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Planar Maps

A planar map is a connected planar graph, possibly with loops and

multiple edges, together with an embedding in the plane.

A map is rooted if a vertex v and an edge e incident with v are dis-

tinguished, and are called the root-vertex and root-edge, respectively.

The face to the right of e is called the root-face and is usually taken

as the outer face.



Planar Maps

mn ... number of rooted planar maps with n edges [Tutte]

mn =
2(2n)!

(n+ 2)!n!
3n

The proof is given with the help of generating functions and the so-

called quadratic method.

Asymptotics:

mn ∼
2
√
π
· n−5/2 12n

Generating Function:

m(z) =
∑
n≥0

mnz
n = −

1

54z2

(
1− 18z − (1− 12z)3/2

)



Tree Rooted Planar Maps

A tree rooted planar map is a planar map with a distinguished

spanning tree.



Tree Rooted Planar Maps

Counting Result by Mullin (1967)

Mn,k ... number of tree-rooted maps with n edges and k + 1 vertices:

Mn,k =
(2n)!

k!(k + 1)!(n− k)!(n− k + 1)!

Mn ... number of tree-rooted maps with n edges:

Mn =
n∑

k=0

Mn,k =
(2n)!

((n+ 1)!)2

n∑
k=0

(n+ 1

k

)(n+ 1

n− k

)

=
(2n)!

((n+ 1)!)2

(2n+ 2

n

)
= CnCn+1 ∼

42n+1

πn3

where Cn = 1
n+1

(
2n
n

)
denotes the n-th Catalan number

[Natural bijection to pairs of trees by Bernaradi 2007]



Tree Rooted Planar Maps

Expected number of spanning trees

The average number of spanning trees in planar maps of size n

=
Mn

mn
=
CnCn+1
2·3n
n+2Cn

∼
2
√
πn

(
4

3

)n



Tree Rooted Planar Maps

Generating Functions

M(s, t) =
∑
n,k

Mn,ks
ntk =

∑
n,k

(2n)!

k!(k + 1)!(n− k)!(n− k + 1)!
sntk

M(s,1) =
∑
n≥0

CnCn+1s
n = 3F2

(
1

2
,1,

3

2
; 2,3; 16s

)
.

(3F2 ... hypergeometric series)



Tree Rooted Planar Maps

Generating Functions

M0(s, t) ... GF for tree-rooted maps, where the root edge is not con-

tained in the spanning tree

M1(s, t) ... GF for tree-rooted maps, where the root edge is contained

in the spanning tree

M0(s, t) = 1 +
∑
n≥1

n∑
k=0

(
1−

k

n

)
(2n)!

k!(k + 1)!(n− k)!(n− k + 1)!
sntk,

M1(s, t) =
∑
n≥1

n∑
k=0

k

n

(2n)!

k!(k + 1)!(n− k)!(n− k + 1)!
sntk.

M(s, t) = M0(s, t) +M1(s, t)

M0(s,1) = 1 +M1(s,1).



Vertex Labelled Planar Graphs

Asymptotic number of planar graphs

Theorem [Gimenez-Noy]

Let cn denote the number of connected vertex labelled planar graphs
with n vertices. Then we have

cn ∼ c n−7/2 γn n!

with (analytically describable) c ≈ 0.41043 · 10−5 and γ ≈ 27.2268.
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Tree Rooted Vertex Labelled Planar Graphs

THEOREM [D+Noy+Requilé+Rué]

Let Cn denote the number of vertex-labeled connected and tree-rooted

planar graphs with n vertices. Then we have

Cn ∼ c n−4 γn n! ,

where the constants c > 0 and γ > γ can be numerically calculated to

any given precision.

Hence, the average number of spanning trees in planar graphs of

size n

=
Cn

cn
∼

c/c
√
n

(
γ

γ

)n



Strategy of the Proof

connected planar maps                connected planar graphs

2-connected planar maps             2-connected planar graphs

3-connected planar maps     =    3-connected planar graphs



Tree Rooted 2-Connected Planar Maps

N(z, t) ... GF of tree rooted 2-connected planar maps

Lemma

M(s, t) = 1 + s(1 + t)M(s, t)2 + N(sM(s, t)2, t)



Tree Rooted 2-Connected Planar Maps

N0(z, t) ... GF for 2-connected tree-rooted maps, where the root edge

is not contained in the spanning tree

N1(z, t) ... GF for 2-connected tree-rooted maps, where the root edge

is contained in the spanning tree

Lemma

M0(s, t) = 1 + sM(s, t)2 +N0(sM(s, t)2, t),

M1(s, t) = tsM(s, t)2 +N1(sM(s, t)2, t).



Tree Rooted 3-Connected Planar Maps

T0(u, v) ... GF for 3-connected tree-rooted maps, where the root edge

is not contained in the spanning tree

T1(u, v) ... GF for 3-connected tree-rooted maps, where the root edge

is contained in the spanning tree

Lemma

D0 = z +
tD2

0

1 + tD0
+
D0D1(D1 + 2)

(1 +D1)2
+
T0(D1, tD0/D1)

tD1
,

D1 = z +
tD0D1(tD0 + 2)

(1 + tD0)2
+

D2
1

1 +D1
+
T1(D1, tD0/D1)

tD0
,

where D0(z, t) = N0(z, t)/(tz) and D1(z, t) = N1(z, t)/(tz).



Tree Rooted 3-Connected Planar Maps

By Tutte-decomposition:

D0 = z + S0 + P0 +H0,

D1 = z + S1 + P1 +H1,

S0 = tD0(D0 − S0),

S1 = tD0(D1 − S1) + tD1(D0 − S0),

P0 =
D0 − P0

(1− (D1 − P1))2
− (D0 − P0),

P1 =
(D1 − P1)2

1− (D1 − P1)
,

H0 =
T0(D1, tD0/D1)

tD1
,

H1 =
T1(D1, tD0/D1)

tD0
.



Tree-rooted 3-connected planar graphs

By Whitney’s theorem, tree-rooted 3-connected planar graphs have

a unique embedding into the plane. Therefore they coincide with

tree-rooted 3-connected planar maps.

connected planar maps                connected planar graphs

2-connected planar maps             2-connected planar graphs

3-connected planar maps     =    3-connected planar graphs



Tree-rooted 2-connected planar networks

D0(x, y) ... GF for 2-connected “tree-rooted” planar networks, where

only the north pole is not contained in the spanning tree

D1(x, y) ... GF for 2-connected tree-rooted planar networks

Lemma

D1 = (1 + y) exp

(
xD0D1(2 + xD0)

(1 + xD0)2
+
T1(D1, xD0/D1)

2xD0

)
− 1

D0 =
2x2D0D1(y + (1 + y)D0)

2xD1(1 + xD0)(1 + y)
(1 +D1)

+
x(2yD1 + (1 + y)(D0T0(D1, xD0/D1) + T1(D1, xD0/D1)))

2xD1(1 + xD0)(1 + y)
(1 +D1)



Tree-rooted 2-connected planar networks

By Tutte-decomposition:

D0 = y + S0 + P0 +H0,

D1 = y + S1 + P1 +H1,

S0 = xD0(D0 − S0),

S1 = xD0(D1 − S1) + xD1(D0 − S0),

P0 = y
(
exp(S1 +H1)− 1

)
+ (S0 +H0)

(
(y + 1) exp(S1 +H1)− 1

)
,

P1 = y
(
exp(S1 +H1)− 1

)
+ exp(S1 +H1)− 1− (S1 +H1),

H0 =
T0(D1, tD0/D1)

2xD1
,

H1 =
T1(D1, tD0/D1)

2xD0
.



Tree-rooted 2-connected planar graphs

B(x, y) ... GF for 2-connected tree-rooted planar graphs

Lemma

By(x, y) =
x2

2

+
x2

2(1 + y)

(
D0(x, y) +D1(x, y)− 2y − y exp(S1(x, y) +H1(x, y)) + y

)
,

where

S1(x, y) =
xD0(x, y)D1(x, y)(2 + xD0(x, y))

(1 + xD0(x, y))2
,

H1(x, y)) = log
1 +D1(x, y))

1 + y
−
xD0(x, y)D1(x, y)(2 + xD0(x, y))

(1 + xD0(x, y))2
.



Tree-rooted connected planar graphs

C(x, y) ... GF for connected tree-rooted planar graphs

Lemma

xCx(x, y) = x exp (Bx(xCx(x, y), y)) .

B° B°

B°

xC°
xC°

xC°xC°

xC°
xC°

xC°



Strategy of the Proof

connected planar maps                connected planar graphs

2-connected planar maps             2-connected planar graphs

3-connected planar maps     =    3-connected planar graphs



Tree-rooted connected planar maps

Lemma

M(s, t) = M(s0(t), t)− s0(t)Ms(s0(t), t)(1− s/s0(t))

+
(1 +

√
t)3

4πt5/4
(1− s/s0(t))2 log

1

1− s/s0(t)
+O

(
(1− s/s0(t))2

)
,

where s0(t) = 1/(4(1 +
√
t)2) is the dominating singularity of the map-

ping s→M(s, t).

For later use we use the notation

M(s, t) = M0(t) +M1(t)S +M2(t)S2 logS +O(S2)

with S = 1− s/s0(t) , M0(t) = M(s0(t), t) etc.

Remark. There are similar expansions for M0(s, t) and M1(s, t).



Tree-rooted connected planar maps

Integral representation

sM(s, t) =
∑
n,k

(2n)!

k!(k + 1)!(n− k)!(n− k + 1)!
sn+1tk

=
∑
n≥0

Cn

n+ 1

1

2πi

∫
|w|=1/

√
t

(
(1 + tw)(1 + w)

w
s

)n+1

dw

=
1

2πi

∫
|w|=1/

√
t

log

1 +

√
1− 4

(1 + tw)(1 + w)

w
s



−

√
1− 4

(1 + tw)(1 + w)

w
s

 dw,

+ asymptotic analysis of the integral for s ≈ s0(t) = 1/(4(1 +
√
t)2)



Tree-rooted 2-connected planar maps

Asymptotic Transfer

Lemma

Suppose that Y is a complex variable that varies in a region of the
form

R := {z ∈ C : |z| < η, | arg(z)| < π − ϕ}

for some η > 0 and some ϕ with 0 < ϕ < π
2 and that Y is related with

X by

X = aY + bY 2 logY +O(Y 2) (Y → 0, Y ∈ R),

where a and b are non-zero and | arg(a)| < ϕ. Then there exist η′ > 0
and ϕ′ with 0 < ϕ < π

2 such that the above relation can be uniquely
inverted for X ∈ R′ = {z ∈ C : |z| < η′, | arg(z)| < π − ϕ′} and we have

Y =
1

a
X −

b

a3
X2 logX +O(X2) (X → 0, X ∈ R′).

Proof by bootstrapping.



Tree-rooted 2-connected planar maps

Application to M(s, t) = 1 + s(1 + t)M(s, t)2 +N(sM(s, t)2, t)

M(s, t) gets singular for s = s0(t) = 1/(4(1 +
√
t)2) and we have

M(s, t) = M0(t) +M1(t)S +M2(t)S2 logS +O(S2)

with S = 1− s/s0(t) , M0(t) = M(s0(t), t) etc.

Hence, N(z, t) gets singular for z = s0(t)M(s0(t), t)2

Setting

z = sM(s, t)2.

we obtain

N(z, t) = −1− (1 + t)z +M(s, t) .



Tree-rooted 2-connected planar maps

We set

Z = 1−
z

s0(t)M(s0(t), t)2

which gives

z = s0(t)M(s0(t), t)2(1− Z).

Hence we obtain

sM(s, t)2 = s0(t)(1− S)
(
M2

0 + 2M0M1S + 2M0M2S
2 logS +O(S2)

)
= s0(t)M2

0 + s0(t)M0(2M1 −M0)S + 2s0(t)M0M2S
2 logS +O(S2)

or

Z = 1−
sM(s, t)2

s0(t)M2
0

= −
2M1 −M0

M0
S −

2M2

M0
S2 logS +O(S2) .



Tree-rooted 2-connected planar maps

Hence, a direct application of the previous Lemma gives

S = −
M0

2M1 −M0
Z −

2M2
0M2

(2M1 −M0)3
Z2 logZ +O(Z2) .

This also leads to the relation

M(s, t) = M0 +M1S +M2S
2 logS +O(S2)

= M0 +M1

(
−

M0

2M1 −M0
Z −

2M2
0M2

(2M1 −M0)3
Z2 logZ

)

+M2
M2

0

(2M1 −M0)2
Z2 logZ +O(Z2)

= M0 −
M0M1

2M1 −M0
Z −

M3
0M2

(2M1 −M0)3
Z2 logZ +O(Z2) .



Tree-rooted 2-connected planar maps

Summing up we have

N(z, t) = −1− (1 + t)s0(t)M2
0 (1− Z) +M(s, t)

= (M0 − 1− (1 + t)s0(t)M2
0 ) +

(
(1 + t)s0(t)M2

0 −
M0M1

2M1 −M0

)
Z

−
M3

0M2

(2M1 −M0)3
Z2 logZ +O(Z2)

= N0 +N1Z +N2Z
2 logZ +O(Z2)

with

N0 = N0(t) = M0 − 1− (1 + t)s0(t)M2
0 ,

N1 = N1(t) = (1 + t)s0(t)M2
0 −

M0M1

2M1 −M0
,

N2 = N2(t) = −
M3

0M2

(2M1 −M0)3
.



Tree-rooted 2-connected planar maps

Similarly we obtain

N0(z, t) = N00 +N01Z +N02Z
2 logZ +O(Z2),

N1(z, t) = N10 +N11Z +N12Z
2 logZ +O(Z2)

with Nij = Nij(t) and

Z = 1−
z

s0(t)M(s0(t), t)2



Tree-rooted 3-connected planar maps

With the relations (where D0 = N0/(zt) and D1 = N1/(tz))

D0 = z +
xD2

0

1 + xD0
+
D0D1(D1 + 2)

(1 +D1)2
+
T0(D1, xD0/D1)

xD1
,

D1 = z +
xD0D1(xD0 + 2)

(1 + xD0)2
+

D2
1

1 +D1
+
T1(D1, xD0/D1)

xD0
.

we obtain

T0(u, v) = T00(v) + T01(v)U + T02(v)U2 logU +O(U2),

T1(u, v) = T10(v) + T11(v)U + T12(v)U2 logU +O(U2)

with

U = 1−
u

u0(v)

and a proper function u0(v).



Tree-rooted 2-connected planar networks

With the relations

D1 = (1 + y) exp

(
xD0D1(2 + xD0)

(1 + xD0)2
+
T1(D1, xD0/D1)

2xD0

)
− 1

D0 =
2x2D0D1(y + (1 + y)D0)

2xD1(1 + xD0)(1 + y)
(1 +D1)

+
x(2yD1 + (1 + y)(D0T0(D1, xD0/D1) + T1(D1, xD0/D1)))

2xD1(1 + xD0)(1 + y)
(1 +D1)

we obtain

D0(x, y) = D00(x) +D01(x)Y +D02(x)Y 2 logY +O(Y 2),

D1(x, y) = D10(x) +D11(x)Y +D12(x)Y 2 logY +O(Y 2),

with

Y = 1−
y

y0(x)

and a proper function y0(x).



Tree-rooted 2-connected planar graphs

With the relation

By(x, y) =
x2

2

+
x2

2(1 + y)

(
D0(x, y) +D1(x, y)− 2y − y exp(S1(x, y) +H1(x, y)) + y

)
,

we obtain

By(x, y) = B0(x) +B1(x)Y +B2(x)Y 2 logY +O(Y 2),

with Y = 1−y/y(x) and (after integrating, differentiating and switching

between the expansions with respect to y and x)

Bx(x, y) = B∗0(y) +B∗1(y)X +B∗2(y)X2 logX +O(X2),

with

X = 1−
x

x0(y)



Tree-rooted connected planar graphs

With the relation

xCx(x, y) = x exp (Bx(xCx(x, y), y))

we obein

Cx(x, y) = C∗0(y) + C∗1(y)X̃ + C∗2(y)X̃2 log X̃ +O(X̃2),

where

X̃ = 1−
x

x̃0(y)

and x̃0(y) satisfies

x̃0(y)C′(x0(y), y) = x0(y).



Tree-rooted connected planar graphs

This leads finally to

C(x, y) = C0(y) + C1(y)X̃ + C2(y)X̃2 + C3(y)X̃3 log X̃ +O(X̃3)

and consequently to

Cn = n![xn]C(x,1) ∼ c n−4 x0(1)−n n!



Thank You!


