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Definitions and Notation
▶ Fq denotes the finite field with q elements, q is a power of

a prime p, and F∗
q = Fq \ {0}.

▶ Fq[x] denotes the set of polynomials with coefficients in
Fq.

▶ deg(f) denotes the degree of the polynomial f .
▶ M denotes the set of monic polynomials in Fq[x],

Mj := {f ∈ M : deg(f) = j}.

▶ For f ∈ Md, f̂ = xdf(1/x) is called the reciprocal of f .
For a non-negative integer ℓ and Q ∈ Mt, two polynomials
f, g ∈ M are Hayes equivalent with respect to ℓ and Q if
gcd(f, Q) = gcd(g, Q) = 1 and

f̂(x) ≡ ĝ(x) (mod xℓ+1), (1)
f(x) ≡ g(x) (mod Q). (2)
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Definitions and Notation

Condition (1) says that f and g have the same ℓ leading
coefficients, that is,[

xdeg(f)−j
]

f(x) =
[
xdeg(g)−j

]
g(x), 1 ≤ j ≤ ℓ.

The following two special cases are particularly interesting.
(a) Q = 1. In this case, condition (2) is null, and Hayes

equivalence is defined by the ℓ leading coefficients.
(b) Q = xt for some t > 0. In this case, condition (2) says

that f and g have the same t ending coefficients, that is[
xj
]

f(x) =
[
xj
]

g(x), 0 ≤ j ≤ t − 1.



Definitions and Notation

Condition (1) says that f and g have the same ℓ leading
coefficients, that is,[

xdeg(f)−j
]

f(x) =
[
xdeg(g)−j

]
g(x), 1 ≤ j ≤ ℓ.

The following two special cases are particularly interesting.
(a) Q = 1. In this case, condition (2) is null, and Hayes

equivalence is defined by the ℓ leading coefficients.
(b) Q = xt for some t > 0. In this case, condition (2) says

that f and g have the same t ending coefficients, that is[
xj
]

f(x) =
[
xj
]

g(x), 0 ≤ j ≤ t − 1.



The Hayes group

Let E ℓ,Q denote the set of all Hayes equivalence classes with
respect to ℓ, Q, and let ⟨f⟩ denote the equivalence class
represented by a polynomial f ∈ M. It is known [Hayes 65]
that E ℓ,Q is a group under the operation ⟨f⟩⟨g⟩ = ⟨fg⟩.

It is
also known that

E ℓ,Q ∼= E ℓ,1 × E0,Q,

|E ℓ,Q| = qℓΦt(Q), where Φj(Q) := |{f ∈ Mj : gcd(f, Q) = 1}|.

We shall use Iverson’s bracket JP K which has value 1 if the
predicate P is true and 0 otherwise.
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Distribution of the number of zeros
Let Mk(ε) denote the set of polynomials in M which have
degree k + t + ℓ and are equivalent to ε. It is known that
|Mk(ε)| = qk.

Given D ⊆ Fq and ε ∈ E ℓ,Q, let Yk(ε) be the number of zeros
in D of a random polynomial f ∈ Mk(ε) (under uniform
distribution). Some known work about the distribution of
Yk(ε) :
▶ For D = Fq and for all polynomials, that is, ℓ = 0, Q = 1.

[Knopfmacher-Knopfmacher 90]
▶ For polynomials with given leading coefficients, i.e.,

ℓ ≥ 1, Q = 1. This is related to the distance distribution
of Reed-Solomon code. [Zhou-Wang-Wang 17, Li-Wan
20, Gao-Li 23]

Since gcd(f, Q) = 1, we will assume
D ⊆ {x ∈ Fq : Q(x) ̸= 0}, and set n := |D|.
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Asymptotic distribution of Yk(ε)
Theorem 1 Let Q ∈ Mt and ε ∈ E ℓ,Q.
(a) As k − r → ∞, we have

P(Yk(ε) = r) =
(

n

r

)(
1
q

)r (
1 − 1

q

)n−r

(1 + o(1)).

(b) As n, k − r → ∞ and for r = o(
√

n), we have

P(Yk(ε) = r) ∼ e−n/q 1
r!

(
n

q

)r

.

Define µm(r) :=
m∑

j=0
(−1)j

(
n − r

j

)
q−j. We note

∣∣∣∣∣∣µm(r) −
(

1 − 1
q

)n−r
∣∣∣∣∣∣ ≤

(
n − r

m + 1

)
q−(m+1) ≤ 1

(m + 1)! .
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Asymptotics for large r
Theorem 2 Let ε ∈ E ℓ,Q and D = {x ∈ Fq : Q(x) ̸= 0}.
Suppose either ℓ ≥ 1 or ℓ = 0, Q = xt. Then, uniformly for
0 ≤ r ≤ k + t + ℓ, as k → ∞, we have

P(Yk = r) ∼ µk+t+ℓ−r(r)
(

n

r

)
q−r,

provided that either of the following conditions holds:
(a) there are constants c, c′ ∈ (0, 1) such that t + ℓ ≤ c′√n,
k ≤ cn and

p − 1
p

c ln 1
c

+ (1 − c) ln 1
1 − c

− 1 + c

p
ln(1 + c) > c′ ln(2p).

(b) there are constants c, c′ ∈ (0, 1) such that t + ℓ ≤ c′√n,
k ≤ cn, p ≥ c/c′ ≥ 1 and (1 − c) ln 1

1 − c
> c′ ln 1

c′ .



Outline of the proofs
It is convenient to define ⟨f⟩ = 0 when gcd(f, Q) ̸= 1. Let

r(f) := |{x ∈ D : f(x) = 0}|,

and consider the following generating function:

G(z, u) =
∑

f∈M
⟨f⟩zdeg(f)ur(f),

The standard generating function argument gives

G(z, u) = 1
1 − qz

zt+ℓ(1 + (u − 1)z)n
∑

ε∈Eℓ,Q

ε

+
t+ℓ−1∑

j=0
zj

∑
g∈Mj

⟨g⟩

 ∏
α∈D

(⟨1⟩ + (u − 1)z⟨x − α⟩) .
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Generating function and moments
Let Dj be the set of all j-subsets of D, and

Wj(ε) =
∑

g∈Mk+t+ℓ−j

∑
S∈Dj

t

⟨g⟩
∏
α∈S

⟨x − α⟩ = ε

|

. (3)

Proposition 1

[
zk+t+ℓε

]
G(z, u) =

k∑
j=0

qk−j

(
n

j

)
(u − 1)j

+
k+t+ℓ∑
j=k+1

Wj(ε)(u − 1)j,

E
((

Yk(ε)
j

))
= Jj ≤ kK

(
n

j

)
q−j

+ Jk + 1 ≤ j ≤ k + t + ℓKq−kWj(ε).
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Sieve formula and Bonferroni inequalities

Sieve formula Let Y be any random variable which takes
non-negative integer values 0, 1, . . . , M . We have

P(Y = r) =
M∑

j=r

(−1)j+r

(
j

r

)
E
((

Y

j

))
.

Moreover, for each r ≤ m ≤ M , we have∣∣∣∣∣∣P(Y = r) −
m−1∑
j=r

(−1)j+r

(
j

r

)
E
((

Y

j

))∣∣∣∣∣∣ ≤
(

m

r

)
E
((

Y

m

))
.

This and Proposition 1 immediately give Theorem 1 by
choosing m = k.
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The function Aj(a, b) and its bounds
Define

Aj(a, b) = [zj]
(
(1 − z)−ab(1 − zp)−a(1−b)/p

)
=

∑
0≤i≤j/p

(
ab + j − ip − 1

j − ip

)(
a(1 − b)/p + i − 1

i

)
.

Proposition 3 Let b ∈ (0, 1] and a > 0. Then
(a) For all p > 0, we have

ln Aj(a, b) ≤ j

p
ln a + j

j
+ a(1 − b)

p
ln a + j

a
+ ab ln(2p),

(b) For p ≥ cj/b ≥ 1, we have

ln Aj(a, b) ≤ j ln ab + j

j
+ ab ln ab + j

ab
+ a ln 4

p
2−pab/j.
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Estimate for Wj(ε) using Weil’s bound
Proposition 2 Let ε ∈ E , k + 1 ≤ j ≤ k + t + ℓ,
γ := min{1, (t + ℓ − 1)√q/n}, and
D = {α ∈ Fq : Q(α) ̸= 0}. Suppose ℓ ≥ 1. Then∣∣∣∣∣Wj(ε) − Φk+t+ℓ−j(Q)

Φt(Q)

(
n

j

)
q−ℓ

∣∣∣∣∣
≤ |E ℓ,Q| − 1

|E ℓ,Q|

(
t + ℓ − 1

t + ℓ + k − j

)
q(t+ℓ+k−j)/2Aj(n, γ).

The proof uses characters χ over E ℓ,Q:

Wj(ε) = 1
|E ℓ,Q|

∑
χ

χ(ε−1)
 ∑

g∈Mk+t+ℓ−j

χ(g)
 ∑

S∈Dj

∏
α∈S

χ(x − α),

Weil’s bound for character sums, and and Li-Wan’s
“coordinate-sieve’’ formula.
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Weil’s bound

Weil’s bound: for each χ ̸= 1 and d ≤ t + ℓ − 1, we have∣∣∣∣∣∣
∑

g∈Md

χ(g)

∣∣∣∣∣∣ ≤
(

t + ℓ − 1
d

)
qd/2.

The condition ℓ ≥ 1 implies χi ̸= 1 when p ∤ i. This together
with the condition D = {α ∈ Fq : Q(α) ̸= 0} give∣∣∣∣∣∑

α∈D

χi(x − α)
∣∣∣∣∣ ≤ γn. (p ∤ i) (4)

Theorem 2 holds for those D satisfying (4).
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Coordinate-sieve formula
Let D̄j := {(x1, . . . , xj) : xi ∈ D are all distinct} and ci(τ) be
the number of cycles of length i in a permutation τ of j
elements. Define l(τ) =

∑
i

ci, l′ =
∑
i,p∤i

ci.

Li-Wan’s “coordinate-sieve’’ formula gives∣∣∣∣∣∣
∑

S∈Dj

∏
α∈S

χ(x − α)

∣∣∣∣∣∣
= 1

j!

∣∣∣∣∣∣
∑

(x1,...,xj)∈D̄j

j∏
i=1

χ(x − xi)

∣∣∣∣∣∣
≤ 1

j!
∑

τ

∏
p|i

∣∣∣∣∣∑
α∈D

χi(x − α)
∣∣∣∣∣
ci(τ)∏

p∤i

∣∣∣∣∣∑
α∈D

χi(x − α)
∣∣∣∣∣
ci(τ)

≤ 1
j!
∑

τ

nl(τ)−l′(τ)(γn)l′(τ) = Aj(n, γ).
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elements. Define l(τ) =

∑
i

ci, l′ =
∑
i,p∤i

ci.

Li-Wan’s “coordinate-sieve’’ formula gives∣∣∣∣∣∣
∑

S∈Dj

∏
α∈S

χ(x − α)

∣∣∣∣∣∣
= 1

j!

∣∣∣∣∣∣
∑

(x1,...,xj)∈D̄j

j∏
i=1

χ(x − xi)

∣∣∣∣∣∣
≤ 1

j!
∑

τ

∏
p|i

∣∣∣∣∣∑
α∈D

χi(x − α)
∣∣∣∣∣
ci(τ)∏

p∤i

∣∣∣∣∣∑
α∈D

χi(x − α)
∣∣∣∣∣
ci(τ)

≤ 1
j!
∑

τ

nl(τ)−l′(τ)(γn)l′(τ) = Aj(n, γ).



Estimate for Φj(Q)
Recall Φj(Q) := |{f ∈ Mj : gcd(f, Q) = 1}|.

Let
{Pi : i ∈ I} be the set of distinct irreducible factors of Q,
where Pi ∈ Mdi

. Then the sieve formula gives

Φj(Q) =
∑
S⊆I

(−1)|S|

t∑
i∈S

di ≤ j

|

qj−
∑

i∈S
di ,

qj

(
1 −

∑
i∈I

q−di

)
≤ Φj(Q) ≤ qj.

We note

|I| ≤
∑
i∈I

di ≤ t ≤
√

n,

Φj(Q) = qj
(
1 + O

(√
n/q

))
.

Theorem 2 follows from Propositions 1–3.
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Thanks. Questions?


