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» [ [z] denotes the set of polynomials with coefficients in
F,.
» deg(f) denotes the degree of the polynomial f.
» M denotes the set of monic polynomials in F,[z],

M, = {f € M : deg(f) = j}.
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For a non-negative integer ¢ and Q € M,, two polynomials
f,g € M are Hayes equivalent with respect to ¢ and () if

ged(f, Q) = ged(g,Q) =1 and

f(2) = ) (mod 2"), (1)
f(2) = g(x) (mod Q). ©)
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Condition (1) says that f and g have the same ¢ leading
coefficients, that is,

[xdeg(f)fj] fla) = [xdeg(g)fj} g(x), 1<j<U.

The following two special cases are particularly interesting.

(a) @ = 1. In this case, condition (2) is null, and Hayes
equivalence is defined by the ¢ leading coefficients.

(b) @ = z* for some t > 0. In this case, condition (2) says
that f and g have the same t ending coefficients, that is

[ZE]} flx) = [:13]} g(z), 0<j<t-—1.
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The Hayes group

Let £49 denote the set of all Hayes equivalence classes with
respect to £, (), and let (f) denote the equivalence class
represented by a polynomial f € M. It is known [Hayes 65]
that £49 is a group under the operation (f){g) = (fg). It is
also known that

gZ,Q ~ 58,1 % gO,Q’
E9] = ¢"®,(Q), where ©;(Q) := [{f € M, : ged(f,Q) = 1}].

We shall use lverson’s bracket [P] which has value 1 if the
predicate P is true and 0 otherwise.



Distribution of the number of zeros

Let My (e) denote the set of polynomials in M which have
degree k 4+t + ¢ and are equivalent to . It is known that
[Mi(e)] = q".



Distribution of the number of zeros

Let My (e) denote the set of polynomials in M which have
degree k 4+t + ¢ and are equivalent to . It is known that
[Mi(e)| = ¢".
Given D C T, and € € £%9, let Y, (¢) be the number of zeros
in D of a random polynomial f € My(e) (under uniform
distribution). Some known work about the distribution of
Yk(E) .

» For D =T, and for all polynomials, thatis, ¢ =0,Q = 1.

[Knopfmacher-Knopfmacher 90]



Distribution of the number of zeros

Let My (e) denote the set of polynomials in M which have
degree k 4+t + ¢ and are equivalent to . It is known that
[Mi(e)] = "

Given D C T, and € € £%9, let Y, (¢) be the number of zeros
in D of a random polynomial f € My(e) (under uniform
distribution). Some known work about the distribution of
Yk(E) .

» For D =T, and for all polynomials, thatis, ¢ =0,Q = 1.
[Knopfmacher-Knopfmacher 90]

» For polynomials with given leading coefficients, i.e.,
¢>1,0 = 1. This is related to the distance distribution
of Reed-Solomon code. [Zhou-Wang-Wang 17, Li-Wan
20, Gao-Li 23]



Distribution of the number of zeros

Let My (e) denote the set of polynomials in M which have
degree k 4+t + ¢ and are equivalent to . It is known that
[Mi(e)| = ¢".

Given D C T, and € € £%9, let Y, (¢) be the number of zeros
in D of a random polynomial f € My(e) (under uniform
distribution). Some known work about the distribution of
Yk(E) .

» For D =T, and for all polynomials, thatis, ¢ =0,Q = 1.
[Knopfmacher-Knopfmacher 90]

» For polynomials with given leading coefficients, i.e.,
¢>1,0 = 1. This is related to the distance distribution
of Reed-Solomon code. [Zhou-Wang-Wang 17, Li-Wan
20, Gao-Li 23]

Since ged(f, @) = 1, we will assume
D C{x eF,: Q(z) #0}, and set n := |D|.
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Theorem 1 Let Q € M, and ¢ € £5¢.
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Asymptotics for large r

Theorem 2 Let e € %9 and D = {z € F,: Q(z) # 0}.
Suppose either £ > 1 or £ = 0,Q = z'. Then, uniformly for
0<r<k+t+/¢ ask— oo, we have

n -T
P(Yi =17) ~ prise—r(7) (r)q )

provided that either of the following conditions holds:
(a) there are constants ¢, € (0,1) such that ¢t + ¢ < ¢/n,
k < cn and

p—1
b

1 1+4+c¢
1—c D

1
cln-+(1—¢)ln In(1+¢) > ' In(2p).
c

(b) there are constants ¢, ¢ € (0,1) such that t + ¢ < ¢\/n,
k<en,p>c/d>1and (1—c)ln1

> In—.
C/



Outline of the proofs
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Outline of the proofs
It is convenient to define (f) = 0 when ged(f, Q) # 1. Let

r(f) =Nz e D: f(x) =0},

and consider the following generating function:

Gz,u) = Y ()28,

fem
The standard generating function argument gives

t-‘rf(l_'_ Z c

A

s (z > <g>) T (1) + (u— D=l — ).

7=0 geEM,; a€D

G(Z, U) = @
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Sieve formula and Bonferroni inequalities

Sieve formula Let Y be any random variable which takes
non-negative integer values 0,1, ..., M. We have

wa-gov (r ()
Moreover, for each r < m < M, we have
- Eer RO G

This and Proposition 1 immediately give Theorem 1 by
choosing m = k.




The function A(a, b) and its bounds
Define
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The function A(a, b) and its bounds
Define

Aj(a,b) =[] ((1 — )1 — Zp)—a(kb)/p)

S (ab—i—.j—.ip—1)(&(1—())/'])4—2'—1).

0<i<j/p J 1w [

Proposition 3 Let b € (0,1] and a > 0. Then
(a) Forall p > 0, we have

' ' 1-0 j
lnAj(a,b)Sllna—i,_j —l—a( )lna+‘7 + abln(2p),
p J p a
(b) For p>¢;/b> 1, we have
’ In4 ,
In A;(a,b) < jln DFT 4 gy @t oy

ab D



Estimate for W;(e) using Weil's bound

Proposition 2 letc € £, k+1<j<k+t+/¢,

v :=min{l, (¢t + ¢ —1),/q/n}, and
D ={aeF,:Q(a) #0}. Suppose ¢ > 1. Then

- 2D ()

|EQ) —1( t+1-1
= & \t+l+k—j

)q(tﬁﬂ_j)/gf‘lj(n, 7).
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v :=min{l, (¢t + ¢ —1),/q/n}, and
D ={aeF,:Q(a) #0}. Suppose ¢ > 1. Then

T (#)) (”) ¢
Wi(e) — ———1 %2 g
‘ J<> q)t(Q) J
|ECCl -1 t+0—-1 (t+04h—5)/2
i DA ().
= e \t4t4k—j)° ()

The proof uses characters y over £49:

Wj(e) = |5iQ|ZX(8‘1)< > X(Q)) > I x@—a),

gGMkth«ij SEDJ' a€eS

Weil's bound for character sums, and and Li-Wan's
“coordinate-sieve’’ formula.



Weil's bound

Weil’s bound: for each y # 1 and d <t + ¢ — 1, we have

< <t+€— 1>qd/2.
d

> x(9)

geEMy




Weil's bound

Weil’s bound: for each y # 1 and d <t + ¢ — 1, we have

< <t+€— 1>qd/2.
d

The condition ¢ > 1 implies x* # 1 when p 4. This together
with the condition D = {a € F, : Q(«) # 0} give

> x(9)

geEMy

Y X'z —a)

aceD

< n. (p11) (4)

Theorem 2 holds for those D satisfying (4).
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Coordinate-sieve formula
Let D7 := {(v1,...,2;) : 7; € D are all distinct} and ¢;(7) be
the number of cycles of length ¢ in a permutation 7 of j

elements. Define /(T ch, I'=> ¢
i,pti
Li-Wan's “coordinate-sieve’’ formula gives

Z HXI—Oé

SeDj aeS

Z ﬁx(x—xi)

Nt _)EDj =1

ZH > X'(@—a) I

T pli laeD pti

< L ) ) = Ay(n,),

ci(T) ci(T)

> X'z —a)

aeD
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Estimate for ®;(Q)

Recall ®,(Q) :==[{f € M, : ged(f,Q) = 1}|. Let
{P; :i € I} be the set of distinct irreducible factors of @,
where P, € M, ,. Then the sieve formula gives

;(Q) = Z Ol de <J]‘ I e

€S

(1—Zq ) ;(Q) < ¢

el

We note

®;(Q) = ¢’ (1+0(Vn/q)).

Theorem 2 follows from Propositions 1-3.



Thanks. Questions?



