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An overview of our results
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Table: Mean of various statistics in the conjugacy class Cλ and in Sn.
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The symmetric group Sn

We represent elements using the following notation:

two-line one-line cycle

123
123 123 (1)(2)(3)

123
213 213 (12)(3)

123
132 132 (1)(23)

123
321 321 (13)(2)

123
231 231 (123)

123
312 312 (132)

Sometimes we include commas in the cycle notation or remove 1-cycles.



Statistics on ω ∈ Sn

An inversion is any pair (i , j) with i < j and ω(i) > ω(j).
A descent is any pair (i , i + 1) with ω(i) > ω(i + 1).
Denote the number of descents and inversions as des(ω) and inv(ω).

ω descents des(ω) inversions inv(ω)

123 ∅ 0 ∅ 0

213 {(1, 2)} 1 {(1, 2)} 1

132 {(2, 3)} 1 {(2, 3} 1

321 {(1, 2), (2, 3)} 2 {(1, 2), (1, 3), (2, 3)} 3

231 {(2, 3)} 1 {(1, 3), (2, 3)} 2

312 {(1, 2)} 1 {(1, 2), (1, 3)} 2



These permutation statistics have been studied extensively on the entire
symmetric group Sn.

The generating function, expected value, and variance of des are due to Riordan,
while the generating function and expected value of inv are due to Rodrigues.

The Eulerian statistics exc and des are equidistributed over Sn, with a bijective
proof via the first fundamental transformation. The Mahonian statistics maj and
inv are equidistributed over Sn, with a bijective proof via the second fundamental
transformation.



Mean number of descents and inversions

Question
What is the mean number of descents and inversions in Sn?



Mean number of descents and inversions

Interchanging the image of i and j maps permutations that have an inversion at
(i , j) to ones that do not.

Example

For i = 1 and j = 3 in S3,

123 ↔ 321 213 ↔ 312 132 ↔ 231.

Conclusion: half of the elements in Sn have the inversion (i , j).

Summing over all (i , i + 1) or (i , j), the mean number of descents is 1
2 (n − 1) and

the mean number of inversions is 1
2

(
n
2

)
.



Mean number of descents and inversions

Question
What is the mean number of descents and inversions in a conjugacy class of Sn?

Note that the interchanges

123 ↔ 321 213 ↔ 312 132 ↔ 231

do not preserve conjugacy class, e.g., consider the identity permutation.



Mean number of descents and inversions

Question
What is the mean number of descents and inversions in a conjugacy class of Sn?

Note that the interchanges

123 ↔ 321 213 ↔ 312 132 ↔ 231

do not preserve conjugacy class, e.g., consider the identity permutation.



Conjugacy class of Sn

Fact
Two elements are in the same conjugacy class if and only if they have the same
cycle type. Hence, conjugacy classes Cλ are indexed by partitions
λ = (1a1 , 2a2 , . . . , nan) of n.

λ Cλ des inv

(13) (1)(2)(3) 0 0

(11, 21) (12)(3), (1)(23), (13)(2) 1, 1, 2 1, 1, 3

(31) (123), (132) 1, 1 2, 2



Statistics in conjugacy class Cλ

Theorem (Fulman ’98)

Let Cλ be the conjugacy class of Sn with cycle type λ = (1a1 , 2a2 , . . . , nan).

1 The mean number of descents in Cλ is

n − 1

2
+

a2 −
(
a1
2

)
n

.

2 When a1 = a2 = · · · = a2ℓ = 0, the ℓth moment is independent of λ, i.e. only
a function of n.

Theorem (Hultman ’14)

Let Cλ be the conjugacy class of Sn with cycle type λ = (1a1 , 2a2 , . . . , nan). The
mean number of inversions in Cλ is

3n2 − n + 2a2 − a21 + a1 − 2na1
12

.



Mean number of inversions when λ = (10, 20, 3a3, . . . , nan)

Ii,j := indicator function that is 1 when (i , j) is an inversion and 0 otherwise.

Decompose

Eλ[inv] =
∑

1≤i<j≤n

Eλ[Ii,j ] =
∑

1≤i<j≤n

Pλ[Ii,j(ω) = 1].

It suffices to calculate for any i < j , Pλ[Ii,j(ω) = 1].



Mean number of inversions when λ = (10, 20, 3a3, . . . , nan)

Partition Cλ into

Ω1 = {ω ∈ Cλ : ω(i) ̸= j and ω(j) ̸= i},
Ω2 = {ω ∈ Cλ : ω(i) = j}, Ω3 = {ω ∈ Cλ : ω(j) = i}.

Ii,j = 1

Ii,j = 0

Ii,j = 0

Ii,j = 1

Ii,j = 1

Ii,j = 0

Ω1 Ω2 Ω3

Cλ :

By the law of total probability,

Pλ[Ii,j(ω) = 1] =
3∑

k=1

Pλ[ω ∈ Ωk ] · Pλ[Ii,j(ω) = 1|ω ∈ Ωk ].



Mean number of inversions when λ = (10, 20, 3a3, . . . , nan)

ω(i), ω(j) /∈ {i , j} ω(i) = j ω(j) = i

Pλ[ω ∈ Ω1] = 1− 2
n−1

Pλ[ω ∈ Ω2] =
1

n−1

Pλ[ω ∈ Ω3] =
1

n−1

Claim: Cλ :

Main idea for Ω2 and Ω3: group up elements in Cλ by the image of i or j .



Mean number of inversions when λ = (10, 20, 3a3, . . . , nan)

Fact
Let σ, τ be elements in Sn and suppose σ has cycle decomposition

(b1, b2, . . . , bk1), (c1, c2, . . . , ck2), . . . .

Then τστ−1 has cycle decomposition

(τ(b1), τ(b2), . . . , τ(bk1)), (τ(c1), τ(c2), . . . , τ(ck2)), . . . .

Claim: Pλ[ω ∈ Ω2] = Pλ[ω(i) = j ] = 1
n−1 .

Conjugating by τ = (i)(1, 2, . . . , i − 1, i + 1, . . . , n) induces bijections between

{ω ∈ Cλ : ω(i) = 1}︸ ︷︷ ︸
contains (i,1,... )

↔ {ω ∈ Cλ : ω(i) = 2}︸ ︷︷ ︸
contains (i,2,... )

↔ . . . ↔ {ω ∈ Cλ : ω(i) = n}︸ ︷︷ ︸
contains (i,n,... )

.



Mean number of inversions when λ = (10, 20, 3a3, . . . , nan)
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Mean number of inversions when λ = (10, 20, 3a3, . . . , nan)

ω(i), ω(j) /∈ {i , j} ω(i) = j ω(j) = i

Pλ[ω ∈ Ω1] = 1− 2
n−1

Pλ[ω ∈ Ω2] =
1

n−1

Pλ[ω ∈ Ω3] =
1

n−1

Cλ :

Pλ[Ii,j(ω) = 1] =
3∑

k=1

Pλ[ω ∈ Ωk ]︸ ︷︷ ︸
know

·Pλ[Ii,j(ω) = 1|ω ∈ Ωk ]︸ ︷︷ ︸
?????

.



Mean number of inversions when λ = (10, 20, 3a3, . . . , nan)

When ω(i), ω(j) /∈ {i , j}, conjugation by (ij) interchanges the images of i and j :

(i , b2, . . . , j , . . . , bk1) . . . ↔ (j , b2, . . . , i , . . . , bk1) . . . .

(i , b2, . . . , bk1)(j , c2, . . . , ck2) . . . ↔ (j , b2, . . . , bk1)(i , c2, . . . , ck2) . . . .

Mean number of inversions when λ= (10,20,3a3 . . . ,nan)

When ω(i),ω(j) ∉ {i , j}, conjugation by (ij) interchanges the images of i and j :

(i ,b2, . . . , j , . . . ,bk1) . . . ↔ (j ,b2, . . . , i , . . . ,bk1) . . .

(i ,b2, . . . ,bk1)(j ,c2, . . . ,ck2) . . . ↔ (j ,b2, . . . ,bk1)(i ,c2, . . . ,ck2) . . .

Ω1 :ω(i),ω(j) ∉ {i , j}

ω(i)>ω(j)

ω(i)<ω(j)

We conclude that Pλ[Iij (ω)= 1|ω ∈Ω1]= 1
2 .

Kevin Liu (UW Mathematics) Permutation Statistics USTARS 2023

Ω1 : ω(i), ω(j) /∈ {i , j}

We conclude that Pλ[Ii,j(ω) = 1|ω ∈ Ω1] =
1
2 .



Mean number of inversions when λ = (10, 20, 3a3, . . . , nan)

For Ω2 and Ω3, use conjugation by

(i)(j)(1, 2, . . . , i − 1, i + 1, . . . , j − 1, j + 1, . . . , n).

Mean number of inversions when λ= (10,20,3a3 . . . ,nan)

For Ω2 and Ω3, use conjugation by (i)(j)(1,2, . . . , i −1, i +1, . . . , j −1, j +1, . . . ,n).

Ω2 : i 7→ j

i 7→ j 7→ n

i 7→ j 7→ 1
i 7→ j 7→ 2
i 7→ j 7→ 3

...
...

Ω3 : j 7→ i

j 7→ i 7→ n

j 7→ i 7→ 1
j 7→ i 7→ 2
j 7→ i 7→ 3

...
...

Consequently, Pλ[Iij (ω)= 1|ω ∈Ω2]= j−2
n−2 and Pλ[Iij (ω)= 1|ω ∈Ω3]= n−i−1

n−2

Kevin Liu (UW Mathematics) Permutation Statistics USTARS 2023

Consequently,

Pλ[Ii,j(ω) = 1|ω ∈ Ω2] =
j − 2

n − 2
and

Pλ[Ii,j(ω) = 1|ω ∈ Ω3] =
n − i − 1

n − 2
.



Mean number of inversions when λ = (10, 20, 3a3, . . . , nan)

Combined,

Pλ[Ii,j(ω) = 1] =
1

2
+

j − i − 1

(n − 1)(n − 2)
,

and summing over all 1 ≤ i < j ≤ n,

Eλ[inv] =
3n2 − n

12
.



Mean number of inversions for any Cλ

Observation

A generalization of this technique allows us to calculate Pλ[Ii,j(ω) = 1] for any λ.

Theorem (Campion Loth, Levet, Liu, Sundaram, Y. ’23)

The mean of
∑

1≤i<j≤n ci,j Ii,j on Cλ is given by:

(
n2 − n + 2a2 − a21 + a1

2n(n − 1)

) ∑
1≤i<j≤n

ci,j

+

(
n − (n + 1)a1 + a21 − 2a2

n(n − 1)(n − 2)

) ∑
1≤i<j≤n

(j − i − 1)ci,j .



The signed symmetric group Bn

The signed symmetric group (or hyperoctahedral group) Bn is the set of
permutations of {±1,±2, . . . ,±n} satisfying ω(−i) = −ω(i).

Example

Consider the following element of B8, written in two-line, one-line and cycle
notation.

ω =

(
1 2 3 4 5 6 7 8
+2 +7 −1 −5 +8 +3 +6 −4

)
= [2, 7,−1,−5, 8, 3, 6,−4] = (−5, 8,−4)(2, 7, 6, 3,−1).

Its cycles are then (−5, 8,−4) and (2, 7, 6, 3,−1), which are respectively an even
cycle of length 3 and an odd cycle of length 5. Thus, its cycle type is
(λ, µ) = ((3), (5)). We have m3(λ) = m5(µ) = 1, and all other mi (λ) and mi (µ)
are 0.



Descents over Bn

The descent statistic (see Björner and Brenti) may be calculated by

desB(ω) = |{i ∈ {0} ∪ [n − 1] | ω(i) > ω(i + 1)}|,

with the convention that ω(0) = 0.

Theorem (Chow and Mansour ’12)

Let Xn be desB defined on Bn. Then Xn has mean n/2 and variance (n + 1)/12,
and as n → ∞, the standardized random variable (Xn − n/2)/

√
(n + 1)/12

converges to a standard normal distribution.



Descents in conjugacy class Cλ,µ

The following results are from Campion Loth, Levet, Liu, Sundaram, Y. ’23.

Theorem

Let ∆2(λ, µ) = m1(λ)
2 −m1(µ)

2. Let Bn(t) =
∑

ω∈Bn
tdesB (ω)+1 and

Bλ,µ(t) =
∑

ω∈Cλ,µ
tdesB (ω)+1. Then

Bλ,µ(t)

|Cλ,µ|
=

Bn(t)

2nn!
+

1− t

2n

Bn−1(t)

2n−1(n − 1)!
∆2(λ, µ) + (1− t)2g(t),

where g(t) is some polynomial in t.

Corollary

Differentiating with respect to t and setting t = 1, we obtain the first moment of
descents in the conjugacy class Cλ,µ:

Eλ,µ[desB ] =
n

2
− ∆2(λ, µ)

2n
.



Theorem
Fix ℓ ≥ 0. Suppose that all cycles in Cλ,µ have length greater than 2ℓ. Then

Bλ,µ(t)

|Cλ,µ|
=

Bn(t)

2nn!
+ (1− t)ℓ+1g(t),

where g(t) is some polynomial in t.

Theorem (Central Limit Theorem)

For every n ≥ 1, pick a conjugacy class C(λn,µn) in Bn indexed by the bi-partition
(λn, µn) of n. Let Xn be desB defined on C(λn,µn). Suppose that for all i ,
mi (λn) → 0 and mi (µn) → 0 as n → ∞. Then for sufficiently large n, Xn has
mean n/2 and variance (n + 1)/12. Furthermore, as n → ∞, the standardized
random variable (Xn − n/2)/

√
(n + 1)/12 converges to a standard normal

distribution.



Outline of proof

1. Recall a generating function from Fulman, Kim, Lee, Petersen ’12:

∑
n≥0

un

(1− t)n+1

(∑
ω∈Bn

tdesB (ω)+1
∏
i

x
mi (λ(ω))
i y

mi (µ(ω))
i

)

= 1 +
∑
k≥1

tk
1

1− x1u

∏
m≥1

(
1 + ymu

m

1− xmum

)N(2k−1,2m)

.

Here

N(2k − 1, 2m) =
1

2m

∑
d|m
d odd

µ(d)
(
(2k − 1)m/d − 1

)
,

and µ(d) is the number-theoretic Möbius function, with µ(1) = 1, µ(n) = (−1)k

if n is the product of k different primes; otherwise µ(n) = 0.



2. We set u = 1 in the generating function and extract the coefficients of xi and
yi for all i . This gives

Bλ,µ(t) =
∑

ω∈Cλ,µ

tdesB (ω)+1

=
∑
k≥1

tk
m1(λ) + k − 1

k − 1

∏
i≥1

(
mi (λ) + N(2k − 1, 2i)− 1

mi (λ)

)(
N(2k − 1, 2i)

mi (µ)

)
.

3. Recall an expansion result from Steingŕımsson ’94:

Bn(t) = (1− t)n+1
∑
k≥1

(2k − 1)ntk .

Performing asymptotic expansion on Bλ,µ(t) thus involves checking different
powers of (2k − 1) in the expression.



4. The argument is technical and requires use of Stirling numbers of the first kind
s in, whose absolute value is the number of permutations of n elements with i
disjoint cycles. Showing one step here:(

N(2k − 1, 2i) +mi (λ)− 1

mi (λ)

)(
N(2k − 1, 2i)

mi (µ)

)

=

∑mi (λ)
a=1 |sami (λ)

|(N(2k − 1, 2i))a

mi (λ)!

∑mi (µ)
b=1 sbmi (µ)

(N(2k − 1, 2i))b

mi (µ)!
.

5. When all cycles have length greater than 2ℓ, as a polynomial in (2k − 1), the
leading term remains to be (2k − 1)n, but the second highest-degree term is at
most (2k − 1)n−ℓ−1. This is because a lower order term must have either some
a ̸= mi (λ) or some b ̸= mi (µ) or some d ̸= 1 in the expansion above. This implies
that the ℓth moment of desB in Cλ,µ is equal to the ℓth moment of desB in Bn

when all cycles in Cλ,µ have length greater than 2ℓ. Asymptotic normality readily
follows from the method of moments.



Thank You! Questions?


