Permutation statistics in conjugacy classes of the symmetric group

Mei Yin ${ }^{1}$
Department of Mathematics, University of Denver

June 27, 2023

[^0]
An overview of our results

statistic	$\lambda=\left(1^{a_{1}} 2^{a_{2}} \ldots\right) \vdash n$	$\lambda_{i} \geq 3 \forall i$	$\lambda=\left(1^{a_{1}} 2^{a_{2}}\right)$	$\lambda=\left(2^{a_{2}}\right)$	All of S_{n}
des	$\frac{n^{2}-n+2 a_{2}-a_{1}^{2}+a_{1}}{2 n}$	$\frac{n-1}{2}$	$\frac{n^{2}-a_{1}^{2}}{2 n}$	$\frac{n}{2}$	$\frac{n-1}{2}$
maj	$\frac{n^{2}-n+2 a_{2}-a_{1}^{2}+a_{1}}{4}$	$\frac{n(n-1)}{4}$	$\frac{n^{2}-a_{1}^{2}}{4}$	$\frac{n^{2}}{4}$	$\frac{n^{2}-n}{4}$
inv	$\frac{3 n^{2}-n+2 a_{2}-a_{1}^{2}+a_{1}-2 n a_{1}}{12}$	$\frac{n(3 n-1)}{12}$	$\frac{\left(3 n+a_{1}\right)\left(n-a_{1}\right)}{12}$	$\frac{n^{2}}{4}$	$\frac{n^{2}-n}{4}$
baj	$\frac{(n+1)\left(n^{2}-n+2 a_{2}-a_{1}^{2}+a_{1}\right)}{12}$	$\frac{n\left(n^{2}-1\right)}{12}$	$\frac{(n+1)\left(n^{2}-a_{1}^{2}\right)}{12}$	$\frac{n^{2}(n+1)}{12}$	$\frac{1}{4}\binom{n+1}{3}$
baj - inv	$\frac{(n-2)\left(n^{2}-n+2 a_{2}-a_{1}^{2}+a_{1}\right)}{12}$	$\frac{n(n-1)(n-2)}{12}$	$\frac{(n-2)\left(n^{2}-a_{1}^{2}\right)}{12}$	$\frac{n^{2}(n-2)}{12}$	$\frac{1}{4}\binom{n}{3}$
cdes	$\frac{n^{2}-n+2 a_{2}-a_{1}^{2}+3 a_{1}-2}{2(n-1)}$	$\frac{(n+1)(n-2)}{2(n-1)}$	$\frac{n^{2}-a_{1}^{2}+2 a_{1}-2}{2(n-1)}$	$\frac{n^{2}-2}{2(n-1)}$	$\frac{n}{2}$
$\widetilde{\text { exc }}$	$\frac{n+a_{1}}{2}$	$\frac{n}{2}$	$\frac{n+a_{1}}{2}=a_{1}+a_{2}$	$\frac{n}{2}=a_{2}$	$\frac{n+1}{2}$
exc, aexc	$\frac{n-a_{1}}{2}$	$\frac{n}{2}$	$\frac{n-a_{1}}{2}=a_{2}$	$\frac{n}{2}=a_{2}$	$\frac{n-1}{2}$
cdasc, cddes	$\frac{n-a_{1}-2 a_{2}}{6}$	$\frac{n-a_{1}+a_{2}}{3}$	$\frac{n}{3}$	$\frac{n-a_{1}}{2}=a_{2}$	$\frac{n}{2}=a_{2}$
cval, cpk		$\frac{2 n-1}{6}$			

Table: Mean of various statistics in the conjugacy class C_{λ} and in S_{n}.

Acknowledgements

This work began at the 2022 Graduate Research Workshop in Combinatorics, which was supported in part by NSF grant \#1953985 and the Combinatorics Foundation.

Major references in this area:
Enumerative Combinatorics Volumes 1 \& 2 by Richard P. Stanley Combinatorics of Permutations by Miklós Bóna

Acknowledgements

This work began at the 2022 Graduate Research Workshop in Combinatorics, which was supported in part by NSF grant \#1953985 and the Combinatorics Foundation.

Major references in this area:
Enumerative Combinatorics Volumes 1 \& 2 by Richard P. Stanley Combinatorics of Permutations by Miklós Bóna

The symmetric group S_{n}

We represent elements using the following notation:

two-line	one-line	cycle
123 123	123	$(1)(2)(3)$
$\frac{123}{213}$	213	$(12)(3)$
$\frac{123}{132}$	132	$(1)(23)$
$\frac{123}{321}$	321	$(13)(2)$
$\frac{123}{23}$	231	(123)
$\frac{123}{231}$	312	(132)

Sometimes we include commas in the cycle notation or remove 1-cycles.

Statistics on $\omega \in S_{n}$

An inversion is any pair (i, j) with $i<j$ and $\omega(i)>\omega(j)$. A descent is any pair $(i, i+1)$ with $\omega(i)>\omega(i+1)$.
Denote the number of descents and inversions as $\operatorname{des}(\omega)$ and $\operatorname{inv}(\omega)$.

ω	descents	$\operatorname{des}(\omega)$	inversions	$\operatorname{inv}(\omega)$
123	\emptyset	0	\emptyset	0
213	$\{(1,2)\}$	1	$\{(1,2)\}$	1
132	$\{(2,3)\}$	1	$\{(2,3\}$	1
321	$\{(1,2),(2,3)\}$	2	$\{(1,2),(1,3),(2,3)\}$	3
231	$\{(2,3)\}$	1	$\{(1,3),(2,3)\}$	2
312	$\{(1,2)\}$	1	$\{(1,2),(1,3)\}$	2

These permutation statistics have been studied extensively on the entire symmetric group S_{n}.

The generating function, expected value, and variance of des are due to Riordan, while the generating function and expected value of inv are due to Rodrigues.

The Eulerian statistics exc and des are equidistributed over S_{n}, with a bijective proof via the first fundamental transformation. The Mahonian statistics maj and inv are equidistributed over S_{n}, with a bijective proof via the second fundamental transformation.

Mean number of descents and inversions

Question

What is the mean number of descents and inversions in S_{n} ?

Mean number of descents and inversions

Interchanging the image of i and j maps permutations that have an inversion at (i, j) to ones that do not.

Example

For $i=1$ and $j=3$ in S_{3},

$$
123 \leftrightarrow 321 \quad 213 \leftrightarrow 312 \quad 132 \leftrightarrow 231 .
$$

Conclusion: half of the elements in S_{n} have the inversion (i, j).
Summing over all $(i, i+1)$ or (i, j), the mean number of descents is $\frac{1}{2}(n-1)$ and the mean number of inversions is $\frac{1}{2}\binom{n}{2}$.

Mean number of descents and inversions

Question

What is the mean number of descents and inversions in a conjugacy class of S_{n} ?
Note that the interchanges

$$
123 \leftrightarrow 321 \quad 213 \leftrightarrow 312 \quad 132 \leftrightarrow 231
$$

do not preserve conjugacy class, e.g., consider the identity permutation.

Mean number of descents and inversions

Question

What is the mean number of descents and inversions in a conjugacy class of S_{n} ?
Note that the interchanges

$$
123 \leftrightarrow 321 \quad 213 \leftrightarrow 312 \quad 132 \leftrightarrow 231
$$

do not preserve conjugacy class, e.g., consider the identity permutation.

Conjugacy class of S_{n}

Fact

Two elements are in the same conjugacy class if and only if they have the same cycle type. Hence, conjugacy classes C_{λ} are indexed by partitions $\lambda=\left(1^{a_{1}}, 2^{a_{2}}, \ldots, n^{a_{n}}\right)$ of n.

λ	C_{λ}	des	inv
$\left(1^{3}\right)$	$(1)(2)(3)$	0	0
$\left(1^{1}, 2^{1}\right)$	$(12)(3),(1)(23),(13)(2)$	$1,1,2$	$1,1,3$
$\left(3^{1}\right)$	$(123),(132)$	1,1	2,2

Statistics in conjugacy class C_{λ}

Theorem (Fulman '98)

Let C_{λ} be the conjugacy class of S_{n} with cycle type $\lambda=\left(1^{a_{1}}, 2^{a_{2}}, \ldots, n^{a_{n}}\right)$.
(1) The mean number of descents in C_{λ} is

$$
\frac{n-1}{2}+\frac{a_{2}-\binom{a_{1}}{2}}{n}
$$

(2) When $a_{1}=a_{2}=\cdots=a_{2 \ell}=0$, the ℓ th moment is independent of λ, i.e. only a function of n.

Theorem (Hultman '14)

Let C_{λ} be the conjugacy class of S_{n} with cycle type $\lambda=\left(1^{a_{1}}, 2^{a_{2}}, \ldots, n^{a_{n}}\right)$. The mean number of inversions in C_{λ} is

$$
\frac{3 n^{2}-n+2 a_{2}-a_{1}^{2}+a_{1}-2 n a_{1}}{12} .
$$

Mean number of inversions when $\lambda=\left(1^{0}, 2^{0}, 3^{a_{3}}, \ldots, n^{a_{n}}\right)$

$\Lambda_{i, j}:=$ indicator function that is 1 when (i, j) is an inversion and 0 otherwise.
Decompose

$$
\mathbb{E}_{\lambda}[\text { inv }]=\sum_{1 \leq i<j \leq n} \mathbb{E}_{\lambda}\left[I_{i, j}\right]=\sum_{1 \leq i<j \leq n} \mathbb{P}_{\lambda}\left[I_{i, j}(\omega)=1\right] .
$$

It suffices to calculate for any $i<j, \mathbb{P}_{\lambda}\left[l_{i, j}(\omega)=1\right]$.

Mean number of inversions when $\lambda=\left(1^{0}, 2^{0}, 3^{a_{3}}, \ldots, n^{a_{n}}\right)$
Partition C_{λ} into

$$
\begin{gathered}
\Omega_{1}=\left\{\omega \in C_{\lambda}: \omega(i) \neq j \text { and } \omega(j) \neq i\right\} \\
\Omega_{2}=\left\{\omega \in C_{\lambda}: \omega(i)=j\right\}, \quad \Omega_{3}=\left\{\omega \in C_{\lambda}: \omega(j)=i\right\} .
\end{gathered}
$$

By the law of total probability,

$$
\mathbb{P}_{\lambda}\left[I_{i, j}(\omega)=1\right]=\sum_{k=1}^{3} \mathbb{P}_{\lambda}\left[\omega \in \Omega_{k}\right] \cdot \mathbb{P}_{\lambda}\left[I_{i, j}(\omega)=1 \mid \omega \in \Omega_{k}\right]
$$

Mean number of inversions when $\lambda=\left(1^{0}, 2^{0}, 3^{a_{3}}, \ldots, n^{a_{n}}\right)$

Main idea for Ω_{2} and Ω_{3} : group up elements in C_{λ} by the image of i or j.

Mean number of inversions when $\lambda=\left(1^{0}, 2^{0}, 3^{a_{3}}, \ldots, n^{a_{n}}\right)$

Fact

Let σ, τ be elements in S_{n} and suppose σ has cycle decomposition

$$
\left(b_{1}, b_{2}, \ldots, b_{k_{1}}\right),\left(c_{1}, c_{2}, \ldots, c_{k_{2}}\right), \ldots
$$

Then $\tau \sigma \tau^{-1}$ has cycle decomposition

$$
\left(\tau\left(b_{1}\right), \tau\left(b_{2}\right), \ldots, \tau\left(b_{k_{1}}\right)\right),\left(\tau\left(c_{1}\right), \tau\left(c_{2}\right), \ldots, \tau\left(c_{k_{2}}\right)\right), \ldots
$$

Claim: $\mathbb{P}_{\lambda}\left[\omega \in \Omega_{2}\right]=\mathbb{P}_{\lambda}[\omega(i)=j]=\frac{1}{n-1}$
Conjugating by $\tau=(i)(1,2, \ldots, i-1, i+1, \ldots, n)$ induces bijections between

Mean number of inversions when $\lambda=\left(1^{0}, 2^{0}, 3^{a_{3}}, \ldots, n^{a_{n}}\right)$

Fact

Let σ, τ be elements in S_{n} and suppose σ has cycle decomposition

$$
\left(b_{1}, b_{2}, \ldots, b_{k_{1}}\right),\left(c_{1}, c_{2}, \ldots, c_{k_{2}}\right), \ldots
$$

Then $\tau \sigma \tau^{-1}$ has cycle decomposition

$$
\left(\tau\left(b_{1}\right), \tau\left(b_{2}\right), \ldots, \tau\left(b_{k_{1}}\right)\right),\left(\tau\left(c_{1}\right), \tau\left(c_{2}\right), \ldots, \tau\left(c_{k_{2}}\right)\right), \ldots
$$

Claim: $\mathbb{P}_{\lambda}\left[\omega \in \Omega_{2}\right]=\mathbb{P}_{\lambda}[\omega(i)=j]=\frac{1}{n-1}$.
Conjugating by $\tau=(i)(1,2, \ldots, i-1, i+1, \ldots, n)$ induces bijections between

$$
\underbrace{\left\{\omega \in C_{\lambda}: \omega(i)=1\right\}}_{\text {contains }(i, 1, \ldots)} \leftrightarrow \underbrace{\left\{\omega \in C_{\lambda}: \omega(i)=2\right\}}_{\text {contains }(i, 2, \ldots)} \leftrightarrow \ldots \leftrightarrow \underbrace{\left\{\omega \in C_{\lambda}: \omega(i)=n\right\}}_{\text {contains }(i, n, \ldots)} .
$$

Mean number of inversions when $\lambda=\left(1^{0}, 2^{0}, 3^{a_{3}}, \ldots, n^{a_{n}}\right)$

$$
\begin{gathered}
\mathbb{P}_{\lambda}\left[\omega \in \Omega_{2}\right]=\frac{1}{n-1} \\
\begin{array}{|c|c|c|}
\hline C_{\lambda}: & & \\
\hline \omega(i), \omega(j) \notin\{i, j\} & \omega(i)=j & \omega(j)=i \\
& \mathbb{P}_{\lambda}\left[\omega \in \Omega_{1}\right]=1-\frac{2}{n-1} & \mathbb{P}_{\lambda}\left[\omega \in \Omega_{3}\right]=\frac{1}{n-1}
\end{array}
\end{gathered}
$$

$$
\mathbb{P}_{\lambda}\left[I_{i, j}(\omega)=1\right]=\sum_{k=1}^{3} \underbrace{\mathbb{P}_{\lambda}\left[\omega \in \Omega_{k}\right]}_{\text {know }} \cdot \underbrace{\mathbb{P}_{\lambda}\left[I_{i, j}(\omega)=1 \mid \omega \in \Omega_{k}\right]}_{? ? ? ? ?} .
$$

Mean number of inversions when $\lambda=\left(1^{0}, 2^{0}, 3^{a_{3}}, \ldots, n^{a_{n}}\right)$
When $\omega(i), \omega(j) \notin\{i, j\}$, conjugation by $(i j)$ interchanges the images of i and j :

$$
\begin{gathered}
\left(i, b_{2}, \ldots, j, \ldots, b_{k_{1}}\right) \ldots \leftrightarrow\left(j, b_{2}, \ldots, i, \ldots, b_{k_{1}}\right) \ldots \\
\left(i, b_{2}, \ldots, b_{k_{1}}\right)\left(j, c_{2}, \ldots, c_{k_{2}}\right) \ldots \leftrightarrow\left(j, b_{2}, \ldots, b_{k_{1}}\right)\left(i, c_{2}, \ldots, c_{k_{2}}\right) \ldots \\
\begin{array}{|}
\omega(i)<\omega(j) \\
\omega(i)>\omega(j)
\end{array} \\
\Omega_{1}: \omega(i), \omega(j) \notin\{i, j\}
\end{gathered}
$$

We conclude that $\mathbb{P}_{\lambda}\left[I_{i, j}(\omega)=1 \mid \omega \in \Omega_{1}\right]=\frac{1}{2}$.

Mean number of inversions when $\lambda=\left(1^{0}, 2^{0}, 3^{a_{3}}, \ldots, n^{a_{n}}\right)$
For Ω_{2} and Ω_{3}, use conjugation by

$$
(i)(j)(1,2, \ldots, i-1, i+1, \ldots, j-1, j+1, \ldots, n) .
$$

Consequently,

$$
\mathbb{P}_{\lambda}\left[I_{i, j}(\omega)=1 \mid \omega \in \Omega_{2}\right]=\frac{j-2}{n-2}
$$

and

$$
\mathbb{P}_{\lambda}\left[I_{i, j}(\omega)=1 \mid \omega \in \Omega_{3}\right]=\frac{n-i-1}{n-2} .
$$

Mean number of inversions when $\lambda=\left(1^{0}, 2^{0}, 3^{a_{3}}, \ldots, n^{a_{n}}\right)$

Combined,

$$
\mathbb{P}_{\lambda}\left[I_{i, j}(\omega)=1\right]=\frac{1}{2}+\frac{j-i-1}{(n-1)(n-2)},
$$

and summing over all $1 \leq i<j \leq n$,

$$
\mathbb{E}_{\lambda}[\text { inv }]=\frac{3 n^{2}-n}{12}
$$

Mean number of inversions for any C_{λ}

Observation

A generalization of this technique allows us to calculate $\mathbb{P}_{\lambda}\left[I_{i, j}(\omega)=1\right]$ for any λ.

Theorem (Campion Loth, Levet, Liu, Sundaram, Y. '23)

The mean of $\sum_{1 \leq i<j \leq n} c_{i, j} l_{i, j}$ on C_{λ} is given by:

$$
\begin{aligned}
\left(\frac{n^{2}-n+2 a_{2}-a_{1}^{2}+a_{1}}{2 n(n-1)}\right) & \sum_{1 \leq i<j \leq n} c_{i, j} \\
& +\left(\frac{n-(n+1) a_{1}+a_{1}^{2}-2 a_{2}}{n(n-1)(n-2)}\right) \sum_{1 \leq i<j \leq n}(j-i-1) c_{i, j}
\end{aligned}
$$

The signed symmetric group B_{n}

The signed symmetric group (or hyperoctahedral group) B_{n} is the set of permutations of $\{ \pm 1, \pm 2, \ldots, \pm n\}$ satisfying $\omega(-i)=-\omega(i)$.

Example

Consider the following element of B_{8}, written in two-line, one-line and cycle notation.

$$
\begin{aligned}
& \omega=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
+2 & +7 & -1 & -5 & +8 & +3 & +6 & -4
\end{array}\right) \\
&=[2,7,-1,-5,8,3,6,-4]=(-5,8,-4)(2,7,6,3,-1) .
\end{aligned}
$$

Its cycles are then $(-5,8,-4)$ and $(2,7,6,3,-1)$, which are respectively an even cycle of length 3 and an odd cycle of length 5 . Thus, its cycle type is $(\lambda, \mu)=((3),(5))$. We have $m_{3}(\lambda)=m_{5}(\mu)=1$, and all other $m_{i}(\lambda)$ and $m_{i}(\mu)$ are 0 .

Descents over B_{n}

The descent statistic (see Björner and Brenti) may be calculated by

$$
\operatorname{des}_{B}(\omega)=|\{i \in\{0\} \cup[n-1] \mid \omega(i)>\omega(i+1)\}|
$$

with the convention that $\omega(0)=0$.

Theorem (Chow and Mansour '12)

Let X_{n} be des_{B} defined on B_{n}. Then X_{n} has mean $n / 2$ and variance $(n+1) / 12$, and as $n \rightarrow \infty$, the standardized random variable $\left(X_{n}-n / 2\right) / \sqrt{(n+1) / 12}$ converges to a standard normal distribution.

Descents in conjugacy class $C_{\lambda, \mu}$

The following results are from Campion Loth, Levet, Liu, Sundaram, Y. '23.

Theorem

Let $\Delta^{2}(\lambda, \mu)=m_{1}(\lambda)^{2}-m_{1}(\mu)^{2}$. Let $B_{n}(t)=\sum_{\omega \in B_{n}} t^{\operatorname{des}_{B}(\omega)+1}$ and $B_{\lambda, \mu}(t)=\sum_{\omega \in C_{\lambda, \mu}} t^{\operatorname{des}_{B}(\omega)+1}$. Then

$$
\frac{B_{\lambda, \mu}(t)}{\left|C_{\lambda, \mu}\right|}=\frac{B_{n}(t)}{2^{n} n!}+\frac{1-t}{2 n} \frac{B_{n-1}(t)}{2^{n-1}(n-1)!} \Delta^{2}(\lambda, \mu)+(1-t)^{2} g(t),
$$

where $g(t)$ is some polynomial in t.

Corollary

Differentiating with respect to t and setting $t=1$, we obtain the first moment of descents in the conjugacy class $C_{\lambda, \mu}$:

$$
\mathbb{E}_{\lambda, \mu}\left[\operatorname{des}_{B}\right]=\frac{n}{2}-\frac{\Delta^{2}(\lambda, \mu)}{2 n} .
$$

Theorem

Fix $\ell \geq 0$. Suppose that all cycles in $C_{\lambda, \mu}$ have length greater than 2ℓ. Then

$$
\frac{B_{\lambda, \mu}(t)}{\left|C_{\lambda, \mu}\right|}=\frac{B_{n}(t)}{2^{n} n!}+(1-t)^{\ell+1} g(t)
$$

where $g(t)$ is some polynomial in t.

Theorem (Central Limit Theorem)

For every $n \geq 1$, pick a conjugacy class $C_{\left(\lambda_{n}, \mu_{n}\right)}$ in B_{n} indexed by the bi-partition $\left(\lambda_{n}, \mu_{n}\right)$ of n. Let X_{n} be des_{B} defined on $C_{\left(\lambda_{n}, \mu_{n}\right)}$. Suppose that for all i, $m_{i}\left(\lambda_{n}\right) \rightarrow 0$ and $m_{i}\left(\mu_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Then for sufficiently large n, X_{n} has mean $n / 2$ and variance $(n+1) / 12$. Furthermore, as $n \rightarrow \infty$, the standardized random variable $\left(X_{n}-n / 2\right) / \sqrt{(n+1) / 12}$ converges to a standard normal distribution.

Outline of proof

1. Recall a generating function from Fulman, Kim, Lee, Petersen '12:

$$
\begin{gathered}
\sum_{n \geq 0} \frac{u^{n}}{(1-t)^{n+1}}\left(\sum_{\omega \in B_{n}} t^{\operatorname{des}_{B}(\omega)+1} \prod_{i} x_{i}^{m_{i}(\lambda(\omega))} y_{i}^{m_{i}(\mu(\omega))}\right) \\
=1+\sum_{k \geq 1} t^{k} \frac{1}{1-x_{1} u} \prod_{m \geq 1}\left(\frac{1+y_{m} u^{m}}{1-x_{m} u^{m}}\right)^{N(2 k-1,2 m)}
\end{gathered}
$$

Here

$$
N(2 k-1,2 m)=\frac{1}{2 m} \sum_{\substack{d \mid m \\ d \text { odd }}} \mu(d)\left((2 k-1)^{m / d}-1\right)
$$

and $\mu(d)$ is the number-theoretic Möbius function, with $\mu(1)=1, \mu(n)=(-1)^{k}$ if n is the product of k different primes; otherwise $\mu(n)=0$.
2. We set $u=1$ in the generating function and extract the coefficients of x_{i} and y_{i} for all i. This gives

$$
\begin{aligned}
& B_{\lambda, \mu}(t)=\sum_{\omega \in C_{\lambda, \mu}} t^{\operatorname{des}_{B}(\omega)+1} \\
& \quad=\sum_{k \geq 1} t^{k} \frac{m_{1}(\lambda)+k-1}{k-1} \prod_{i \geq 1}\binom{m_{i}(\lambda)+N(2 k-1,2 i)-1}{m_{i}(\lambda)}\binom{N(2 k-1,2 i)}{m_{i}(\mu)} .
\end{aligned}
$$

3. Recall an expansion result from Steingrímsson '94:

$$
B_{n}(t)=(1-t)^{n+1} \sum_{k \geq 1}(2 k-1)^{n} t^{k} .
$$

Performing asymptotic expansion on $B_{\lambda, \mu}(t)$ thus involves checking different powers of $(2 k-1)$ in the expression.
4. The argument is technical and requires use of Stirling numbers of the first kind s_{n}^{i}, whose absolute value is the number of permutations of n elements with i disjoint cycles. Showing one step here:

$$
\begin{aligned}
& \binom{N(2 k-1,2 i)+m_{i}(\lambda)-1}{m_{i}(\lambda)}\binom{N(2 k-1,2 i)}{m_{i}(\mu)} \\
& \left.\left.\quad=\frac{\sum_{a=1}^{m_{i}(\lambda)}\left|s_{m_{i}}^{a}(\lambda)\right|(N(2 k-1,2 i))^{a}}{m_{i}(\lambda)!} \frac{\sum_{b=1}^{m_{i}(\mu)} s_{m_{i}}^{b}(\mu)}{m_{i}(\mu)!} .2 k-1,2 i\right)\right)^{b}
\end{aligned} .
$$

5. When all cycles have length greater than 2ℓ, as a polynomial in $(2 k-1)$, the leading term remains to be $(2 k-1)^{n}$, but the second highest-degree term is at most $(2 k-1)^{n-\ell-1}$. This is because a lower order term must have either some $a \neq m_{i}(\lambda)$ or some $b \neq m_{i}(\mu)$ or some $d \neq 1$ in the expansion above. This implies that the ℓ th moment of des_{B} in $C_{\lambda, \mu}$ is equal to the ℓ th moment of des_{B} in B_{n} when all cycles in $C_{\lambda, \mu}$ have length greater than 2ℓ. Asymptotic normality readily follows from the method of moments.

Thank You! Questions?

[^0]: ${ }^{1}$ Based on ongoing work with Jesse Campion Loth, Michael Levet, Kevin Liu, and Sheila Sundaram.

