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Origin of my work on conditioned critical Galton–Watson
trees; Nevin Kapur

The foundation for a significant portion of the work I will discuss
today was built in joint work with PhD advisee Nevin Kapur (PhD
2003), especially in these three papers:

F, Philippe Flajolet, and N. Kapur. Singularity analysis, Hadamard products,
and tree recurrences. Journal of Computational and Applied Mathematics,
(2004), 174/2, 271–313;
F and N. Kapur. Limiting distributions for additive functionals on Catalan
trees. Theoretical Computer Science, (2004), 326, 69–102;

F and N. Kapur. A repertoire for additive functionals of uniformly distributed
m-ary search trees. Refereed extended abstract: pages 105–114 in 2005
International Conference on the Analysis of Algorithms (ed.: Conrado
Martínez), Discrete Mathematics and Theoretical Computer Science
Proceedings, AD, 2005.
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Superb background reference and my latest trees research

The background material I will present at the beginning of the talk is
adapted from this comprehensive & beautiful survey:

Svante Janson. Simply generated trees, conditioned Galton–Watson trees,
random allocations and condensation. Probability Surveys (2012),
9, 103–252.

I won’t review even the main result there—rather, just material that’s
needed as background for recent work.

The later material is very recent (and some ongoing!) work:

F and S. Janson. The sum of powers of subtree sizes for conditioned
Galton–Watson trees. Electron. J. Probab., (2022), 27, Paper No. 114,
77 pages (with a corrigendum to appear);
F, S. Janson, and Stephan Wagner. Conditioned Galton–Watson trees: The
shape functional, and more on the sum of powers of subtree sizes and its
mean. 50 pages. Submitted in January, 2023 to a special Analysis of
Algorithms issue of La Matematica.

Sums of Powers of Subtree Sizes Jim Fill 3



Outline of talk

Here’s an outline for today’s talk:

1 Background on trees
1.1 (Conditioned) Galton–Watson trees and criticality
1.2 Additive functionals

1.2.1 Sums of powers of subtree sizes
1.2.2 The “shape functional” (i.e., log-product of subtree sizes)

2 Distributional asymptotics for sums of powers of subtree sizes
2.1 Limit laws
2.2 Convergence of moments

3 Comparing means across Galton–Watson models:
additive functionals with completely monotone toll
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1.1. (Conditioned) Galton–Watson trees and criticality

Galton–Watson trees are defined as the family trees of Galton–Watson
processes: Given an offspring r.v. ξ with pmf p = (pk)k≥0 on Z≥0, we
build the tree T recursively,
starting with the root and giving each node a number of children that
is an independent copy of ξ. In other words, the outdegrees d+(v) are
i.i.d. with the distribution p.
Recall that the Galton–Watson process is called subcritical, critical, or
supercritical as the expected number of children E ξ =

∑∞
k=0 kpk

satisfies E ξ < 1, E ξ = 1, or E ξ > 1.
standard basic fact of branching process theory: T is finite a.s. if
E ξ ≤ 1 (subcritical and critical cases), but T is infinite with positive
probability if E ξ > 1 (supercritical case).
The GWTs have random sizes. We are mainly interested in random
trees with a given size; we thus define Tn as T conditioned on |T | = n.
These random trees Tn are called conditioned Galton–Watson trees,
and are a (not very) special case of Meir–Moon simply generated trees.
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1.1.1 Why tilt to critical Galton–Watson trees?

Thus we can generate G–W trees to sample from conditioned G–W
trees (simply generated trees)—by conditioning on size!
For subcritical/supercritical G–W trees, one can show that the tails of
the distribution of |T | (given |T | <∞) decay exponentially.
(So the conditioning probability is exponentially small, which is bad.)
For critical G–W trees we’ll see that the tails of the distribution of |T |
decay like P(|T | = n) = Θ(n−3/2) whenever the offspring distribution
has finite variance. This is a nice fat tail: We even have E |T | =∞.
Supercritical G–W trees can always be “exponentially tilted” to critical,
and the same is usually true for subcritical.
For G–W trees, we usually write qn = P(|T | = n) and
y(z) :=

∑
n qnz

n for the corresponding pgf. (awkward but standard!)
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1.1.1. Why tilt to critical Galton–Watson trees? (cont.)

Consider a critical Galton–Watson tree, with offspring r.v. ξ having pgf Φ.
How do we see that qn = P(|T | = n) = Θ(n−3/2) if σ2 := Var ξ <∞?
A key equation, resulting from the recursive nature of T , is

y(z) =
∞∑

n=1

qnz
n = zΦ(y(z)).

That is, y is the inverse of the function t 7→ t/Φ(t). By Lagrange inversion,

qn = n−1 [tn−1]Φ(t)n = n−1 P(Sn = n − 1),

where Sn is the sum of n i.i.d. copies of the offspring r.v. ξ. By the local
CLT, this implies

qn ∼ (2πσ2)−1/2n−3/2,

assuming for simplicity that ξ has span 1. (It’s easy to adjust otherwise.)
Standardizing to critical Galton–Watson trees also allows fair comparisons
across offspring distributions!
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1.1.2. Examples of critGWTs

Many important examples of uniform distributions over various
classes of trees can be formulated as critGWTs.

Examples:
(a) ξ ∼ Geometric

(1
2

)
(with support {0, 1, . . . }).

Then Tn is uniformly distributed over ordered rooted trees (ORTs)
with n nodes.
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Here’s a uniformly random ORT of size 1000 (root is at bottom):

ALEA, Lat. Am. J. Probab. Math. Stat. 16, 561–604 (2019)
DOI: 10.30757/ALEA.v16-21

Inference for conditioned Galton-Watson trees
from their Harris path

Romain Azaïs, Alexandre Genadot and Benoit Henry

Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB
Lyon 1, CNRS, INRA, Inria, F-69342, Lyon, France.
E-mail address: romain.azais@inria.fr
URL: http://perso.ens-lyon.fr/romain.azais/

Institut de Mathématiques de Bordeaux, Univ Bordeaux, CNRS, UMR 5251 and INRIA
Bordeaux-Sud Ouest, Team CQFD, F-33400 Talence, France.
E-mail address: alexandre.genadot@u-bordeaux.fr
URL: https://www.math.u-bordeaux.fr/~agenadot/

IMT Lille Douai, Université de Lille, Villeneuve d’Ascq, France
E-mail address: benoit.henry@imt-lille-douai.fr
URL: https://http://www.bhenry.fr/

Abstract. Tree-structured data naturally appear in various fields, particularly in
biology where plants and blood vessels may be described by trees, but also in
computer science because XML documents form a tree structure. This paper is
devoted to the estimation of the relative scale parameter of conditioned Galton-
Watson trees. New estimators are introduced and their consistency is stated. A
comparison is made with an existing approach of the literature. A simulation study
shows the good behavior of our procedure on finite-sample sizes and from missing
or noisy data. An application to the analysis of revisions of Wikipedia articles is
also considered through real data.

1. Introduction

Many data are naturally modeled by an ordered tree structure: from blood
vessels in biology to XML files in computer science through the secondary structure
of RNA in biochemistry. The statistical analysis of a dataset of hierarchical records
is thus of great interest. In this paper, our aim is to propose new methods to
estimate the scale parameter arising in Galton-Watson trees conditioned on their
number of nodes from various statistical settings.

Received by the editors September 11th, 2017; accepted March 12th, 2019.
2010 Mathematics Subject Classification. 60J80, 62F12.
Key words and phrases. Galton-Watson tree, Parametric estimation, Harris path, Brownian

excursion, Real tree data, XML files, Wikipedia.
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Figure 2.3. A Galton-Watson tree conditional on having 1000
nodes generated from the geometric birth distribution with vari-
ance �2 = 2 (top) and its Harris path (bottom).

where the Bi’s are three independent Brownian motions. The convergence pre-
sented in Theorem 2.3 also holds in expectation (Drmota and Marckert, 2005, The-
orem 1).

Theorem 2.4. When n goes to infinity, we have,

8 0  t  1, E

H[⌧n](2nt)p
n

�
�! 2

�
Et,

where the function (Et, 0  t  1) has been defined in (2.1).

Remark 2.5. Theorem 2.3 establishes that, in the asymptotic regime, the shape of
a conditioned Galton-Watson tree is given by the normalized Brownian excursion,
regardless of the offspring distribution µ. However, there is one scale parameter
given by the inverse of the standard deviation of µ. As a consequence, when µ is
unknown, the only quantity of interest that one may access by asymptotic inference
from Theorem 2.3 is ��1. From Section 3, we shall focus on the estimation of ��1.

2.4. Empirical estimators. The purpose of this section is to study the behavior of
empirical estimators of the mean µ and of the variance �2. These estimators are
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1.1.2. Examples of critGWTs (continued)

(b) ξ ∼ Poisson(1).

If we generate Tn this way, label the n nodes randomly with
{1, . . . , n}, and ignore birth order, then the resulting distribution is
uniform over labelled unordered rooted trees (LURTs) with n nodes.

Remark: The uniform distribution on UURTs (unlabelled unordered
rooted trees) can’t be formulated in terms of GWTs.
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1.1.2. Examples of critGWTs (conclusion)

(c) Full binary trees: ξ ∼ 2Bernoulli(1
2).

This example can be generalized to full m-ary trees, with
ξ ∼ mBernoulli

( 1
m

)
.

(d) Binary trees (distinguishing L & R only-children):
ξ ∼ Binomial(2, 1

2).

This example can be generalized to m-ary trees, with
ξ ∼ Binomial

(
m, 1

m

)
.
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1.2. Additive functionals; sums of powers of subtree sizes

Additive functionals are important to study for random trees.
These are functionals of rooted trees of the type

F (T ) :=
∑

v∈T
f (Tv ),

where Tv is the fringe subtree consisting of v and all its descendants,
and f is a given functional on trees, often called the toll function.
Equivalently, additive functionals may be defined by the recursion

F (T ) := f (T ) +
d∑

i=1

F (Tv(i)),

where d is the degree of the root o of T and v(1), . . . , v(d) are the
children of o. Note that, due to

∑
, sibling order no longer matters!

main interest: asymptotics for the distribution of F (Tn) as n→∞
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1.2.1. Sums of powers of subtree sizes

today’s talk: critGWTs with 0 < σ2 = Var ξ <∞
(sometimes silently assuming E ξ2+δ <∞ for some δ > 0)
and (mainly) tolls fα(T ) := |T |α for some constant α ∈ C
We denote the corresponding additive functional by Fα.
important special cases: Note that for α = 0, we trivially have
F0(Tn) = n. The case α = 1 yields the total pathlength, important in
computer science, and from α = 1 and α = 2 (jointly) we can relate
results to the so-called Wiener index1, important in chemistry.
Our results have interesting connections to the continuum random
tree of David Aldous and to Brownian excursion.
These particular functionals serves as prototypes for functionals
favoring small (Reα < 0) and large (Reα > 0) subtrees.

1named for the Austrian–American chemist Harry Wiener (1924–1998)—not for
Norbert Wiener!
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1.2.2. The “shape functional”

f0 and F0 are trivial! However, . . .

f (T ) := ln |T | and F (T ) :=
∑

v ln |Tv | are the respective derivatives
of fα and Fα at α = 0 and are nontrivial.
We call this F the shape functional.

I introduced this functional in the context of a different (non-SGT)
model of random trees, namely, (QuickSort-related) binary search
trees under the random permutation model, in F (1996, RSA). There
the functional is entropy-related and serves as a crude measure of the
“shape” of the random tree.

Meir and Moon (1998) started the study of F for simply generated
trees by finding asymptotics for the mean and variance of F (Tn).
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2.1. Limit Laws

Previous papers have studied limiting distributions in various special cases
when α is real, but we consider these variables for arbitrary complex α.

This is advantageous, even for the study of real α, since it allows us to use
powerful results from the theory of analytic functions in the proofs.
We also find new phenomena for non-real α.

There’s not nearly enough time for even an outline of how things turn out
for various values of α.

However, as one illustration, I will state the normal limit-law result for
Reα < 0 on the next slide.
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2.1.2. Normal limit law for Reα < 0

Theorem 1.1 in F and Janson (2022)

Let Tn be a conditioned Galton–Watson tree defined by an offspring
distribution ξ with E ξ = 1 and 0 < σ2 := Var ξ <∞. Then there exists a
family of centered complex normal random variables X (α), Reα < 0, such
that, as n→∞,

Fα(Tn)− EFα(Tn)√
n

d−→ X (α), Reα < 0. (1)

Moreover, X (α) is a (random) analytic function of α, and the convergence
(1) holds in the space H(H−) of analytic functions in the left half-plane
H− := {α : Reα < 0}. Furthermore,

X (α) = X (α), α ∈ H−.

The covariance function E
[
X (α)X (β)

]
is an analytic function of two

variables α, β ∈ H−, and, as n→∞,

n−1 Cov
(
Fα(Tn),Fβ(Tn)

)
→ E

[
X (α)X (β)

]
, α, β ∈ H−.
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2.2. Convergence of moments for Reα < 0, and more

In FJW (2023), we further complete the picture for Reα < 0 by
(i) proving convergence of moments in the above theorem, notably using

the complex-analytic technique of singularity analysis, especially
including the results on Hadamard products of power series by
F, Flajolet, and Kapur (2004);

(ii) establishing asymptotic normality for the additive “shape functional”,
with toll f (T ) = log |T |;

(iii) establishing asymptotic normality for imaginary α 6= 0 (as is true for
Reα < 0), with asymptotic variance that depends only on σ2 (as is
true for Reα > 0).

The asymptotic variance for the shape functional and for imaginary α is
(not too surprisingly) of order n log n
(rather than order n for Reα < 0 and order n1+2Reα for Reα > 0).
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3. Comparing means across Galton–Watson models

Due to lack of time, I will be even briefer in this last section of the talk.

Recall that for Reα < 0, to get a limiting Gaussian process we need to
center Fα(Tn) by its mean and then divide by

√
n.

With µ(α) := E |T |α, one can show that
EFα(Tn) = µ(α)n + o(

√
n),

so we can center instead by µ(α)n.

This leads to study of µ(α), which for general α with Reα < 0 can be
computed only numerically.

However, when α is a negative integer, it was shown in FJ (2022) that
µ(α) can be computed explicitly for certain examples of critGWTs.

We noticed that, for any two of our four examples, we had
µ1(α) < µ2(α) for all such α and some ordering (1, 2) of the two
examples and wondered why.

We built a comparison theory to explain this phenomenon.
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3.1 Comparing means across Galton–Watson models:
a whiff of the theory

We built a comparison theory to explain this phenomenon.
The full story? I don’t have enough time to explain.

The essence is this theorem: Given two critical Galton–Watson
offspring distributions ξ1 and ξ2 with respective probability generating
functions Φ1 and Φ2, if Φ1(t) < Φ2(t) for all real t ∈ (0, 1), then
µ1(α) < µ2(α) for all real α < 0.

Remarks:
(1) This result extends from power-function tolls to completely monotone

tolls, and there is a converse of sorts.
(2) If Φ1 ≺ Φ2 are ordered this way, then the means for the shape

functional are reverse-ordered.
(3) Although this is only a partial order on critGWT pgfs, surprisingly

many important pgfs are comparable!
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3.2. Comparing means for additive functionals:
Examples of ordering across Galton–Watson models

Examples of critical Galton–Watson models with ordered pgfs:

Recall these examples:

m-ary trees: ξ1,m ∼ Bi(m, 1
m ) (m ≥ 2);

LURTs: ξ2 ∼ Po(1);

full binary trees: ξ3 ∼ 2Bi(1, 1
2);

ORTs: ξ4 ∼ Ge(1
2);

full m-ary trees: ξ5,m ∼ mBi(1, 1
m ) (m ≥ 3).
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3.2. Comparison ordering examples (continued)

These examples are all ordered by ≺!

Proposition

For every t ∈ (0, 1) we have

m-ary: Φ1,m(t) ↑ strictly as m ↑,
full m-ary: Φ5,m(t) ↑ strictly as m ↑;

and, for any m ≥ 2,

Φ1,m ≺ Φ2 (LURTs) ≺ Φ3 (full binary) ≺ Φ4 (ORTs) ≺ Φ5,3.

Proof.
The proof is a collection of simple exercises in calculus.
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