Asymptotic distributions of the number of zeros of random polynomials in Hayes equivalence class over a finite field

Jason Z. Gao
School of Mathematics and Statistics
Carleton University
Ottawa, Ontario K1S5B6
Canada

Definitions and Notation

- \mathbb{F}_{q} denotes the finite field with q elements, q is a power of a prime p, and $\mathbb{F}_{q}^{*}=\mathbb{F}_{q} \backslash\{0\}$.
$-\mathbb{F}_{q}[x]$ denotes the set of polynomials with coefficients in \mathbb{F}_{q}.
- $\operatorname{deg}(f)$ denotes the degree of the polynomial f.
$-\mathcal{M}$ denotes the set of monic polynomials in $\mathbb{F}_{q}[x]$, $\mathcal{M}_{j}:=\{f \in \mathcal{M}: \operatorname{deg}(f)=j\}$.

Definitions and Notation

- \mathbb{F}_{q} denotes the finite field with q elements, q is a power of a prime p, and $\mathbb{F}_{q}^{*}=\mathbb{F}_{q} \backslash\{0\}$.
- $\mathbb{F}_{q}[x]$ denotes the set of polynomials with coefficients in \mathbb{F}_{q}.
- $\operatorname{deg}(f)$ denotes the degree of the polynomial f.
$-\mathcal{M}$ denotes the set of monic polynomials in $\mathbb{F}_{q}[x]$, $\mathcal{M}_{j}:=\{f \in \mathcal{M}: \operatorname{deg}(f)=j\}$.
- For $f \in \mathcal{M}_{d}, \hat{f}=x^{d} f(1 / x)$ is called the reciprocal of f.

Definitions and Notation

$-\mathbb{F}_{q}$ denotes the finite field with q elements, q is a power of a prime p, and $\mathbb{F}_{q}^{*}=\mathbb{F}_{q} \backslash\{0\}$.

- $\mathbb{F}_{q}[x]$ denotes the set of polynomials with coefficients in \mathbb{F}_{q}.
- $\operatorname{deg}(f)$ denotes the degree of the polynomial f.
- \mathcal{M} denotes the set of monic polynomials in $\mathbb{F}_{q}[x]$,

$$
\mathcal{M}_{j}:=\{f \in \mathcal{M}: \operatorname{deg}(f)=j\} .
$$

- For $f \in \mathcal{M}_{d}, \hat{f}=x^{d} f(1 / x)$ is called the reciprocal of f.

For a non-negative integer ℓ and $Q \in \mathcal{M}_{t}$, two polynomials $f, g \in \mathcal{M}$ are Hayes equivalent with respect to ℓ and Q if $\operatorname{gcd}(f, Q)=\operatorname{gcd}(g, Q)=1$ and

$$
\begin{align*}
& \hat{f}(x) \equiv \hat{g}(x) \quad\left(\bmod x^{\ell+1}\right) \tag{1}\\
& f(x) \equiv g(x) \quad(\bmod Q) \tag{2}
\end{align*}
$$

Definitions and Notation

Condition (1) says that f and g have the same ℓ leading coefficients, that is,

$$
\left[x^{\operatorname{deg}(f)-j}\right] f(x)=\left[x^{\operatorname{deg}(g)-j}\right] g(x), \quad 1 \leq j \leq \ell
$$

Definitions and Notation

Condition (1) says that f and g have the same ℓ leading coefficients, that is,

$$
\left[x^{\operatorname{deg}(f)-j}\right] f(x)=\left[x^{\operatorname{deg}(g)-j}\right] g(x), \quad 1 \leq j \leq \ell
$$

The following two special cases are particularly interesting.
(a) $Q=1$. In this case, condition (2) is null, and Hayes equivalence is defined by the ℓ leading coefficients.
(b) $Q=x^{t}$ for some $t>0$. In this case, condition (2) says that f and g have the same t ending coefficients, that is

$$
\left[x^{j}\right] f(x)=\left[x^{j}\right] g(x), \quad 0 \leq j \leq t-1
$$

The Hayes group

Let $\mathcal{E}^{\ell, Q}$ denote the set of all Hayes equivalence classes with respect to ℓ, Q, and let $\langle f\rangle$ denote the equivalence class represented by a polynomial $f \in \mathcal{M}$. It is known [Hayes 65] that $\mathcal{E}^{\ell, Q}$ is a group under the operation $\langle f\rangle\langle g\rangle=\langle f g\rangle$.

The Hayes group

Let $\mathcal{E}^{\ell, Q}$ denote the set of all Hayes equivalence classes with respect to ℓ, Q, and let $\langle f\rangle$ denote the equivalence class represented by a polynomial $f \in \mathcal{M}$. It is known [Hayes 65] that $\mathcal{E}^{\ell, Q}$ is a group under the operation $\langle f\rangle\langle g\rangle=\langle f g\rangle$. It is also known that

$$
\begin{aligned}
\mathcal{E}^{\ell, Q} & \cong \mathcal{E}^{\ell, 1} \times \mathcal{E}^{0, Q} \\
\left|\mathcal{E}^{\ell, Q}\right| & =q^{\ell} \Phi_{t}(Q), \text { where } \Phi_{j}(Q):=\left|\left\{f \in \mathcal{M}_{j}: \operatorname{gcd}(f, Q)=1\right\}\right|
\end{aligned}
$$

The Hayes group

Let $\mathcal{E}^{\ell, Q}$ denote the set of all Hayes equivalence classes with respect to ℓ, Q, and let $\langle f\rangle$ denote the equivalence class represented by a polynomial $f \in \mathcal{M}$. It is known [Hayes 65] that $\mathcal{E}^{\ell, Q}$ is a group under the operation $\langle f\rangle\langle g\rangle=\langle f g\rangle$. It is also known that

$$
\begin{aligned}
\mathcal{E}^{\ell, Q} & \cong \mathcal{E}^{\ell, 1} \times \mathcal{E}^{0, Q} \\
\left|\mathcal{E}^{\ell, Q}\right| & =q^{\ell} \Phi_{t}(Q), \text { where } \Phi_{j}(Q):=\left|\left\{f \in \mathcal{M}_{j}: \operatorname{gcd}(f, Q)=1\right\}\right|
\end{aligned}
$$

We shall use Iverson's bracket $\llbracket P \rrbracket$ which has value 1 if the predicate P is true and 0 otherwise.

Distribution of the number of zeros

Let $\mathcal{M}_{k}(\varepsilon)$ denote the set of polynomials in \mathcal{M} which have degree $k+t+\ell$ and are equivalent to ε. It is known that $\left|\mathcal{M}_{k}(\varepsilon)\right|=q^{k}$.

Distribution of the number of zeros

Let $\mathcal{M}_{k}(\varepsilon)$ denote the set of polynomials in \mathcal{M} which have degree $k+t+\ell$ and are equivalent to ε. It is known that $\left|\mathcal{M}_{k}(\varepsilon)\right|=q^{k}$.
Given $D \subseteq \mathbb{F}_{q}$ and $\varepsilon \in \mathcal{E}^{\ell, Q}$, let $Y_{k}(\varepsilon)$ be the number of zeros in D of a random polynomial $f \in \mathcal{M}_{k}(\varepsilon)$ (under uniform distribution). Some known work about the distribution of $Y_{k}(\varepsilon)$:

- For $D=\mathbb{F}_{q}$ and for all polynomials, that is, $\ell=0, Q=1$. [Knopfmacher-Knopfmacher 90]

Distribution of the number of zeros

Let $\mathcal{M}_{k}(\varepsilon)$ denote the set of polynomials in \mathcal{M} which have degree $k+t+\ell$ and are equivalent to ε. It is known that $\left|\mathcal{M}_{k}(\varepsilon)\right|=q^{k}$.
Given $D \subseteq \mathbb{F}_{q}$ and $\varepsilon \in \mathcal{E}^{\ell, Q}$, let $Y_{k}(\varepsilon)$ be the number of zeros in D of a random polynomial $f \in \mathcal{M}_{k}(\varepsilon)$ (under uniform distribution). Some known work about the distribution of $Y_{k}(\varepsilon)$:

- For $D=\mathbb{F}_{q}$ and for all polynomials, that is, $\ell=0, Q=1$. [Knopfmacher-Knopfmacher 90]
- For polynomials with given leading coefficients, i.e., $\ell \geq 1, Q=1$. This is related to the distance distribution of Reed-Solomon code. [Zhou-Wang-Wang 17, Li-Wan 20, Gao-Li 23]

Distribution of the number of zeros

Let $\mathcal{M}_{k}(\varepsilon)$ denote the set of polynomials in \mathcal{M} which have degree $k+t+\ell$ and are equivalent to ε. It is known that $\left|\mathcal{M}_{k}(\varepsilon)\right|=q^{k}$.
Given $D \subseteq \mathbb{F}_{q}$ and $\varepsilon \in \mathcal{E}^{\ell, Q}$, let $Y_{k}(\varepsilon)$ be the number of zeros in D of a random polynomial $f \in \mathcal{M}_{k}(\varepsilon)$ (under uniform distribution). Some known work about the distribution of $Y_{k}(\varepsilon)$:

- For $D=\mathbb{F}_{q}$ and for all polynomials, that is, $\ell=0, Q=1$. [Knopfmacher-Knopfmacher 90]
- For polynomials with given leading coefficients, i.e., $\ell \geq 1, Q=1$. This is related to the distance distribution of Reed-Solomon code. [Zhou-Wang-Wang 17, Li-Wan 20, Gao-Li 23]
Since $\operatorname{gcd}(f, Q)=1$, we will assume $D \subseteq\left\{x \in \mathbb{F}_{q}: Q(x) \neq 0\right\}$, and set $n:=|D|$.

Asymptotic distribution of $Y_{k}(\varepsilon)$

Theorem 1 Let $Q \in \mathcal{M}_{t}$ and $\varepsilon \in \mathcal{E}^{\ell, Q}$.
(a) As $k-r \rightarrow \infty$, we have

$$
\mathbb{P}\left(Y_{k}(\varepsilon)=r\right)=\binom{n}{r}\left(\frac{1}{q}\right)^{r}\left(1-\frac{1}{q}\right)^{n-r}(1+o(1)) .
$$

(b) As $n, k-r \rightarrow \infty$ and for $r=o(\sqrt{n})$, we have

$$
\mathbb{P}\left(Y_{k}(\varepsilon)=r\right) \sim e^{-n / q} \frac{1}{r!}\left(\frac{n}{q}\right)^{r} .
$$

Asymptotic distribution of $Y_{k}(\varepsilon)$

Theorem 1 Let $Q \in \mathcal{M}_{t}$ and $\varepsilon \in \mathcal{E}^{\ell, Q}$.
(a) As $k-r \rightarrow \infty$, we have

$$
\mathbb{P}\left(Y_{k}(\varepsilon)=r\right)=\binom{n}{r}\left(\frac{1}{q}\right)^{r}\left(1-\frac{1}{q}\right)^{n-r}(1+o(1)) .
$$

(b) As $n, k-r \rightarrow \infty$ and for $r=o(\sqrt{n})$, we have

$$
\mathbb{P}\left(Y_{k}(\varepsilon)=r\right) \sim e^{-n / q} \frac{1}{r!}\left(\frac{n}{q}\right)^{r} .
$$

Define $\mu_{m}(r):=\sum_{j=0}^{m}(-1)^{j}\binom{n-r}{j} q^{-j}$. We note

$$
\left|\mu_{m}(r)-\left(1-\frac{1}{q}\right)^{n-r}\right| \leq\binom{ n-r}{m+1} q^{-(m+1)} \leq \frac{1}{(m+1)!} .
$$

Asymptotics for large r

Theorem 2 Let $\varepsilon \in \mathcal{E}^{\ell, Q}$ and $D=\left\{x \in \mathbb{F}_{q}: Q(x) \neq 0\right\}$.
Suppose either $\ell \geq 1$ or $\ell=0, Q=x^{t}$. Then, uniformly for $0 \leq r \leq k+t+\ell$, as $k \rightarrow \infty$, we have

$$
\mathbb{P}\left(Y_{k}=r\right) \sim \mu_{k+t+\ell-r}(r)\binom{n}{r} q^{-r}
$$

provided that either of the following conditions holds:
(a) there are constants $c, c^{\prime} \in(0,1)$ such that $t+\ell \leq c^{\prime} \sqrt{n}$, $k \leq c n$ and

$$
\frac{p-1}{p} c \ln \frac{1}{c}+(1-c) \ln \frac{1}{1-c}-\frac{1+c}{p} \ln (1+c)>c^{\prime} \ln (2 p)
$$

(b) there are constants $c, c^{\prime} \in(0,1)$ such that $t+\ell \leq c^{\prime} \sqrt{n}$, $k \leq c n, p \geq c / c^{\prime} \geq 1$ and $(1-c) \ln \frac{1}{1-c}>c^{\prime} \ln \frac{1}{c^{\prime}}$.

Outline of the proofs

It is convenient to define $\langle f\rangle=0$ when $\operatorname{gcd}(f, Q) \neq 1$. Let

$$
r(f):=|\{x \in D: f(x)=0\}|
$$

and consider the following generating function:

$$
G(z, u)=\sum_{f \in \mathcal{M}}\langle f\rangle z^{\operatorname{deg}(f)} u^{r(f)}
$$

Outline of the proofs

It is convenient to define $\langle f\rangle=0$ when $\operatorname{gcd}(f, Q) \neq 1$. Let

$$
r(f):=|\{x \in D: f(x)=0\}|
$$

and consider the following generating function:

$$
G(z, u)=\sum_{f \in \mathcal{M}}\langle f\rangle z^{\operatorname{deg}(f)} u^{r(f)}
$$

The standard generating function argument gives

$$
\begin{aligned}
G(z, u)= & \frac{1}{1-q z} z^{t+\ell}(1+(u-1) z)^{n} \sum_{\varepsilon \in \mathcal{E}^{\ell, Q}} \varepsilon \\
& +\left(\sum_{j=0}^{t+\ell-1} z^{j} \sum_{g \in \mathcal{M}_{j}}\langle g\rangle\right) \prod_{\alpha \in D}(\langle 1\rangle+(u-1) z\langle x-\alpha\rangle) .
\end{aligned}
$$

Generating function and moments

Let D_{j} be the set of all j-subsets of D, and

$$
\begin{equation*}
W_{j}(\varepsilon)=\sum_{g \in \mathcal{M}_{k+t+\ell-j}} \sum_{S \in D_{j}} \llbracket\langle g\rangle \prod_{\alpha \in S}\langle x-\alpha\rangle=\varepsilon \rrbracket . \tag{3}
\end{equation*}
$$

Generating function and moments

Let D_{j} be the set of all j-subsets of D, and

$$
\begin{equation*}
W_{j}(\varepsilon)=\sum_{g \in \mathcal{M}_{k+t+\ell-j}} \sum_{S \in D_{j}} \llbracket\langle g\rangle \prod_{\alpha \in S}\langle x-\alpha\rangle=\varepsilon \rrbracket . \tag{3}
\end{equation*}
$$

Proposition 1

$$
\begin{aligned}
{\left[z^{k+t+\ell} \varepsilon\right] G(z, u)=} & \sum_{j=0}^{k} q^{k-j}\binom{n}{j}(u-1)^{j} \\
& +\sum_{j=k+1}^{k+t+\ell} W_{j}(\varepsilon)(u-1)^{j} \\
\mathbb{E}\left(\binom{Y_{k}(\varepsilon)}{j}\right)= & \llbracket j \leq k \rrbracket\binom{n}{j} q^{-j} \\
& +\llbracket k+1 \leq j \leq k+t+\ell \rrbracket q^{-k} W_{j}(\varepsilon) .
\end{aligned}
$$

Generating function and moments

Let D_{j} be the set of all j-subsets of D, and

$$
\begin{equation*}
W_{j}(\varepsilon)=\sum_{g \in \mathcal{M}_{k+t+\ell-j}} \sum_{S \in D_{j}} \llbracket\langle g\rangle \prod_{\alpha \in S}\langle x-\alpha\rangle=\varepsilon \rrbracket . \tag{3}
\end{equation*}
$$

Proposition 1

$$
\begin{aligned}
{\left[z^{k+t+\ell} \varepsilon\right] G(z, u)=} & \sum_{j=0}^{k} q^{k-j}\binom{n}{j}(u-1)^{j} \\
& +\sum_{j=k+1}^{k+t+\ell} W_{j}(\varepsilon)(u-1)^{j} \\
\mathbb{E}\left(\binom{Y_{k}(\varepsilon)}{j}\right)= & \llbracket j \leq k \rrbracket\binom{n}{j} q^{-j} \\
& +\llbracket k+1 \leq j \leq k+t+\ell \rrbracket q^{-k} W_{j}(\varepsilon) .
\end{aligned}
$$

Sieve formula and Bonferroni inequalities

Sieve formula Let Y be any random variable which takes non-negative integer values $0,1, \ldots, M$. We have

$$
\mathbb{P}(Y=r)=\sum_{j=r}^{M}(-1)^{j+r}\binom{j}{r} \mathbb{E}\left(\binom{Y}{j}\right)
$$

Sieve formula and Bonferroni inequalities

Sieve formula Let Y be any random variable which takes non-negative integer values $0,1, \ldots, M$. We have

$$
\mathbb{P}(Y=r)=\sum_{j=r}^{M}(-1)^{j+r}\binom{j}{r} \mathbb{E}\left(\binom{Y}{j}\right)
$$

Moreover, for each $r \leq m \leq M$, we have

$$
\left|\mathbb{P}(Y=r)-\sum_{j=r}^{m-1}(-1)^{j+r}\binom{j}{r} \mathbb{E}\left(\binom{Y}{j}\right)\right| \leq\binom{ m}{r} \mathbb{E}\left(\binom{Y}{m}\right) .
$$

Sieve formula and Bonferroni inequalities

Sieve formula Let Y be any random variable which takes non-negative integer values $0,1, \ldots, M$. We have

$$
\mathbb{P}(Y=r)=\sum_{j=r}^{M}(-1)^{j+r}\binom{j}{r} \mathbb{E}\left(\binom{Y}{j}\right)
$$

Moreover, for each $r \leq m \leq M$, we have

$$
\left|\mathbb{P}(Y=r)-\sum_{j=r}^{m-1}(-1)^{j+r}\binom{j}{r} \mathbb{E}\left(\binom{Y}{j}\right)\right| \leq\binom{ m}{r} \mathbb{E}\left(\binom{Y}{m}\right)
$$

This and Proposition 1 immediately give Theorem 1 by choosing $m=k$.

The function $A_{j}(a, b)$ and its bounds

Define

$$
\begin{aligned}
A_{j}(a, b) & =\left[z^{j}\right]\left((1-z)^{-a b}\left(1-z^{p}\right)^{-a(1-b) / p}\right) \\
& =\sum_{0 \leq i \leq j / p}\binom{a b+j-i p-1}{j-i p}\binom{a(1-b) / p+i-1}{i} .
\end{aligned}
$$

The function $A_{j}(a, b)$ and its bounds

Define

$$
\begin{aligned}
A_{j}(a, b) & =\left[z^{j}\right]\left((1-z)^{-a b}\left(1-z^{p}\right)^{-a(1-b) / p}\right) \\
& =\sum_{0 \leq i \leq j / p}\binom{a b+j-i p-1}{j-i p}\binom{a(1-b) / p+i-1}{i} .
\end{aligned}
$$

Proposition 3 Let $b \in(0,1]$ and $a>0$. Then
(a) For all $p>0$, we have

$$
\ln A_{j}(a, b) \leq \frac{j}{p} \ln \frac{a+j}{j}+\frac{a(1-b)}{p} \ln \frac{a+j}{a}+a b \ln (2 p),
$$

(b) For $p \geq c_{j} / b \geq 1$, we have

$$
\ln A_{j}(a, b) \leq j \ln \frac{a b+j}{j}+a b \ln \frac{a b+j}{a b}+\frac{a \ln 4}{p} 2^{-p a b / j} .
$$

Estimate for $W_{j}(\varepsilon)$ using Weil's bound

Proposition 2 Let $\varepsilon \in \mathcal{E}, k+1 \leq j \leq k+t+\ell$, $\gamma:=\min \{1,(t+\ell-1) \sqrt{q} / n\}$, and $D=\left\{\alpha \in \mathbb{F}_{q}: Q(\alpha) \neq 0\right\}$. Suppose $\ell \geq 1$. Then

$$
\begin{aligned}
& \left|W_{j}(\varepsilon)-\frac{\Phi_{k+t+\ell-j}(Q)}{\Phi_{t}(Q)}\binom{n}{j} q^{-\ell}\right| \\
\leq & \frac{\left|\mathcal{E}^{\ell, Q}\right|-1}{\left|\mathcal{E}^{\ell, Q}\right|}\binom{t+\ell-1}{t+\ell+k-j} q^{(t+\ell+k-j) / 2} A_{j}(n, \gamma) .
\end{aligned}
$$

Estimate for $W_{j}(\varepsilon)$ using Weil's bound

Proposition 2 Let $\varepsilon \in \mathcal{E}, k+1 \leq j \leq k+t+\ell$,
$\gamma:=\min \{1,(t+\ell-1) \sqrt{q} / n\}$, and
$D=\left\{\alpha \in \mathbb{F}_{q}: Q(\alpha) \neq 0\right\}$. Suppose $\ell \geq 1$. Then

$$
\begin{aligned}
& \left|W_{j}(\varepsilon)-\frac{\Phi_{k+t+\ell-j}(Q)}{\Phi_{t}(Q)}\binom{n}{j} q^{-\ell}\right| \\
\leq & \frac{\left|\mathcal{E}^{\ell, Q}\right|-1}{\left|\mathcal{E}^{\ell, Q}\right|}\binom{t+\ell-1}{t+\ell+k-j} q^{(t+\ell+k-j) / 2} A_{j}(n, \gamma)
\end{aligned}
$$

The proof uses characters χ over $\mathcal{E}^{\ell, Q}$:

$$
W_{j}(\varepsilon)=\frac{1}{\left|\mathcal{E}^{\ell, Q}\right|} \sum_{\chi} \chi\left(\varepsilon^{-1}\right)\left(\sum_{g \in \mathcal{M}_{k+t+\ell-j}} \chi(g)\right) \sum_{S \in D_{j}} \prod_{\alpha \in S} \chi(x-\alpha)
$$

Estimate for $W_{j}(\varepsilon)$ using Weil's bound

Proposition 2 Let $\varepsilon \in \mathcal{E}, k+1 \leq j \leq k+t+\ell$,

$\gamma:=\min \{1,(t+\ell-1) \sqrt{q} / n\}$, and
$D=\left\{\alpha \in \mathbb{F}_{q}: Q(\alpha) \neq 0\right\}$. Suppose $\ell \geq 1$. Then

$$
\begin{aligned}
& \left|W_{j}(\varepsilon)-\frac{\Phi_{k+t+\ell-j}(Q)}{\Phi_{t}(Q)}\binom{n}{j} q^{-\ell}\right| \\
\leq & \frac{\left|\mathcal{E}^{\ell, Q}\right|-1}{\left|\mathcal{E}^{\ell, Q}\right|}\binom{t+\ell-1}{t+\ell+k-j} q^{(t+\ell+k-j) / 2} A_{j}(n, \gamma) .
\end{aligned}
$$

The proof uses characters χ over $\mathcal{E}^{\ell, Q}$:
$W_{j}(\varepsilon)=\frac{1}{\left|\mathcal{E}^{\ell, Q}\right|} \sum_{\chi} \chi\left(\varepsilon^{-1}\right)\left(\sum_{g \in \mathcal{M}_{k+t+\ell-j}} \chi(g)\right) \sum_{S \in D_{j}} \prod_{\alpha \in S} \chi(x-\alpha)$,
Weil's bound for character sums, and and Li-Wan's "coordinate-sieve" formula.

Weil's bound

Weil's bound: for each $\chi \neq 1$ and $d \leq t+\ell-1$, we have

$$
\left|\sum_{g \in \mathcal{M}_{d}} \chi(g)\right| \leq\binom{ t+\ell-1}{d} q^{d / 2}
$$

Weil's bound

Weil's bound: for each $\chi \neq 1$ and $d \leq t+\ell-1$, we have

$$
\left|\sum_{g \in \mathcal{M}_{d}} \chi(g)\right| \leq\binom{ t+\ell-1}{d} q^{d / 2}
$$

The condition $\ell \geq 1$ implies $\chi^{i} \neq 1$ when $p \nmid i$. This together with the condition $D=\left\{\alpha \in \mathbb{F}_{q}: Q(\alpha) \neq 0\right\}$ give

$$
\begin{equation*}
\left|\sum_{\alpha \in D} \chi^{i}(x-\alpha)\right| \leq \gamma n \tag{4}
\end{equation*}
$$

Theorem 2 holds for those D satisfying (4).

Coordinate-sieve formula

Let $\bar{D}^{j}:=\left\{\left(x_{1}, \ldots, x_{j}\right): x_{i} \in D\right.$ are all distinct $\}$ and $c_{i}(\tau)$ be the number of cycles of length i in a permutation τ of j elements. Define $l(\tau)=\sum_{i} c_{i}, \quad l^{\prime}=\sum_{i, p h i} c_{i}$.

Coordinate-sieve formula

Let $\bar{D}^{j}:=\left\{\left(x_{1}, \ldots, x_{j}\right): x_{i} \in D\right.$ are all distinct $\}$ and $c_{i}(\tau)$ be the number of cycles of length i in a permutation τ of j elements. Define $l(\tau)=\sum_{i} c_{i}, \quad l^{\prime}=\sum_{i, p p i} c_{i}$.
Li-Wan's "coordinate-sieve'" formula gives

$$
\begin{aligned}
& \left|\sum_{S \in D_{j}} \prod_{\alpha \in S} \chi(x-\alpha)\right| \\
= & \frac{1}{j!}\left|\sum_{\left(x_{1}, \ldots, x_{j}\right) \in \bar{D}_{j}^{j}} \prod_{i=1}^{j} \chi\left(x-x_{i}\right)\right| \\
\leq & \frac{1}{j!} \sum_{\tau} \prod_{p \mid i}\left|\sum_{\alpha \in D} \chi^{i}(x-\alpha)\right|^{c_{i}(\tau)} \prod_{p \nmid i}\left|\sum_{\alpha \in D} \chi^{i}(x-\alpha)\right|^{c_{i}(\tau)} \\
\leq & \frac{1}{j!} \sum_{\tau} n^{l(\tau)-l^{\prime}(\tau)}(\gamma n)^{l^{\prime}(\tau)}=A_{j}(n, \gamma) .
\end{aligned}
$$

Estimate for $\Phi_{j}(Q)$

Recall $\Phi_{j}(Q):=\left|\left\{f \in \mathcal{M}_{j}: \operatorname{gcd}(f, Q)=1\right\}\right|$.

Estimate for $\Phi_{j}(Q)$

Recall $\Phi_{j}(Q):=\left|\left\{f \in \mathcal{M}_{j}: \operatorname{gcd}(f, Q)=1\right\}\right|$. Let $\left\{P_{i}: i \in I\right\}$ be the set of distinct irreducible factors of Q, where $P_{i} \in \mathcal{M}_{d_{i}}$. Then the sieve formula gives

$$
\begin{array}{r}
\Phi_{j}(Q)=\sum_{S \subseteq I}(-1)^{|S|} \llbracket \sum_{i \in S} d_{i} \leq j \rrbracket q^{j-\sum_{i \in S} d_{i}} \\
q^{j}\left(1-\sum_{i \in I} q^{-d_{i}}\right) \leq \Phi_{j}(Q) \leq q^{j}
\end{array}
$$

Estimate for $\Phi_{j}(Q)$

Recall $\Phi_{j}(Q):=\left|\left\{f \in \mathcal{M}_{j}: \operatorname{gcd}(f, Q)=1\right\}\right|$. Let $\left\{P_{i}: i \in I\right\}$ be the set of distinct irreducible factors of Q, where $P_{i} \in \mathcal{M}_{d_{i}}$. Then the sieve formula gives

$$
\begin{gathered}
\Phi_{j}(Q)=\sum_{S \subseteq I}(-1)^{|S|} \llbracket \sum_{i \in S} d_{i} \leq j \rrbracket q^{j-\sum_{i \in S} d_{i}} \\
q^{j}\left(1-\sum_{i \in I} q^{-d_{i}}\right) \leq \Phi_{j}(Q) \leq q^{j}
\end{gathered}
$$

We note

$$
\begin{aligned}
|I| & \leq \sum_{i \in I} d_{i} \leq t \leq \sqrt{n} \\
\Phi_{j}(Q) & =q^{j}(1+O(\sqrt{n} / q))
\end{aligned}
$$

Theorem 2 follows from Propositions 1-3.

Thanks. Questions?

