1+x \bar{D}_{0}(x, y)\right)^{2}} \\
\left.\bar{H}_{1}(x, y)\right) & =\log \frac{\left.1+\bar{D}_{1}(x, y)\right)}{1+y}-\frac{x \bar{D}_{0}(x, y) \bar{D}_{1}(x, y)\left(2+x \bar{D}_{0}(x, y)\right)}{\left(1+x \bar{D}_{0}(x, y)\right)^{2}}
\end{aligned}
$$

Tree-rooted connected planar graphs

$C(x, y) \ldots$ GF for connected tree-rooted planar graphs

Lemma

$$
x C_{x}(x, y)=x \exp \left(B_{x}\left(x C_{x}(x, y), y\right)\right)
$$

Strategy of the Proof

Tree-rooted connected planar maps

Lemma

$$
\begin{aligned}
M(s, t) & =M\left(s_{0}(t), t\right)-s_{0}(t) M_{s}\left(s_{0}(t), t\right)\left(1-s^{\prime} s_{0}(t)\right) \\
& +\frac{(1+\sqrt{t})^{3}}{4 \pi t^{5 / 4}}\left(1-s / s_{0}(t)\right)^{2} \log \frac{1}{1-s / s_{0}(t)}+O\left(\left(1-s / s_{0}(t)\right)^{2}\right)
\end{aligned}
$$

where $s_{0}(t)=1 /\left(4(1+\sqrt{t})^{2}\right)$ is the dominating singularity of the mapping $s \rightarrow M(s, t)$.

For later use we use the notation

$$
M(s, t)=M_{0}(t)+M_{1}(t) S+M_{2}(t) S^{2} \log S+O\left(S^{2}\right)
$$

with $S=1-s / s_{0}(t), M_{0}(t)=M\left(s_{0}(t), t\right)$ etc.

Remark. There are similar expansions for $M_{0}(s, t)$ and $M_{1}(s, t)$.

Tree-rooted connected planar maps

Integral representation

$$
\begin{aligned}
& s M(s, t)= \sum_{n, k} \frac{(2 n)!}{k!(k+1)!(n-k)!(n-k+1)!} s^{n+1} t^{k} \\
&= \sum_{n \geq 0} \frac{C_{n}}{n+1} \frac{1}{2 \pi i} \int_{|w|=1 / \sqrt{t}}\left(\frac{(1+t w)(1+w)}{w} s\right)^{n+1} d w \\
&= \frac{1}{2 \pi i} \int_{|w|=1 / \sqrt{t}}\left(\log \left(1+\sqrt{1-4 \frac{(1+t w)(1+w)}{w}} s\right)\right. \\
&\left.\quad-\sqrt{1-4 \frac{(1+t w)(1+w)}{w}} s\right) d w
\end{aligned}
$$

+ asymptotic analysis of the integral for $s \approx s_{0}(t)=1 /\left(4(1+\sqrt{t})^{2}\right)$

Tree-rooted 2-connected planar maps

Asymptotic Transfer

Lemma

Suppose that Y is a complex variable that varies in a region of the form

$$
R:=\{z \in \mathbb{C}:|z|<\eta,|\arg (z)|<\pi-\varphi\}
$$

for some $\eta>0$ and some φ with $0<\varphi<\frac{\pi}{2}$ and that Y is related with X by

$$
X=a Y+b Y^{2} \log Y+O\left(Y^{2}\right) \quad(Y \rightarrow 0, Y \in R)
$$

where a and b are non-zero and $|\arg (a)|<\varphi$. Then there exist $\eta^{\prime}>0$ and φ^{\prime} with $0<\varphi<\frac{\pi}{2}$ such that the above relation can be uniquely inverted for $X \in R^{\prime}=\left\{z \in \mathbb{C}:|z|<\eta^{\prime},|\arg (z)|<\pi-\varphi^{\prime}\right\}$ and we have

$$
Y=\frac{1}{a} X-\frac{b}{a^{3}} X^{2} \log X+O\left(X^{2}\right) \quad\left(X \rightarrow 0, X \in R^{\prime}\right) .
$$

Proof by bootstrapping.

Tree-rooted 2-connected planar maps

Application to $M(s, t)=1+s(1+t) M(s, t)^{2}+N\left(s M(s, t)^{2}, t\right)$
$M(s, t)$ gets singular for $s=s_{0}(t)=1 /\left(4(1+\sqrt{t})^{2}\right)$ and we have

$$
M(s, t)=M_{0}(t)+M_{1}(t) S+M_{2}(t) S^{2} \log S+O\left(S^{2}\right)
$$

with $S=1-s / s_{0}(t), M_{0}(t)=M\left(s_{0}(t), t\right)$ etc.
Hence, $N(z, t)$ gets singular for $z=s_{0}(t) M\left(s_{0}(t), t\right)^{2}$
Setting

$$
z=s M(s, t)^{2} .
$$

we obtain

$$
N(z, t)=-1-(1+t) z+M(s, t) \text {. }
$$

Tree-rooted 2-connected planar maps

We set

$$
Z=1-\frac{z}{s_{0}(t) M\left(s_{0}(t), t\right)^{2}}
$$

which gives

$$
z=s_{0}(t) M\left(s_{0}(t), t\right)^{2}(1-Z)
$$

Hence we obtain

$$
\begin{aligned}
s M(s, t)^{2} & =s_{0}(t)(1-S)\left(M_{0}^{2}+2 M_{0} M_{1} S+2 M_{0} M_{2} S^{2} \log S+O\left(S^{2}\right)\right) \\
& =s_{0}(t) M_{0}^{2}+s_{0}(t) M_{0}\left(2 M_{1}-M_{0}\right) S+2 s_{0}(t) M_{0} M_{2} S^{2} \log S+O\left(S^{2}\right)
\end{aligned}
$$

or

$$
Z=1-\frac{s M(s, t)^{2}}{s_{0}(t) M_{0}^{2}}=-\frac{2 M_{1}-M_{0}}{M_{0}} S-\frac{2 M_{2}}{M_{0}} S^{2} \log S+O\left(S^{2}\right)
$$

Tree-rooted 2-connected planar maps

Hence, a direct application of the previous Lemma gives

$$
S=-\frac{M_{0}}{2 M_{1}-M_{0}} Z-\frac{2 M_{0}^{2} M_{2}}{\left(2 M_{1}-M_{0}\right)^{3}} Z^{2} \log Z+O\left(Z^{2}\right)
$$

This also leads to the relation

$$
\begin{aligned}
M(s, t) & =M_{0}+M_{1} S+M_{2} S^{2} \log S+O\left(S^{2}\right) \\
& =M_{0}+M_{1}\left(-\frac{M_{0}}{2 M_{1}-M_{0}} Z-\frac{2 M_{0}^{2} M_{2}}{\left(2 M_{1}-M_{0}\right)^{3}} Z^{2} \log Z\right) \\
& +M_{2} \frac{M_{0}^{2}}{\left(2 M_{1}-M_{0}\right)^{2}} Z^{2} \log Z+O\left(Z^{2}\right) \\
& =M_{0}-\frac{M_{0} M_{1}}{2 M_{1}-M_{0}} Z-\frac{M_{0}^{3} M_{2}}{\left(2 M_{1}-M_{0}\right)^{3}} Z^{2} \log Z+O\left(Z^{2}\right) .
\end{aligned}
$$

Tree-rooted 2-connected planar maps

Summing up we have

$$
\begin{aligned}
N(z, t) & =-1-(1+t) s_{0}(t) M_{0}^{2}(1-Z)+M(s, t) \\
& =\left(M_{0}-1-(1+t) s_{0}(t) M_{0}^{2}\right)+\left((1+t) s_{0}(t) M_{0}^{2}-\frac{M_{0} M_{1}}{2 M_{1}-M_{0}}\right) Z \\
& -\frac{M_{0}^{3} M_{2}}{\left(2 M_{1}-M_{0}\right)^{3}} Z^{2} \log Z+O\left(Z^{2}\right) \\
& =N_{0}+N_{1} Z+N_{2} Z^{2} \log Z+O\left(Z^{2}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& N_{0}=N_{0}(t)=M_{0}-1-(1+t) s_{0}(t) M_{0}^{2} \\
& N_{1}=N_{1}(t)=(1+t) s_{0}(t) M_{0}^{2}-\frac{M_{0} M_{1}}{2 M_{1}-M_{0}} \\
& N_{2}=N_{2}(t)=-\frac{M_{0}^{3} M_{2}}{\left(2 M_{1}-M_{0}\right)^{3}}
\end{aligned}
$$

Tree-rooted 2-connected planar maps

Similarly we obtain

$$
\begin{aligned}
& N_{0}(z, t)=N_{00}+N_{01} Z+N_{02} Z^{2} \log Z+O\left(Z^{2}\right), \\
& N_{1}(z, t)=N_{10}+N_{11} Z+N_{12} Z^{2} \log Z+O\left(Z^{2}\right)
\end{aligned}
$$

with $N_{i j}=N_{i j}(t)$ and

$$
Z=1-\frac{z}{s_{0}(t) M\left(s_{0}(t), t\right)^{2}}
$$

Tree-rooted 3-connected planar maps

With the relations (where $D_{0}=N_{0} /(z t)$ and $D_{1}=N_{1} /(t z)$)

$$
\begin{aligned}
& D_{0}=z+\frac{x D_{0}^{2}}{1+x D_{0}}+\frac{D_{0} D_{1}\left(D_{1}+2\right)}{\left(1+D_{1}\right)^{2}}+\frac{T_{0}\left(D_{1}, x D_{0} / D_{1}\right)}{x D_{1}}, \\
& D_{1}=z+\frac{x D_{0} D_{1}\left(x D_{0}+2\right)}{\left(1+x D_{0}\right)^{2}}+\frac{D_{1}^{2}}{1+D_{1}}+\frac{T_{1}\left(D_{1}, x D_{0} / D_{1}\right)}{x D_{0}} .
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& T_{0}(u, v)=T_{00}(v)+T_{01}(v) U+T_{02}(v) U^{2} \log U+O\left(U^{2}\right), \\
& T_{1}(u, v)=T_{10}(v)+T_{11}(v) U+T_{12}(v) U^{2} \log U+O\left(U^{2}\right)
\end{aligned}
$$

with

$$
U=1-\frac{u}{u_{0}(v)}
$$

and a proper function $u_{0}(v)$.

Tree-rooted 2-connected planar networks

With the relations

$$
\begin{aligned}
\bar{D}_{1} & =(1+y) \exp \left(\frac{x \bar{D}_{0} \bar{D}_{1}\left(2+x \bar{D}_{0}\right)}{\left(1+x \bar{D}_{0}\right)^{2}}+\frac{T_{1}\left(\bar{D}_{1}, x \bar{D}_{0} / \bar{D}_{1}\right)}{2 x \bar{D}_{0}}\right)-1 \\
\bar{D}_{0} & =\frac{2 x^{2} \bar{D}_{0} \bar{D}_{1}\left(y+(1+y) \bar{D}_{0}\right)}{2 x \bar{D}_{1}\left(1+x \bar{D}_{0}\right)(1+y)}\left(1+\bar{D}_{1}\right) \\
& +\frac{x\left(2 y \bar{D}_{1}+(1+y)\left(\bar{D}_{0} T_{0}\left(\bar{D}_{1}, x \bar{D}_{0} / \bar{D}_{1}\right)+T_{1}\left(\bar{D}_{1}, x \bar{D}_{0} / \bar{D}_{1}\right)\right)\right)}{2 x \bar{D}_{1}\left(1+x \bar{D}_{0}\right)(1+y)}\left(1+\bar{D}_{1}\right)
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& \bar{D}_{0}(x, y)=\bar{D}_{00}(x)+\bar{D}_{01}(x) \bar{Y}+\bar{D}_{02}(x) \bar{Y}^{2} \log \bar{Y}+O\left(\bar{Y}^{2}\right), \\
& \bar{D}_{1}(x, y)=\bar{D}_{10}(x)+\bar{D}_{11}(x) \bar{Y}+\bar{D}_{12}(x) \bar{Y}^{2} \log \bar{Y}+O\left(\bar{Y}^{2}\right),
\end{aligned}
$$

with

$$
\bar{Y}=1-\frac{y}{\bar{y}_{0}(x)}
$$

and a proper function $\bar{y}_{0}(x)$.

Tree-rooted 2-connected planar graphs

With the relation

$$
\begin{aligned}
B_{y}(x, y) & =\frac{x^{2}}{2} \\
& +\frac{x^{2}}{2(1+y)}\left(\bar{D}_{0}(x, y)+\bar{D}_{1}(x, y)-2 y-y \exp \left(\bar{S}_{1}(x, y)+\bar{H}_{1}(x, y)\right)+y\right)
\end{aligned}
$$

we obtain

$$
B_{y}(x, y)=\bar{B}_{0}(x)+\bar{B}_{1}(x) \bar{Y}+\bar{B}_{2}(x) \bar{Y}^{2} \log \bar{Y}+O\left(\bar{Y}^{2}\right)
$$

with $\bar{Y}=1-y / \bar{y}(x)$ and (after integrating, differentiating and switching between the expansions with respect to y and x)

$$
B_{x}(x, y)=B_{0}^{*}(y)+B_{1}^{*}(y) \bar{X}+B_{2}^{*}(y) \bar{X}^{2} \log \bar{X}+O\left(\bar{X}^{2}\right)
$$

with

$$
\bar{X}=1-\frac{x}{\bar{x}_{0}(y)}
$$

Tree-rooted connected planar graphs

With the relation

$$
x C_{x}(x, y)=x \exp \left(B_{x}\left(x C_{x}(x, y), y\right)\right)
$$

we obein

$$
C_{x}(x, y)=C_{0}^{*}(y)+C_{1}^{*}(y) \tilde{X}+C_{2}^{*}(y) \tilde{X}^{2} \log \tilde{X}+O\left(\tilde{X}^{2}\right)
$$

where

$$
\tilde{X}=1-\frac{x}{\tilde{x}_{0}(y)}
$$

and $\tilde{x}_{0}(y)$ satisfies

$$
\tilde{x}_{0}(y) C^{\prime}\left(x_{0}(y), y\right)=\bar{x}_{0}(y)
$$

Tree-rooted connected planar graphs

This leads finally to

$$
C(x, y)=C_{0}(y)+C_{1}(y) \tilde{X}+C_{2}(y) \tilde{X}^{2}+C_{3}(y) \tilde{X}^{3} \log \tilde{X}+O\left(\tilde{X}^{3}\right)
$$

and consequently to

$$
C_{n}=n!\left[x^{n}\right] C(x, 1) \sim \bar{c} n^{-4} x_{0}(1)^{-n} n!
$$

Thank You!

