Asymptotic distributions of the number of zeros of random polynomials in Hayes equivalence class over a finite field

Jason Z. Gao School of Mathematics and Statistics Carleton University Ottawa, Ontario K1S5B6 Canada

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ▶ \mathbb{F}_q denotes the finite field with q elements, q is a power of a prime p, and $\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}$.
- $\mathbb{F}_q[x]$ denotes the set of polynomials with coefficients in \mathbb{F}_q .

- $\deg(f)$ denotes the degree of the polynomial f.
- \mathcal{M} denotes the set of monic polynomials in $\mathbb{F}_q[x]$, $\mathcal{M}_j := \{ f \in \mathcal{M} : \deg(f) = j \}.$

- ▶ \mathbb{F}_q denotes the finite field with q elements, q is a power of a prime p, and $\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}$.
- ▶ $\mathbb{F}_q[x]$ denotes the set of polynomials with coefficients in \mathbb{F}_q .
- $\deg(f)$ denotes the degree of the polynomial f.
- \mathcal{M} denotes the set of monic polynomials in $\mathbb{F}_q[x]$, $\mathcal{M}_j := \{ f \in \mathcal{M} : \deg(f) = j \}.$
- For $f \in \mathcal{M}_d$, $\hat{f} = x^d f(1/x)$ is called the *reciprocal* of f.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ► F_q denotes the finite field with q elements, q is a power of a prime p, and F^{*}_q = F_q \ {0}.
- ▶ $\mathbb{F}_q[x]$ denotes the set of polynomials with coefficients in \mathbb{F}_q .
- $\deg(f)$ denotes the degree of the polynomial f.
- \mathcal{M} denotes the set of monic polynomials in $\mathbb{F}_q[x]$, $\mathcal{M}_j := \{ f \in \mathcal{M} : \deg(f) = j \}.$

For $f \in \mathcal{M}_d$, $\hat{f} = x^d f(1/x)$ is called the *reciprocal* of f.

For a non-negative integer ℓ and $Q \in \mathcal{M}_t$, two polynomials $f, g \in \mathcal{M}$ are *Hayes equivalent* with respect to ℓ and Q if gcd(f, Q) = gcd(g, Q) = 1 and

$$\hat{f}(x) \equiv \hat{g}(x) \pmod{x^{\ell+1}},$$
(1)
$$f(x) \equiv g(x) \pmod{Q}.$$
(2)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Condition (1) says that f and g have the same ℓ *leading coefficients*, that is,

$$\left[x^{\deg(f)-j}\right]f(x) = \left[x^{\deg(g)-j}\right]g(x), \quad 1 \le j \le \ell.$$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ めへぐ

Condition (1) says that f and g have the same ℓ *leading coefficients*, that is,

$$\left[x^{\deg(f)-j}\right]f(x) = \left[x^{\deg(g)-j}\right]g(x), \quad 1 \le j \le \ell.$$

The following two special cases are particularly interesting.
(a) Q = 1. In this case, condition (2) is null, and Hayes equivalence is defined by the ℓ leading coefficients.
(b) Q = x^t for some t > 0. In this case, condition (2) says that f and q have the same t ending coefficients, that is

$$\left[x^{j}\right]f(x) = \left[x^{j}\right]g(x), \quad 0 \le j \le t-1.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Hayes group

Let $\mathcal{E}^{\ell,Q}$ denote the set of all Hayes equivalence classes with respect to ℓ, Q , and let $\langle f \rangle$ denote the equivalence class represented by a polynomial $f \in \mathcal{M}$. It is known [Hayes 65] that $\mathcal{E}^{\ell,Q}$ is a group under the operation $\langle f \rangle \langle g \rangle = \langle fg \rangle$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Hayes group

Let $\mathcal{E}^{\ell,Q}$ denote the set of all Hayes equivalence classes with respect to ℓ, Q , and let $\langle f \rangle$ denote the equivalence class represented by a polynomial $f \in \mathcal{M}$. It is known [Hayes 65] that $\mathcal{E}^{\ell,Q}$ is a group under the operation $\langle f \rangle \langle g \rangle = \langle fg \rangle$. It is also known that

$$\begin{aligned} \mathcal{E}^{\ell,Q} &\cong \mathcal{E}^{\ell,1} \times \mathcal{E}^{0,Q}, \\ |\mathcal{E}^{\ell,Q}| &= q^{\ell} \Phi_t(Q), \text{ where } \Phi_j(Q) := |\{f \in \mathcal{M}_j : \gcd(f,Q) = 1\}|. \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Hayes group

Let $\mathcal{E}^{\ell,Q}$ denote the set of all Hayes equivalence classes with respect to ℓ, Q , and let $\langle f \rangle$ denote the equivalence class represented by a polynomial $f \in \mathcal{M}$. It is known [Hayes 65] that $\mathcal{E}^{\ell,Q}$ is a group under the operation $\langle f \rangle \langle g \rangle = \langle fg \rangle$. It is also known that

$$\mathcal{E}^{\ell,Q} \cong \mathcal{E}^{\ell,1} \times \mathcal{E}^{0,Q},$$
$$|\mathcal{E}^{\ell,Q}| = q^{\ell} \Phi_t(Q), \text{ where } \Phi_j(Q) := |\{f \in \mathcal{M}_j : \gcd(f,Q) = 1\}|.$$

We shall use lverson's bracket $\llbracket P \rrbracket$ which has value 1 if the predicate P is true and 0 otherwise.

Let $\mathcal{M}_k(\varepsilon)$ denote the set of polynomials in \mathcal{M} which have degree $k + t + \ell$ and are equivalent to ε . It is known that $|\mathcal{M}_k(\varepsilon)| = q^k$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let $\mathcal{M}_k(\varepsilon)$ denote the set of polynomials in \mathcal{M} which have degree $k + t + \ell$ and are equivalent to ε . It is known that $|\mathcal{M}_k(\varepsilon)| = q^k$. Given $D \subseteq \mathbb{F}_q$ and $\varepsilon \in \mathcal{E}^{\ell,Q}$, let $Y_k(\varepsilon)$ be the number of zeros in D of a random polynomial $f \in \mathcal{M}_k(\varepsilon)$ (under uniform distribution). Some known work about the distribution of $Y_k(\varepsilon)$:

For $D = \mathbb{F}_q$ and for all polynomials, that is, $\ell = 0, Q = 1$. [Knopfmacher-Knopfmacher 90]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $\mathcal{M}_k(\varepsilon)$ denote the set of polynomials in \mathcal{M} which have degree $k + t + \ell$ and are equivalent to ε . It is known that $|\mathcal{M}_k(\varepsilon)| = q^k$. Given $D \subseteq \mathbb{F}_q$ and $\varepsilon \in \mathcal{E}^{\ell,Q}$, let $Y_k(\varepsilon)$ be the number of zeros in D of a random polynomial $f \in \mathcal{M}_k(\varepsilon)$ (under uniform distribution). Some known work about the distribution of $Y_k(\varepsilon)$:

- For $D = \mathbb{F}_q$ and for all polynomials, that is, $\ell = 0, Q = 1$. [Knopfmacher-Knopfmacher 90]
- ► For polynomials with given leading coefficients, i.e., l ≥ 1, Q = 1. This is related to the distance distribution of Reed-Solomon code. [Zhou-Wang-Wang 17, Li-Wan 20, Gao-Li 23]

Let $\mathcal{M}_k(\varepsilon)$ denote the set of polynomials in \mathcal{M} which have degree $k + t + \ell$ and are equivalent to ε . It is known that $|\mathcal{M}_k(\varepsilon)| = q^k$. Given $D \subseteq \mathbb{F}_q$ and $\varepsilon \in \mathcal{E}^{\ell,Q}$, let $Y_k(\varepsilon)$ be the number of zeros in D of a random polynomial $f \in \mathcal{M}_k(\varepsilon)$ (under uniform distribution). Some known work about the distribution of $Y_k(\varepsilon)$:

- For $D = \mathbb{F}_q$ and for all polynomials, that is, $\ell = 0, Q = 1$. [Knopfmacher-Knopfmacher 90]
- ► For polynomials with given leading coefficients, i.e., l ≥ 1, Q = 1. This is related to the distance distribution of Reed-Solomon code. [Zhou-Wang-Wang 17, Li-Wan 20, Gao-Li 23]

Since gcd(f,Q) = 1, we will assume $D \subseteq \{x \in \mathbb{F}_q : Q(x) \neq 0\}$, and set n := |D|.

Asymptotic distribution of $Y_k(\varepsilon)$ Theorem 1 Let $Q \in \mathcal{M}_t$ and $\varepsilon \in \mathcal{E}^{\ell,Q}$. (a) As $k - r \to \infty$, we have

$$\mathbb{P}(Y_k(\varepsilon) = r) = \binom{n}{r} \left(\frac{1}{q}\right)^r \left(1 - \frac{1}{q}\right)^{n-r} (1 + o(1)).$$

(b) As $n, k - r \to \infty$ and for $r = o(\sqrt{n})$, we have

$$\mathbb{P}(Y_k(\varepsilon) = r) \sim e^{-n/q} \frac{1}{r!} \left(\frac{n}{q}\right)^r$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Asymptotic distribution of $Y_k(\varepsilon)$ Theorem 1 Let $Q \in \mathcal{M}_t$ and $\varepsilon \in \mathcal{E}^{\ell,Q}$. (a) As $k - r \to \infty$, we have

$$\mathbb{P}(Y_k(\varepsilon) = r) = \binom{n}{r} \left(\frac{1}{q}\right)^r \left(1 - \frac{1}{q}\right)^{n-r} (1 + o(1)).$$

(b) As $n, k - r \to \infty$ and for $r = o(\sqrt{n})$, we have

$$\mathbb{P}(Y_k(\varepsilon) = r) \sim e^{-n/q} \frac{1}{r!} \left(\frac{n}{q}\right)^r$$

٠

Define
$$\mu_m(r):=\sum_{j=0}^m (-1)^j \binom{n-r}{j} q^{-j}.$$
 We note

$$\left|\mu_m(r) - \left(1 - \frac{1}{q}\right)^{n-r}\right| \le \binom{n-r}{m+1} q^{-(m+1)} \le \frac{1}{(m+1)!}.$$

Asymptotics for large r

Theorem 2 Let $\varepsilon \in \mathcal{E}^{\ell,Q}$ and $D = \{x \in \mathbb{F}_q : Q(x) \neq 0\}$. Suppose either $\ell \geq 1$ or $\ell = 0, Q = x^t$. Then, uniformly for $0 \leq r \leq k + t + \ell$, as $k \to \infty$, we have

$$\mathbb{P}(Y_k = r) \sim \mu_{k+t+\ell-r}(r) \binom{n}{r} q^{-r},$$

provided that either of the following conditions holds: (a) there are constants $c,c'\in(0,1)$ such that $t+\ell\leq c'\sqrt{n},$ $k\leq cn$ and

$$\frac{p-1}{p}c\ln\frac{1}{c} + (1-c)\ln\frac{1}{1-c} - \frac{1+c}{p}\ln(1+c) > c'\ln(2p).$$

(b) there are constants $c, c' \in (0, 1)$ such that $t + \ell \leq c'\sqrt{n}$, $k \leq cn, p \geq c/c' \geq 1$ and $(1 - c) \ln \frac{1}{1 - c} > c' \ln \frac{1}{c'}$.

・ロト 4 酉 ト 4 重 ト 4 国 ト 4 回 ト

Outline of the proofs

It is convenient to define $\langle f \rangle = 0$ when $\gcd(f,Q) \neq 1.$ Let

$$r(f) := |\{x \in D : f(x) = 0\}|,\$$

and consider the following generating function:

$$G(z, u) = \sum_{f \in \mathcal{M}} \langle f \rangle z^{\deg(f)} u^{r(f)},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline of the proofs

It is convenient to define $\langle f \rangle = 0$ when $gcd(f,Q) \neq 1$. Let

$$r(f) := |\{x \in D : f(x) = 0\}|,\$$

and consider the following generating function:

$$G(z, u) = \sum_{f \in \mathcal{M}} \langle f \rangle z^{\deg(f)} u^{r(f)},$$

The standard generating function argument gives

$$G(z,u) = \frac{1}{1-qz} z^{t+\ell} (1+(u-1)z)^n \sum_{\varepsilon \in \mathcal{E}^{\ell,Q}} \varepsilon + \left(\sum_{j=0}^{t+\ell-1} z^j \sum_{g \in \mathcal{M}_j} \langle g \rangle \right) \prod_{\alpha \in D} \left(\langle 1 \rangle + (u-1)z \langle x - \alpha \rangle \right).$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Generating function and moments

Let D_j be the set of all *j*-subsets of D, and

$$W_{j}(\varepsilon) = \sum_{g \in \mathcal{M}_{k+t+\ell-j}} \sum_{S \in D_{j}} \left[\langle g \rangle \prod_{\alpha \in S} \langle x - \alpha \rangle = \varepsilon \right] .$$
 (3)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Generating function and moments

Let D_j be the set of all *j*-subsets of D, and

$$W_{j}(\varepsilon) = \sum_{g \in \mathcal{M}_{k+t+\ell-j}} \sum_{S \in D_{j}} \left[\langle g \rangle \prod_{\alpha \in S} \langle x - \alpha \rangle = \varepsilon \right] .$$
 (3)

Proposition 1

$$\begin{bmatrix} z^{k+t+\ell} \varepsilon \end{bmatrix} G(z,u) = \sum_{j=0}^{k} q^{k-j} \binom{n}{j} (u-1)^{j} + \sum_{j=k+1}^{k+t+\ell} W_{j}(\varepsilon) (u-1)^{j}, \\ \mathbb{E}\left(\binom{Y_{k}(\varepsilon)}{j}\right) = \llbracket j \leq k \rrbracket \binom{n}{j} q^{-j} \\+ \llbracket k+1 \leq j \leq k+t+\ell \rrbracket q^{-k} W_{j}(\varepsilon).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

Generating function and moments

Let D_j be the set of all *j*-subsets of D, and

$$W_{j}(\varepsilon) = \sum_{g \in \mathcal{M}_{k+t+\ell-j}} \sum_{S \in D_{j}} \left[\langle g \rangle \prod_{\alpha \in S} \langle x - \alpha \rangle = \varepsilon \right] .$$
 (3)

Proposition 1

$$\begin{bmatrix} z^{k+t+\ell} \varepsilon \end{bmatrix} G(z,u) = \sum_{j=0}^{k} q^{k-j} \binom{n}{j} (u-1)^{j} + \sum_{j=k+1}^{k+t+\ell} W_{j}(\varepsilon) (u-1)^{j}, \\ \mathbb{E}\left(\binom{Y_{k}(\varepsilon)}{j}\right) = \llbracket j \leq k \rrbracket \binom{n}{j} q^{-j} \\+ \llbracket k+1 \leq j \leq k+t+\ell \rrbracket q^{-k} W_{j}(\varepsilon).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

Sieve formula and Bonferroni inequalities

Sieve formula Let Y be any random variable which takes non-negative integer values $0, 1, \ldots, M$. We have

$$\mathbb{P}(Y=r) = \sum_{j=r}^{M} (-1)^{j+r} \binom{j}{r} \mathbb{E}\left(\binom{Y}{j}\right).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Sieve formula and Bonferroni inequalities

Sieve formula Let Y be any random variable which takes non-negative integer values $0, 1, \ldots, M$. We have

$$\mathbb{P}(Y=r) = \sum_{j=r}^{M} (-1)^{j+r} \binom{j}{r} \mathbb{E}\left(\binom{Y}{j}\right).$$

Moreover, for each $r \leq m \leq M$, we have

$$\left| \mathbb{P}(Y=r) - \sum_{j=r}^{m-1} (-1)^{j+r} \binom{j}{r} \mathbb{E}\left(\binom{Y}{j}\right) \right| \le \binom{m}{r} \mathbb{E}\left(\binom{Y}{m}\right).$$

Sieve formula and Bonferroni inequalities

Sieve formula Let Y be any random variable which takes non-negative integer values $0, 1, \ldots, M$. We have

$$\mathbb{P}(Y=r) = \sum_{j=r}^{M} (-1)^{j+r} \binom{j}{r} \mathbb{E}\left(\binom{Y}{j}\right)$$

Moreover, for each $r \leq m \leq M$, we have

$$\left|\mathbb{P}(Y=r) - \sum_{j=r}^{m-1} (-1)^{j+r} \binom{j}{r} \mathbb{E}\left(\binom{Y}{j}\right)\right| \le \binom{m}{r} \mathbb{E}\left(\binom{Y}{m}\right).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This and Proposition 1 immediately give Theorem 1 by choosing m = k.

The function $A_j(a, b)$ and its bounds Define

$$A_{j}(a,b) = [z^{j}] \left((1-z)^{-ab} (1-z^{p})^{-a(1-b)/p} \right)$$
$$= \sum_{0 \le i \le j/p} {ab+j-ip-1 \choose j-ip} {a(1-b)/p+i-1 \choose i}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The function $A_j(a, b)$ and its bounds Define

$$A_{j}(a,b) = [z^{j}] \left((1-z)^{-ab} (1-z^{p})^{-a(1-b)/p} \right)$$
$$= \sum_{0 \le i \le j/p} {ab+j-ip-1 \choose j-ip} {a(1-b)/p+i-1 \choose i}.$$

Proposition 3 Let $b \in (0,1]$ and a > 0. Then (a) For all p > 0, we have

$$\ln A_j(a,b) \le \frac{j}{p} \ln \frac{a+j}{j} + \frac{a(1-b)}{p} \ln \frac{a+j}{a} + ab \ln(2p),$$

(b) For $p \ge c_j/b \ge 1$, we have

$$\ln A_j(a,b) \le j \ln \frac{ab+j}{j} + ab \ln \frac{ab+j}{ab} + \frac{a \ln 4}{p} 2^{-pab/j}.$$

Estimate for $W_i(\varepsilon)$ using Weil's bound

Proposition 2 Let $\varepsilon \in \mathcal{E}$, $k + 1 \leq j \leq k + t + \ell$, $\gamma := \min\{1, (t + \ell - 1)\sqrt{q}/n\}$, and $D = \{\alpha \in \mathbb{F}_q : Q(\alpha) \neq 0\}$. Suppose $\ell \geq 1$. Then

$$\left| W_j(\varepsilon) - \frac{\Phi_{k+t+\ell-j}(Q)}{\Phi_t(Q)} \binom{n}{j} q^{-\ell} \right|$$

$$\leq \frac{|\mathcal{E}^{\ell,Q}| - 1}{|\mathcal{E}^{\ell,Q}|} \binom{t+\ell-1}{t+\ell+k-j} q^{(t+\ell+k-j)/2} A_j(n,\gamma).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Estimate for $W_i(\varepsilon)$ using Weil's bound

Proposition 2 Let $\varepsilon \in \mathcal{E}$, $k + 1 \leq j \leq k + t + \ell$, $\gamma := \min\{1, (t + \ell - 1)\sqrt{q}/n\}$, and $D = \{\alpha \in \mathbb{F}_q : Q(\alpha) \neq 0\}$. Suppose $\ell \geq 1$. Then

$$\left| W_j(\varepsilon) - \frac{\Phi_{k+t+\ell-j}(Q)}{\Phi_t(Q)} \binom{n}{j} q^{-\ell} \right|$$

$$\leq \frac{|\mathcal{E}^{\ell,Q}| - 1}{|\mathcal{E}^{\ell,Q}|} \binom{t+\ell-1}{t+\ell+k-j} q^{(t+\ell+k-j)/2} A_j(n,\gamma).$$

The proof uses *characters* χ over $\mathcal{E}^{\ell,Q}$:

$$W_j(\varepsilon) = \frac{1}{|\mathcal{E}^{\ell,Q}|} \sum_{\chi} \chi(\varepsilon^{-1}) \left(\sum_{g \in \mathcal{M}_{k+t+\ell-j}} \chi(g) \right) \sum_{S \in D_j} \prod_{\alpha \in S} \chi(x-\alpha),$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Estimate for $W_j(\varepsilon)$ using Weil's bound

Proposition 2 Let $\varepsilon \in \mathcal{E}$, $k + 1 \leq j \leq k + t + \ell$, $\gamma := \min\{1, (t + \ell - 1)\sqrt{q}/n\}$, and $D = \{\alpha \in \mathbb{F}_q : Q(\alpha) \neq 0\}$. Suppose $\ell \geq 1$. Then

$$\left| W_{j}(\varepsilon) - \frac{\Phi_{k+t+\ell-j}(Q)}{\Phi_{t}(Q)} \binom{n}{j} q^{-\ell} \right|$$

$$\leq \frac{|\mathcal{E}^{\ell,Q}| - 1}{|\mathcal{E}^{\ell,Q}|} \binom{t+\ell-1}{t+\ell+k-j} q^{(t+\ell+k-j)/2} A_{j}(n,\gamma).$$

The proof uses *characters* χ over $\mathcal{E}^{\ell,Q}$:

$$W_j(\varepsilon) = \frac{1}{|\mathcal{E}^{\ell,Q}|} \sum_{\chi} \chi(\varepsilon^{-1}) \left(\sum_{g \in \mathcal{M}_{k+t+\ell-j}} \chi(g) \right) \sum_{S \in D_j} \prod_{\alpha \in S} \chi(x-\alpha),$$

Weil's bound for character sums, and and Li-Wan's "coordinate-sieve" formula.

Weil's bound

Weil's bound: for each $\chi \neq 1$ and $d \leq t + \ell - 1$, we have

$$\left|\sum_{g \in \mathcal{M}_d} \chi(g)\right| \le \binom{t+\ell-1}{d} q^{d/2}.$$

Weil's bound

Weil's bound: for each $\chi \neq 1$ and $d \leq t + \ell - 1$, we have

$$\left|\sum_{g\in\mathcal{M}_d}\chi(g)\right| \le \binom{t+\ell-1}{d}q^{d/2}.$$

The condition $\ell \ge 1$ implies $\chi^i \ne 1$ when $p \nmid i$. This together with the condition $D = \{\alpha \in \mathbb{F}_q : Q(\alpha) \ne 0\}$ give

$$\left|\sum_{\alpha \in D} \chi^{i}(x - \alpha)\right| \leq \gamma n. \qquad (p \nmid i) \qquad (4)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem 2 holds for those D satisfying (4).

Coordinate-sieve formula

Let $\overline{D}^j := \{(x_1, \ldots, x_j) : x_i \in D \text{ are all distinct}\}$ and $c_i(\tau)$ be the number of cycles of length i in a permutation τ of j elements. Define $l(\tau) = \sum_i c_i, \quad l' = \sum_{i, p \nmid i} c_i.$

Coordinate-sieve formula

Let $\overline{D}^j := \{(x_1, \dots, x_j) : x_i \in D \text{ are all distinct}\}$ and $c_i(\tau)$ be the number of cycles of length i in a permutation τ of j elements. Define $l(\tau) = \sum_i c_i, \quad l' = \sum_{i, p \nmid i} c_i.$

Li-Wan's "coordinate-sieve" formula gives

Estimate for $\Phi_j(Q)$ Recall $\Phi_j(Q) := |\{f \in \mathcal{M}_j : \gcd(f, Q) = 1\}|.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Estimate for $\Phi_j(Q)$

Recall $\Phi_j(Q) := |\{f \in \mathcal{M}_j : \gcd(f, Q) = 1\}|$. Let $\{P_i : i \in I\}$ be the set of distinct irreducible factors of Q, where $P_i \in \mathcal{M}_{d_i}$. Then the sieve formula gives

$$\Phi_j(Q) = \sum_{S \subseteq I} (-1)^{|S|} \left[\left[\sum_{i \in S} d_i \le j \right] q^{j - \sum_{i \in S} d_i}, q^j \left(1 - \sum_{i \in I} q^{-d_i} \right) \le \Phi_j(Q) \le q^j.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Estimate for $\Phi_j(Q)$

Recall $\Phi_j(Q) := |\{f \in \mathcal{M}_j : \gcd(f, Q) = 1\}|$. Let $\{P_i : i \in I\}$ be the set of distinct irreducible factors of Q, where $P_i \in \mathcal{M}_{d_i}$. Then the sieve formula gives

$$\Phi_j(Q) = \sum_{S \subseteq I} (-1)^{|S|} \left[\left[\sum_{i \in S} d_i \le j \right] q^{j - \sum_{i \in S} d_i}, q^j \left(1 - \sum_{i \in I} q^{-d_i} \right) \le \Phi_j(Q) \le q^j.$$

We note

$$|I| \le \sum_{i \in I} d_i \le t \le \sqrt{n},$$

$$\Phi_j(Q) = q^j \left(1 + O\left(\sqrt{n}/q\right)\right).$$

Theorem 2 follows from Propositions 1-3.

Thanks. Questions?

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@