Fringe Trees of Patricia Tries

Jasper Ischebeck
Goethe University Frankfurt a. M.
AofA 2023 Taipei arXiv:2305.14900

June 28, 2023

Introduction

- Patricia tries are data structures used to store and retrieve strings
- Fixed finite alphabet \mathscr{A}
- Patricia tries are subtrees of \mathscr{A}^{*} (seen as a labeled, infinite tree)
- Sample i.i.d. infinite strings (=sequences) with each character i.i.d. with a distribution p on \mathscr{A}
- For any string $\alpha=a_{1} \ldots a_{n}$ write $p_{\alpha}:=p\left(\left\{a_{1}\right\}\right) \ldots p\left(\left\{a_{n}\right\}\right)$

Construction of the Trie

Start with a set \mathfrak{X} of strings

- If $\mathfrak{X}=\varnothing$, the trie is empty.
- If $|\mathfrak{X}|=1$, we store the string in a leaf and are finished
- Else we split \mathfrak{X} on the first character of the string and have a trie as subtree for every starting character.

Patricia Trie

By compressing the nodes of a trie T with only one child into chains, we get the patricia trie pat T.

- We can see pat as a function from tries to patricia tries
- Write \mathscr{T}_{n} for the trie from n i.i.d. strings
- Write $\mathscr{P}_{n}:=$ pat \mathscr{T}_{n} for the patricia trie of n i.i.d. strings

Properties

- Patricia tries were introduced in 1968 independently by Morrison (1968) and Gwehenberger (1968)
- Practical Algorithm To Retrieve Information Coded In Alphanumeric, Trie is from ReTRIEval.
- Tries and patricia tries as well as some key properties included in Knuth's Art of Computer Programming (Knuth 1973)
- Since then, many other properties have been studied, e.g. the number of visited nodes in a search (Szpankowski 1990) or the profile (Devroye 2005) etc. for many sources of random strings
- Because of the similarity, patricia tries and tries can often be handled with the same methods

Patricia Tries

- For tries, there are efforts to handle multiple properties at once, for example Fuchs, Hwang, and Zacharovas (2014) using analytic methods.
- Janson gives a general theorem for additive functionals in 2020 using probabilistic methods
- We have shown how to reduce properties of patricia tries to tries and leverage these results.

Fringe Trees

- Let T be a tree
- For $v \in T$ the fringe tree T^{v} is the subtree consisting of v and its descendants in T
- The random fringe tree T^{*} is the fringe tree T^{v} of a uniformly chosen $v \in T$.

Additive functionals

- Let φ be a function on trees to \mathbb{R}, called toll function
- Then Φ defined by

$$
\Phi(T):=\sum_{v \in T} \varphi\left(T^{v}\right)
$$

is its additive functional.

Additive functionals

- Let φ be a function on trees to \mathbb{R}, called toll function
- Then Φ defined by

$$
\Phi(T):=\sum_{v \in T} \varphi\left(T^{v}\right)
$$

is its additive functional.

- For an additive functional Φ we can define its pullback on tries as $\widehat{\Phi}(T)=\Phi(\operatorname{pat} T)$.
- Let $\hat{\varphi}$ be the toll function for $\hat{\Phi}$.
- We call Φ increasing if $\widehat{\Phi}(T) \leq \widehat{\Phi}\left(T^{\prime}\right)$ for trees $T \subseteq T^{\prime}$
- If φ is bounded, $\hat{\varphi}$ is also bounded.

CLT with all moments

We say $X_{n} \stackrel{d}{\approx} Y_{n}$ with all moments if $\mathbb{E}\left[f\left(X_{n}\right)-f\left(Y_{n}\right)\right] \rightarrow 0$ for every bounded continuous function f and for $f(x)=x^{a}, a \in \mathbb{R}$.

Theorem (CLT with all moments)

For an increasing additive functional Φ with a bounded toll function, and thus also for the difference of two such Φ, we have approximation in distribution

$$
\frac{\Phi\left(\mathscr{P}_{n}\right)-\mathbb{E}\left[\Phi\left(\mathscr{P}_{n}\right)\right]}{\sqrt{n}} \stackrel{d}{\approx} N\left(0, \sigma^{2}(\log n)\right)
$$

with all moments, where σ^{2} is a bounded function that is $\log \left(p_{a}\right)$-periodic for every $a \in \mathscr{A}$.

- Because we have convergence of all moments we get a strong law of large numbers as corollary. (answering a problem in Janson (2022))
- "Bounded toll function" can be relaxed to toll functions with variance and mean of order $O\left(n^{1-\varepsilon}\right)$
- With some criteria we have $\sigma^{2}(t)>0$ for all t and can thus move $\sigma^{2}(\log n)$ into the denominator, giving convergence to $\mathrm{N}(0,1)$
- Because we have convergence of all moments we get a strong law of large numbers as corollary. (answering a problem in Janson (2022))
- "Bounded toll function" can be relaxed to toll functions with variance and mean of order $O\left(n^{1-\varepsilon}\right)$
- With some criteria we have $\sigma^{2}(t)>0$ for all t and can thus move $\sigma^{2}(\log n)$ into the denominator, giving convergence to $\mathrm{N}(0,1)$
- Because σ^{2} is $\log \left(p_{a}\right)$-periodic for every $a \in \mathscr{A}$, it is also d-periodic for d the smallest common divisor of $\left\{\log \left(p_{a}\right): a \in \mathscr{A}\right\}$.
- Thus, if $d=0$ (the non-arithmetic case), σ^{2} is constant
- Because we have convergence of all moments we get a strong law of large numbers as corollary. (answering a problem in Janson (2022))
- "Bounded toll function" can be relaxed to toll functions with variance and mean of order $O\left(n^{1-\varepsilon}\right)$
- With some criteria we have $\sigma^{2}(t)>0$ for all t and can thus move $\sigma^{2}(\log n)$ into the denominator, giving convergence to $\mathrm{N}(0,1)$
- Because σ^{2} is $\log \left(p_{a}\right)$-periodic for every $a \in \mathscr{A}$, it is also d-periodic for d the smallest common divisor of $\left\{\log \left(p_{a}\right): a \in \mathscr{A}\right\}$.
- Thus, if $d=0$ (the non-arithmetic case), σ^{2} is constant
- σ^{2} and the asymptotic behavior of $\mathbb{E}\left[\Phi\left(\mathscr{P}_{n}\right)\right]$ (also periodic) can be calculated with standard methods.

The induced toll function $\widehat{\varphi}$

- What is $\hat{\varphi}$?
- From the definition,

$$
\widehat{\varphi}(T)=\widehat{\Phi}(T)-\sum_{a \in \mathscr{A}} \widehat{\Phi}\left(T^{a}\right)
$$

The induced toll function $\widehat{\varphi}$

- What is $\hat{\varphi}$?
- From the definition,

$$
\hat{\varphi}(T)=\widehat{\Phi}(T)-\sum_{a \in \mathscr{A}} \hat{\Phi}\left(T^{a}\right)
$$

- If the root of T has exactly one child $a \in \mathscr{A}$, then the root gets compressed: $\operatorname{pat} T=\operatorname{pat}\left(T^{a}\right)$ and thus $\hat{\varphi}(T)=0$
- If not, the tree splits normally and $(\operatorname{pat} T)^{a}=\operatorname{pat}\left(T^{a}\right)$ for all $a \in \mathscr{A}$, so $\widehat{\varphi}(T)=\varphi(\operatorname{pat} T)$.
- So,
$\widehat{\varphi}(T)=\varphi(\operatorname{pat} T) \mathbf{1}\{T \mathrm{~s}$ root has not exactly one child. $\}$

Asymptotic moments

- First assume φ is zero for leaves $(\{\varepsilon\})$.
- The contribution to Φ is deterministically a multiple of the amount of strings
- By looking at the trie $\widetilde{\mathscr{T}}_{\lambda}$ with an independent, Pois(λ)-distributed amount of strings, the subtrees also become independent tries with Poisson distributed amounts of strings
- The moments of $\widehat{\Phi}\left(\tilde{\mathscr{T}}_{\lambda}\right)$ are then sums of the form $\sum_{\alpha \in \mathscr{A}^{*}} f\left(p_{\alpha} \lambda\right)$ with a function f.
- This is called poissonization

Asymptotic moments

- The function f in $\sum_{\alpha \in \mathscr{A}^{*}} f\left(p_{\alpha} \lambda\right)$ is...
- For the expectation:

$$
f_{E}(\lambda)=\mathbb{E}\left[\widehat{\varphi}\left(\widetilde{\mathscr{T}}_{\lambda}\right)\right]
$$

- For the variance:

$$
f_{V}(\lambda)=2 \operatorname{Cov}\left(\widehat{\varphi}\left(\widetilde{\mathscr{T}}_{\lambda}\right), \widehat{\Phi}\left(\widetilde{\mathscr{T}}_{\lambda}\right)\right)-\operatorname{Var}\left(\widehat{\varphi}\left(\widetilde{\mathscr{T}}_{\lambda}\right)\right)
$$

- For the covariance with the amount N_{λ} of strings:

$$
f_{C}(\lambda)=\operatorname{Cov}\left(\widehat{\varphi}\left(\widetilde{\mathscr{T}}_{\lambda}\right), N_{\lambda}\right)
$$

- This method is well known. Clément, Flajolet, and Vallée (2001) lists three ways to revert this process and Janson's approach is yet another
- The asymptotics of such sums can be described with Mellin transforms, given as:

$$
f_{E}^{*}(s)=\int_{0}^{\infty} f_{E}(\lambda) \lambda^{s-1} d \lambda
$$

- To revert the Mellin transformation and the poissonization one can use ...
- analytic methods, such as in Fuchs, Hwang, and Zacharovas (2014) and Hwang, Fuchs, and Zacharovas (2010)
- renewal theory and that Φ is increasing, as in Janson (2022)

Asymptotic moments

Theorem (Asymptotic moments; non-arithmetic)

For an increasing additive functional Φ on patricia tries with a bounded toll function φ and $\varphi(\{\varepsilon\})=0$, and thus also for the difference of two such Φ, the following holds:
If $d=0$,

$$
\begin{aligned}
\mathbb{E}\left[\Phi\left(\mathscr{P}_{n}\right)\right] & =\frac{n}{H} f_{E}^{*}(-1)+o(n) \\
\operatorname{Var}\left(\Phi\left(\mathscr{P}_{n}\right)\right) & =\frac{n}{H} f_{V}^{*}(-1)-\frac{n}{H^{2}} f_{E}^{*}(-1)^{2}+o(n),
\end{aligned}
$$

where H is the Shannon entropy of p.

Asymptotic moments

Theorem (Asymptotic moments; arithmetic)

For an increasing additive functional Φ on patricia tries with a bounded toll function φ and $\varphi(\{\varepsilon\})=0$, and thus also for the difference of two such Φ, the following holds: If $d>0$ let $\chi_{m}:=2 \pi i m / d$. Then

$$
\begin{aligned}
\mathbb{E}\left[\Phi\left(\mathscr{P}_{n}\right)\right]= & \frac{n}{H} \sum_{m \in \mathbb{Z}} f_{E}^{*}\left(-1-\chi_{m}\right) n^{\chi_{m}}+o(n) \\
\operatorname{Var}\left(\Phi\left(\mathscr{P}_{n}\right)\right)= & \frac{n}{H} \sum_{m \in \mathbb{Z}} f_{V}^{*}\left(-1-\chi_{m}\right) n^{\chi_{m}} \\
& -\frac{n}{H^{2}}\left(\sum_{m \in \mathbb{Z}} f_{C}^{*}\left(-1-\chi_{m}\right) n^{\chi_{m}}\right)^{2}+o(n) .
\end{aligned}
$$

Size of fringe patricia tries

- The natural measure for "size" of a patricia trie is the amount of strings or equivalently of leaves
- Let $\varphi_{\geq k}(T)$ be the indicator that a tree T has at least $k \geq 2$ leaves / strings
- Then, the additive functional $\Phi_{\geq k}\left(\mathscr{P}_{n}\right)$ is the amount of fringe trees with at least k strings
- This additive functional is increasing

Size of fringe patricia tries

- The natural measure for "size" of a patricia trie is the amount of strings or equivalently of leaves
- Let $\varphi_{\geq k}(T)$ be the indicator that a tree T has at least $k \geq 2$ leaves / strings
- Then, the additive functional $\Phi_{\geq k}\left(\mathscr{P}_{n}\right)$ is the amount of fringe trees with at least k strings
- This additive functional is increasing
- Let $\Phi_{k}:=\Phi_{\geq k}-\Phi_{\geq k-1}$ be the amount of fringe trees with exactly k strings
- We can then apply the CLT with all moments to Φ_{k}

Expected size of fringe patricia tries

- The induced toll function $\hat{\varphi}_{k}$ is then "T has k strings that don't all start with the same character."
- So

$$
f_{E, k}(\lambda)=\mathbb{E}\left[\hat{\varphi}_{k}\left(\widetilde{\mathscr{T}}_{\lambda}\right)\right]=e^{-\lambda} \frac{\lambda^{k}}{k!}(1-\underbrace{\sum_{a \in \mathscr{A}} p_{a}^{k}}_{=: \rho(k)}) .
$$

- And the Mellin transform is

$$
\begin{aligned}
f_{E, k}^{*}(s) & =\int_{0}^{\infty} \frac{1-\rho(k)}{k!} e^{-\lambda} \lambda^{k+s-1} d \lambda \\
& =\frac{1-\rho(k)}{k!} \Gamma(s+k)
\end{aligned}
$$

- The mean term is $f_{E, k}^{*}(-1)=\frac{1-\rho(k)}{k(k-1)}$.

Size of fringe patricia tries

Theorem (1. 2023)

For $n \rightarrow \infty$ and $k \geq 2$, we have for the amount $\Phi_{k}\left(\mathscr{P}_{n}\right)$ of fringe trees with k strings in a patricia trie from n strings,

$$
\begin{equation*}
\frac{\Phi_{k}\left(\mathscr{P}_{n}\right)-\mathbb{E}\left[\Phi_{k}\left(\mathscr{P}_{n}\right)\right]}{\sqrt{\operatorname{Var}\left(\Phi_{k}\left(\mathscr{P}_{n}\right)\right)}} \stackrel{d}{\rightarrow} \mathcal{N}(0,1) \tag{1}
\end{equation*}
$$

Size of fringe patricia tries

Theorem (I. 2023)

For $n \rightarrow \infty$ and $k \geq 2$, we have for the amount $\Phi_{k}\left(\mathscr{P}_{n}\right)$ of fringe trees with k strings in a patricia trie from n strings,

$$
\begin{equation*}
\frac{\Phi_{k}\left(\mathscr{P}_{n}\right)-\mathbb{E}\left[\Phi_{k}\left(\mathscr{P}_{n}\right)\right]}{\sqrt{\operatorname{Var}\left(\Phi_{k}\left(\mathscr{P}_{n}\right)\right)}} \xrightarrow{d} \mathcal{N}(0,1) \tag{1}
\end{equation*}
$$

The asymptotics of $\mathbb{E}\left[\Phi_{k}\left(\mathscr{P}_{n}\right)\right]$ are given by

$$
\begin{equation*}
\frac{1}{n} \mathbb{E}\left[\Phi_{k}\left(\mathscr{P}_{n}\right)\right]=\frac{1-\sum_{a \in \mathscr{A}} p_{a}^{k}}{H k(k-1)}+\psi_{k}(\log n)+o(1), \tag{2}
\end{equation*}
$$

where ψ_{k} is a bounded, periodic function.

Other additive functionals

- Bounded toll functions already cover many properties:
- The number of k-protected nodes (nodes whose fringe trees have no leaf with depth lesser equal k)
- The independence number, domination number etc.
- With a logarithmically growing toll function, we have the shape functional (subtree size product logarithm)

Conclusion

- We have seen a CLT for additive functionals with bounded toll function
- and an application to fringe tree amounts

Conclusion

- We have seen a CLT for additive functionals with bounded toll function
- and an application to fringe tree amounts

Open questions:

- What about digital search trees?
- How to generalize to bigger toll functions?

Conclusion

- We have seen a CLT for additive functionals with bounded toll function
- and an application to fringe tree amounts

Open questions:

- What about digital search trees?
- How to generalize to bigger toll functions?

Thanks

