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Introduction

@ Patricia tries are data structures used to store and
retrieve strings

o Fixed finite alphabet &

@ Patricia tries are subtrees of o/™ (seen as a labeled,
infinite tree)

@ Sample i.i.d. infinite strings (=sequences) with each
character i.i.d. with a distribution p on &/

e For any string a = a, ... a, write p, :=p({a,}) ... p({a,})
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Construction of the Trie

Start with a set X of strings

o If X =, the trie is
empty.

o If |X]| =1, we store the
string in a leaf and are
finished

@ Else we split X on the first
character of the string and
have a trie as subtree for
every starting character.

(1000 |1001| |1100] |1101]
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By compressing the nodes of a trie T with only one child into
chains, we get the patricia trie pat T.

11000 || 1001 | 1200 || 1101 |
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@ We can see pat as a function from tries to patricia tries
e Write 9, for the trie from n i.i.d. strings

o Write &, := pat J,, for the patricia trie of n i.i.d. strings
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@ Patricia tries were introduced in 1968 independently by
Morrison (1968) and Gwehenberger (1968)

@ Practical Algorithm To Retrieve Information Coded In
Alphanumeric, Trie is from ReTRIEval.
@ Tries and patricia tries as well as some key properties

included in Knuth's Art of Computer Programming
(Knuth 1973)

@ Since then, many other properties have been studied, e.g.
the number of visited nodes in a search (Szpankowski
1990) or the profile (Devroye 2005) etc. for many sources
of random strings

@ Because of the similarity, patricia tries and tries can often
be handled with the same methods
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@ For tries, there are efforts to handle multiple properties at
once, for example Fuchs, Hwang, and Zacharovas (2014)
using analytic methods.

@ Janson gives a general theorem for additive functionals in
2020 using probabilistic methods

@ We have shown how to reduce properties of patricia tries
to tries and leverage these results.
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Fringe Trees

@ Let T be a tree

@ For v € T the fringe tree T" is the subtree consisting of v
and its descendants in T

@ The random fringe tree T* is the fringe tree T" of a
uniformly chosen v € T.

TU
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Additive functionals

@ Let @ be a function on trees to R, called toll function
@ Then @ defined by

OT) 1= ) o(T")

veT

is its additive functional.
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Additive functionals

Let @ be a function on trees to R, called toll function
Then @ defined by

OT) 1= ) o(T")

veT

is its additive functional.
@ For an agditive functional @ we can define its pullback on
tries as ©(T) = ©(pat T).
Let $ be the toll function for ®.
We call ® increasing if D(T) < D(T') for trees T C T’
If @ is bounded, @ is also bounded.
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CLT with all moments

d
We say X, = Y, with all moments if E[f(X,)— f(Y,)] = 0
for every bounded continuous function f and for
f(x)=x%a€eR.

Theorem (CLT with all moments)

For an increasing additive functional ® with a bounded toll
function, and thus also for the difference of two such ®, we
have approximation in distribution

() — ElO(F)] 4 N(0, 6*(log n)),
Vn

with all moments, where o“ is a bounded function that is
log(p,)-periodic for every a € .

2
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CLT - Notes

@ Because we have convergence of all moments we get a
strong law of large numbers as corollary. (answering a
problem in Janson (2022))

@ “Bounded toll function” can be relaxed to toll functions
with variance and mean of order O(n'~%)

@ With some criteria we have az(t) > (0 for all t and can
thus move o>(log n) into the denominator, giving
convergence to N(0,1)
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strong law of large numbers as corollary. (answering a
problem in Janson (2022))

“Bounded toll function” can be relaxed to toll functions
with variance and mean of order O(n'~%)

With some criteria we have az(t) > 0 for all t and can
thus move o>(log n) into the denominator, giving
convergence to N(0,1)

Because 62 is log(p,)-periodic for every a € o, it is also
d-periodic for d the smallest common divisor of
{log(p,) : a € d}.

Thus, if d = 0 (the non-arithmetic case), o
% and the asymptotic behavior of E[®(%,)] (also
periodic) can be calculated with standard methods.

2 is constant
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The induced toll function @

e What is p?

@ From the definition,

(T =BT) - Y, BT,
acd
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The induced toll function @

e What is p?
@ From the definition,

P(T)=D(T) - Y, B(T).
acd

o If the root of T has exactly one child a € &/, then the root
gets compressed: pat T = pat(T?%) and thus @(T) =0

@ If not, the tree splits normally and (pat T)* = pat(T“) for
allae A, so p(T) = p(patT).

e So,

@(T) = @(pat T)1{T's root has not exactly one child.}
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Asymptotic moments

@ First assume g is zero for leaves ({e}).
e The contribution to ® is deterministically a multiple of
the amount of strings

@ By looking at the trie 7, with an independent,
Pois(4)-distributed amount of strings, the subtrees also
become independent tries with Poisson distributed
amounts of strings

@ The moments of &)(%) are then sums of the form
Ywea f (P A) with a function f.

@ This is called poissonization
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Asymptotic moments

@ The function fin Y/« f(p A) is...
@ For the expectation:

fE(A) = E[3(T)]

@ For the variance:
FAR) = 2COV<(p(J ). 8, )) - Var@(&i)).

@ For the covariance with the amount N of strings:

feth = Cov(8(F). N, )
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@ This method is well known. Clément, Flajolet, and Vallée
(2001) lists three ways to revert this process and Janson's
approach is yet another

@ The asymptotics of such sums can be described with
Mellin transforms, given as:

fi(s) = /0 feAMAdA.

@ To revert the Mellin transformation and the
poissonization one can use ...
e analytic methods, such as in Fuchs, Hwang, and
Zacharovas (2014) and Hwang, Fuchs, and Zacharovas
(2010)

o renewal theory and that @ is increasing, as in Janson
(2022)
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Asymptotic moments

Theorem (Asymptotic moments; non-arithmetic)

For an increasing additive functional ® on patricia tries with a
bounded toll function @ and @({e}) = 0, and thus also for the
difference of two such ®, the following holds:

Ifd =0,

E[®(#)] = 7/ 5(=1) +oln)

Var(®(2,)) = %f{i(—l) - %f}(—l)z + o(n),

where H is the Shannon entropy of p.
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Asymptotic moments

Theorem (Asymptotic moments; arithmetic)

For an increasing additive functional ® on patricia tries with a
bounded toll function @ and @({e}) = 0, and thus also for the
difference of two such ®, the following holds:

Ifd >0 let y,, :=2xim/d. Then

E[0(#)] = = X, f3(=1 = zy)n" + oln)

mEZ

Var(d)(g’) ZfV( 1 — g, )nkn

mGZ

2
= %( D fi-1- )(m)n)‘m> + o(n).
mezZ,
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Size of fringe patricia tries

@ The natural measure for “size” of a patricia trie is the
amount of strings or equivalently of leaves

o Let @, (T) be the indicator that a tree T has at least
k > 2 leaves / strings

@ Then, the additive functional @, (%) is the amount of
fringe trees with at least k strings

e This additive functional is increasing
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Size of fringe patricia tries

@ The natural measure for “size” of a patricia trie is the
amount of strings or equivalently of leaves

o Let @, (T) be the indicator that a tree T has at least
k > 2 leaves / strings

@ Then, the additive functional @, (%) is the amount of
fringe trees with at least k strings

e This additive functional is increasing

o Let &, := D, — D, ;| be the amount of fringe trees
with exactly k strings

@ We can then apply the CLT with all moments to @,

18/22



Expected size of fringe patricia tries

@ The induced toll function @, is then “T has k strings that
don't all start with the same character.”
e So

” o~ A

Fead = E|ouTy| = 27 (1= X #b):
aed
=:p(k)

@ And the Mellin transform is

* CL=pK) ks
fE,k(s) =/O T@ A +s dA

1 — p(k)
= I'(s + k)

@ The mean term is [} (—1) = =)

k(k—1)"
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Size of fringe patricia tries

Theorem (I. 2023)

For n — oo and k > 2, we have for the amount ®,(%,) of
fringe trees with k strings in a patricia trie from n strings,

D (P)—E|[D (X
k( n) [ k( n)] i./V(O,l)

Var(®,(%,))

(1)

.
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Size of fringe patricia tries

Theorem (I. 2023)
For n — oo and k > 2, we have for the amount ®,(%,) of
fringe trees with k strings in a patricia trie from n strings,

D (P)—E|[D (X
k( n) [ k( n)] i./V(O,l)

Var(®,(%,))
The asymptotics of |E [fI)k(g”,,)] are given by

- Zaedpll;

1 1
JE[0u )] = T+ willog ) + (D),

where v, is a bounded, periodic function.

(1)

(2)

.
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Other additive functionals

@ Bounded toll functions already cover many properties:

@ The number of k-protected nodes (nodes whose fringe
trees have no leaf with depth lesser equal k)

@ The independence number, domination number etc.

o With a logarithmically growing toll function, we have the
shape functional (subtree size product logarithm)
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Conclusion

@ We have seen a CLT for additive functionals with
bounded toll function

@ and an application to fringe tree amounts
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Conclusion
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@ and an application to fringe tree amounts
Open questions:
@ What about digital search trees?

@ How to generalize to bigger toll functions?
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Conclusion

@ We have seen a CLT for additive functionals with
bounded toll function

@ and an application to fringe tree amounts
Open questions:

@ What about digital search trees?

@ How to generalize to bigger toll functions?
Thanks
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