Detailed Asymptotic Analysis of *k*-recursive Sequences

Daniel Krenn

June 29, 2023

This presentation is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

(Un-)bordered Factors

(Un-)bordered

- word w bordered:
 - exists non-empty word $v \neq w$
 - v is prefix and suffix of w
- otherwise unbordered

Unbordered	Factors
000	

(Un-)bordered Factors

(Un-)bordered

- word w bordered:
 - exists non-empty word $v \neq w$
 - v is prefix and suffix of w
- otherwise unbordered

bordered factor	border	length
00	0	2
11	1	2
010	0	3
101	1	3
1010	10	4
0110100110	0110	10

unbordered factor	length
ε	0
0	1
1	1
01	2
10	2
011	3
110	3
100	3
001	3

(Un-)bordered Factors

(Un-)bordered

- word w bordered:
 - exists non-empty word $v \neq w$
 - v is prefix and suffix of w
- otherwise unbordered

bordered factor	border	length
t[56] = 00	0	2
t[12] = 11	1	2
t[35] = 010	0	3
t[24] = 101	1	3
t[25] = 1010	10	4
t[09] = 0110100110	0110	10

unbordered factor	length
ε	0
t[00] = 0	1
t[11] = 1	1
t[01] = 01	2
t[23] = 10	2
t[02] = 011	3
t[13] = 110	3
t[46] = 100	3
t[57] = 001	3

Thue–Morse Sequence

 $t = 01101001\,10010110\,10010110\,01101001\ldots$

Unbordered Factors ○●○	Recursive Sequences	Asymptotics 000	Further Examples
Number of U	nbordered Factor	S	
Theorem (G	oč–Henshall–Shallit 20)13)	
of	ordered factor ength n	$\Rightarrow (n)_2 \notin 1(01^*0)^*$	10*1

Unbordered Fact ○●○	ors Recursive Seque	nces	Asymptotics 000	Further Examples 0000000
Number	of Unbordered F	actors		
Theor	rem (Goč–Henshall–Sh	allit 2013)	
	sts unbordered factor of length n Thue–Morse sequence	\Leftrightarrow	$(n)_2 \notin 1(01^*0)^*10^*$	1
	nber f(n) of unbordere he Thue–Morse sequer		of length <i>n</i>	_

п																
f(n)	1	2	2	4	2	4	6	0	4	4	4	4	12	0	4	4

Unbordered Factors ○●○				cursiv	e Sequ	ences				Asympt 000	otics			Furthe	r Examples 000
Number of Unbordered Factors															
Theorem (Goč–Henshall–Shallit 2013)															
exists unbordered factor of length n \iff $(n)_2 \notin 1(01^*0)^*10^*1$ in Thue–Morse sequence															
• numb								ors	of le	ength	n				
in the					•										
<u>n</u> 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$f(n) \mid 1$	2	2	4	2	4	6	0	4	4	4	4	12	0	4	4
Theorem (Goč–Mousavi–Shallit 2013)															
	• inequality $f(n) \leq n$ holds for all $n \geq 4$														
	• $f(n) = n$ infinitely often														

• $\limsup_{n\geq 1}\frac{f(n)}{n}=1$

Unbordered Factors	Recursive Sequences	Asymptotics 000	Further Examples
Recurrence Relati	ons		
 number f(n) of in Thue–Morse recurrence relat 	sequence	s of length <i>n</i>	00
f(4n) =	2f(2n)		$(n \ge 2)$
f(4n+1) =	f(2n + 1)		$(n \ge 0)$
f(8n + 2) =	f(2n+1) + f(4n+3)	3)	$(n \ge 1)$
f(8n + 3) =	-f(2n+1) + f(4n+1)	- 2)	$(n \ge 2)$
f(8n + 6) =	-f(2n+1) + f(4n+1)	(-2) + f(4n + 3)	$(n \ge 2)$
f(8n + 7) =	2f(2n+1) + f(4n+1)	3)	$(n \ge 3)$

Theorem (Goč–Mousavi–Shallit 2013)

f(n) satisfies recurrence relations above

Unbordered Factors 00●	Recursive Sequences	Asymptotics	Further Examples
Recurrence Rela	tions		
 number f(n) in Thue–Mors recurrence relation 	•	s of length <i>n</i>	Q
f(8n + 1) f(8n + 2) f(8n + 3) f(8n + 4) f(8n + 5) f(8n + 6)	= 2f(4n) = f(4n + 1) = f(4n + 1) + f(4n + 3) = -f(4n + 1) + f(4n + 3) = f(4n + 2) = f(4n + 3) = -f(4n + 1) + f(4n + 3)	(-2)	$(n \ge 1)$ $(n \ge 0)$ $(n \ge 1)$ $(n \ge 2)$ $(n \ge 1)$ $(n \ge 0)$ $(n \ge 2)$ $(n \ge 3)$

Unbordered Factors ○○●	Recursive Sequences	Asymptotics	Further Examples
Recurrence Rela	tions		
 number f(n) of in Thue–Morse recurrence relation 	•	s of length <i>n</i>	Q
f(8n + 1) f(8n + 2) f(8n + 3) f(8n + 4) f(8n + 5) f(8n + 6)	= 2f(4n) = $f(4n + 1)$ = $f(4n + 1) + f(4n + 3)$ = $-f(4n + 1) + f(4n + 3)$ = $f(4n + 2)$ = $f(4n + 3)$ = $-f(4n + 1) + f(4n + 3)$ = $2f(4n + 1) + f(4n + 3)$	(-2)	$(n \ge 1)$ $(n \ge 0)$ $(n \ge 1)$ $(n \ge 2)$ $(n \ge 1)$ $(n \ge 0)$ $(n \ge 2)$ $(n \ge 3)$

• f(n) is a 2-recursive sequence

Unbordered Fact	cors Recursive Seque •0000	ences Asymp 000	ototics Further	Examples
k-recur	sive Sequence			
• int	eger $k \ge 2$			
<i>k</i> -rec	ursive Sequence <i>x</i> (<i>n</i>)			
there	exist	such that		
<i>n</i> ₀	egers $M>m\geq 0$, $\ell\leq u$, $\geq\max\left\{-\ell/k^m,0 ight\}$ stants $c_{s,j}\in\mathbb{C}$	x(k + s) =	$\sum_{\ell \leq j \leq u} c_{s,j} x(k^m n + j$)
		holds for all <i>n</i>	\geq n_0 and $0 \leq$ $s < k^M$	<u>'</u>

Unbordered Factors 000	Recursive Sequences ●0000	Asympt 000		Further Examples
k-recursive S	equence			
• integer k				
<i>k</i> -recursive	Sequence <i>x</i> (<i>n</i>)			
there exist		such that		
$n_0 \ge \max\{$	• integers $M > m \ge 0$, $\ell \le u$, $n_0 \ge \max \{-\ell/k^m, 0\}$ • constants $c_{s,i} \in \mathbb{C}$		$\sum_{k\leq j\leq u}c_{s,j}x(k^n$	n n + j
	5,7	holds for all $n \ge \frac{1}{2}$	\ge n_0 and $0 \le s$	<i>k</i> < <i>k</i> ^{<i>M</i>}

h(n)...largest power of 2 less than or equal to n
h(2n) = 2h(n), h(2n + 1) = 2h(n) for n ≥ 1, h(1) = 1
k = 2, M = 1, m = 0, ℓ = 0, u = 1, n₀ = 1

Unbordered Factors 000	Recursive Sequences	Asymptotics 000	Further Examples
k-recursive Seq	uence		
• integer $k \ge 2$			
<i>k</i> -recursive Seq	uence x(n)		
there exist		such that	
• integers $M > m \ge 0$, $\ell \le u$, $n_0 \ge \max \{-\ell/k^m, 0\}$ • constants $c_{s,i} \in \mathbb{C}$		$(k^M n + s) = \sum_{\ell \le j \le u} e^{-it}$	$c_{s,j} \times (k^m n + j)$
		holds for all $n \ge n_0$ a	nd $0 \leq s < k^M$

- h(n)... largest power of 2 less than or equal to n
 - h(2n) = 2h(n), h(2n+1) = 2h(n) for $n \ge 1, h(1) = 1$
 - $k = 2, M = 1, m = 0, \ell = 0, u = 1, n_0 = 1$
- binary sum of digits
 - s(2n) = s(n), s(2n+1) = s(n) + 1
 - no direct fit because of constant sequence
 - · deal with inhomogeneities by increasing the exponents

Unbordered Factors 000	Recursive Sequences	Asympt 000		Further Examples
k-recursive Se	equence			
● integer k ≧	<u>≥</u> 2			
<i>k</i> -recursive S	equence $x(n)$			
there exist		such that		
• integers $M > m \ge 0$, $\ell \le u$, $n_0 \ge \max \{-\ell/k^m, 0\}$ • constants $c_{s,i} \in \mathbb{C}$		$x(k^M n + s) = \int_{k}^{k}$	$\sum_{\substack{a \leq j \leq u}} c_{s,j} x(k^n)$	n+j
	·	holds for all n	\geq n_0 and $0 \leq s$	$k < k^M$

- h(n)...largest power of 2 less than or equal to n
 - h(2n) = 2h(n), h(2n+1) = 2h(n) for $n \ge 1, h(1) = 1$
 - $k = 2, M = 1, m = 0, \ell = 0, u = 1, n_0 = 1$
- binary sum of digits
 - s(2n) = s(n), s(2n+1) = s(n) + 1
 - no direct fit because of constant sequence
 - deal with inhomogeneities by increasing the exponents
- number of comparisons for MergeSort

Unbordered Factors	Recursive Sequences	Asymp 000		Further Examples
k-recursive Sec	quence			
• integer $k \ge$				
<i>k</i> -recursive See	k-recursive Sequence $x(n)$		<u> </u>	
there exist		such that		
• integers $M > m \ge 0$, $\ell \le u$, $n_0 \ge \max \{-\ell/k^m, 0\}$ • constants $c_{s,i} \in \mathbb{C}$		$\kappa(k^M n + s) = \int_{k}^{k}$	$\sum_{\substack{a \leq j \leq u}} c_{s,j} x(k^m)$	(n+j)
		holds for all n	\geq <i>n</i> ₀ and 0 \leq <i>s</i>	< <i>k^M</i>

- h(n)... largest power of 2 less than or equal to n
 - h(2n) = 2h(n), h(2n+1) = 2h(n) for $n \ge 1, h(1) = 1$
 - $k = 2, \ M = 1, \ m = 0, \ \ell = 0, \ u = 1, \ n_0 = 1$
- binary sum of digits
 - s(2n) = s(n), s(2n+1) = s(n) + 1
 - no direct fit because of constant sequence
 - · deal with inhomogeneities by increasing the exponents
- number of comparisons for MergeSort
- number of unbordered factors of length n in Thue-Morse sequence

Unbordered Factors	Recursive Sequences	Asymptotics 000	Further Examples 0000000

k-linear Representation

binary sum of digits s(n):

• recurrence relations

even numbers: s(2n) = s(n)odd numbers: s(2n+1) = s(n) + 1

k-linear Representation

binary sum of digits s(n):

• recurrence relations

even numbers: s(2n) = s(n)odd numbers: s(2n+1) = s(n) + 1

vector-valued sequence

set $v(n) = (s(n), 1)^T$ even $v(2n) = \begin{pmatrix} s(n) \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} v(n)$ odd $v(2n+1) = \begin{pmatrix} s(n)+1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} v(n)$

k-linear Representation

binary sum of digits s(n):

recurrence relations

even numbers: s(2n) = s(n)odd numbers: s(2n+1) = s(n) + 1

vector-valued sequence

set $v(n) = (s(n), 1)^T$ even $v(2n) = \begin{pmatrix} s(n) \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} v(n)$ odd $v(2n+1) = \begin{pmatrix} s(n)+1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} v(n)$

• iterate ~> product of matrices

Asymptotics

k-linear Representation

binary sum of digits s(n):

• recurrence relations

even numbers: s(2n) = s(n)odd numbers: s(2n+1) = s(n) + 1

vector-valued sequence

set

 $v(n) = (s(n), 1)^T$

even
$$v(2n) = \begin{pmatrix} s(n) \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} v(n)$$

odd $v(2n+1) = \begin{pmatrix} s(n)+1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} v(n)$

iterate → product of matrices

k-regular Sequence f(n)

- square matrices M_0, \ldots, M_{k-1}
- vectors *u* and *w*
- k-linear representation

$$f(n) = u^T M_{n_0} M_{n_1} \dots M_{n_{\ell-1}} w$$

with standard k-ary expansion $n = (n_{\ell-1} \dots n_1 n_0)_k$

Unbordered Factors	Recursive Sequences	Asymptotics 000	Further Examples
Sama k ragul			

Some k-regular Sequences

- h(n)...largest power of 2 less than or equal to n
 - $h(2^{j}n + r) = 2^{j}h(n)$ for $n \ge 1$, $j \ge 0$, $0 \le r < 2^{j}$
- binary sum of digits

nbordered	

Asymptotics

Further Examples

Some k-regular Sequences

- h(n)...largest power of 2 less than or equal to n
 - $h(2^{j}n+r) = 2^{j}h(n)$ for $n \ge 1, j \ge 0, 0 \le r < 2^{j}$
- binary sum of digits
- *k*-recursive sequences:

Theorem (Heuberger–K–Lipnik 2022)

• k-recursive sequence x(n)

Then

- x(n) is k-regular sequence
- k-linear representation of x(n)
 - vector-valued sequence v(n) in block form
 - block matrices M_0, \ldots, M_{k-1}
 - computed by coefficients of k-recursive sequence
 - explicit formulæ for the rows available

 number f(n) of unbordered factors of length n in Thue–Morse sequence

$$f(8n) = 2f(4n)$$

$$f(8n+1) = f(4n+1)$$

$$f(8n+2) = f(4n+1) + f(4n+3)$$

$$f(8n+3) = -f(4n+1) + f(4n+2)$$

$$f(8n+4) = 2f(4n+2)$$

$$f(8n+5) = f(4n+3)$$

$$f(8n+6) = -f(4n+1) + f(4n+2) + f(4n+3)$$

$$f(8n+7) = 2f(4n+1) + f(4n+3)$$

- coefficient matrices B_0 , B_1
- 2-linear representation of f(n):

$$v = \begin{pmatrix} f \\ f \circ (n \mapsto 2n) \\ f \circ (n \mapsto 2n+1) \\ f \circ (n \mapsto 4n) \\ f \circ (n \mapsto 4n+1) \\ f \circ (n \mapsto 4n+2) \\ f \circ (n \mapsto 4n+3) \end{pmatrix}$$

$$M_0 = \begin{pmatrix} J_{00} & J_{01} \\ 0 & B_0 \end{pmatrix}$$
$$M_1 = \begin{pmatrix} J_{10} & J_{11} \\ 0 & B_1 \end{pmatrix}$$

• J_{r0} , J_{r1} entries 0, 1

- coefficient matrices B_0 , B_1
- 2-linear representation of f(n):

 $\mathbf{v} = \begin{pmatrix} f \\ f \circ (n \mapsto 2n) \\ f \circ (n \mapsto 2n+1) \\ f \circ (n \mapsto 4n) \\ f \circ (n \mapsto 4n+1) \\ f \circ (n \mapsto 4n+2) \\ f \circ (n \mapsto 4n+3) \end{pmatrix}$

$$M_0 = \begin{pmatrix} J_{00} & J_{01} \\ 0 & B_0 \end{pmatrix}$$
$$M_1 = \begin{pmatrix} J_{10} & J_{11} \\ 0 & B_1 \end{pmatrix}$$

• J_{r0} , J_{r1} entries 0, 1

• initial value compensation \rightsquigarrow 2-linear representation of f(n):

$$\widetilde{M}_0 = \begin{pmatrix} M_0 & W_0 \\ 0 & J_0 \end{pmatrix}$$
 and $\widetilde{M}_1 = \begin{pmatrix} M_1 & W_1 \\ 0 & J_1 \end{pmatrix}$

- J_r entries 0, 1
- W_r entries from initial values

- coefficient matrices B_0 , B_1
- 2-linear representation of f(n):

 $\mathbf{v} = \begin{pmatrix} f \\ f \circ (n \mapsto 2n) \\ f \circ (n \mapsto 2n+1) \\ f \circ (n \mapsto 4n) \\ f \circ (n \mapsto 4n+1) \\ f \circ (n \mapsto 4n+2) \\ f \circ (n \mapsto 4n+3) \end{pmatrix}$

$$egin{aligned} M_0 &= egin{pmatrix} J_{00} & J_{01} \ 0 & B_0 \end{pmatrix} \ M_1 &= egin{pmatrix} J_{10} & J_{11} \ 0 & B_1 \end{pmatrix} \end{aligned}$$

• J_{r0} , J_{r1} entries 0, 1

• initial value compensation \rightsquigarrow 2-linear representation of f(n):

$$\widetilde{M}_0 = egin{pmatrix} M_0 & W_0 \ 0 & J_0 \end{pmatrix}$$
 and $\widetilde{M}_1 = egin{pmatrix} M_1 & W_1 \ 0 & J_1 \end{pmatrix}$

- J_r entries 0, 1
- W_r entries from initial values
- minimization algorithm: dimension 10 ~→ dimension 8

Unbordered Factors	Recursive Sequences	Asymptotics	Further Examples
000		●00	0000000
A			

Asymptotics of Partial Sums

• *k*-regular sequence *f*(*n*)

• partial sums
$$F(N) = \sum_{n \le N} f(n)$$

Unbordered Factors	Recursive Sequences	Asymptotics	Further Examples
000		●00	0000000
Asymptotics of P	artial Sums		

• k-regular sequence f(n) • partial sums $F(N) = \sum_{n < N} f(n)$

Theorem (Heuberger-K-Prodinger 2018, Heuberger-K 2020)

$$F(N) = \sum_{\substack{\lambda \in \sigma(M_0 + \dots + M_{k-1}) \\ |\lambda| > \rho}} N^{\log_k \lambda} \sum_{\substack{0 \le \ell < m(\lambda) }} (\log_k N)^{\ell} \Phi_{\lambda \ell}(\{\log_k N\}) + O(N^{\log_k R} (\log N)^{\widehat{m}})$$

- 1-periodic (Hölder) continuous functions $\Phi_{\lambda\ell}$
- functional equation

$$\left(I - \frac{1}{k^{s}}(M_{0} + \dots + M_{k-1})\right)\mathcal{V}(s) = \sum_{n=1}^{k-1} \frac{v(n)}{n^{s}} + \frac{1}{k^{s}} \sum_{r=0}^{k-1} M_{r} \sum_{\ell \ge 1} \binom{-s}{\ell} \binom{r}{\ell} \binom{r}{k}^{\ell} \mathcal{V}(s+\ell)$$

• meromorphic continuation on the half plane $\Re s > \log_k R$

• Fourier series
$$\Phi_{\lambda\ell}(u) = \sum_{h \in \mathbb{Z}} \varphi_{\lambda\ell h} \exp(2\ell \pi i u)$$

$$\varphi_{\lambda\ell h} = \frac{(\log k)^{\ell}}{\ell!} \operatorname{Res}\left(\frac{\left(f(0) + \mathcal{F}(s)\right)\left(s - \log_k \lambda - \frac{2h\pi i}{\log k}\right)^{\ell}}{s}, s = \log_k \lambda + \frac{2h\pi i}{\log k}\right)$$

Unbordered	

Asymptotics

Further Examples

Unbordered Factors: towards Asymptotics

Asymptotics of k-recursive Sequences

Only properties of coefficient matrices needed from *k*-linear representation!

coefficient matrices

$$B_0 = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & 1 & 0 \end{pmatrix} \qquad \qquad B_1 = \begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -1 & 1 & 1 \\ 0 & 2 & 0 & 1 \end{pmatrix}$$

Unbordered Factors 000	Recursive Sequences	Asymptotics 0●0	Further Examples 0000000
Unbordered Facto	ors: towards Asvmi	ototics	

Asymptotics of k-recursive Sequences

Only properties of coefficient matrices needed from *k*-linear representation!

• coefficient matrices

$$B_0 = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & 1 & 0 \end{pmatrix} \qquad \qquad B_1 = \begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -1 & 1 & 1 \\ 0 & 2 & 0 & 1 \end{pmatrix}$$

• spectrum

$$\sigma(B_0 + B_1) = \left\{1 - \sqrt{3}, 1, 2, 1 + \sqrt{3}\right\}$$

Unbordered Factors	Recursive Sequences	Asymptotics ○●○	Further Examples
Unbordered Facto	ors: towards Asym	ntotics	

Asymptotics of k-recursive Sequences

Only properties of coefficient matrices needed from *k*-linear representation!

coefficient matrices

$$B_0 = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & 1 & 0 \end{pmatrix} \qquad \qquad B_1 = \begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -1 & 1 & 1 \\ 0 & 2 & 0 & 1 \end{pmatrix}$$

spectrum

$$\sigma(B_0 + B_1) = \left\{1 - \sqrt{3}, 1, 2, 1 + \sqrt{3}\right\}$$

- joint spectral radius of $\{B_0, B_1\}$ is 2
- has simple growth property

Unbordered Factors: Asymptotics
 number f(n) of unbordered factors of length n in the Thue–Morse sequence
Theorem (Heuberger–K–Lipnik 2022)
$F(N) = \sum_{0 \le n < N} f(n) = N^{\kappa} \cdot \Phi_F(\{\log_2 N\}) + O(N \log N) \text{as } N \to \infty$
 κ = log₂(1 + √3) = 1.44998431347650 1-periodic continuous function Φ_F, Hölder continuous with any exponent smaller than κ − 1
 explicit functional equation for Dirichlet series + analyticity properties, poles efficiently computable Fourier coefficients of Φ_F
1.15 - 1.10 - 10 - 11 - 12 - 13

Asymptotics

Further Examples

Stern's Diatomic Sequence

Ste	rn's Di	quer	ice														
	d(2n) =	d(n)													
d(2n+1) = d(n) + d(n+1)																	
for all $n\geq 0$ and $d(0)=0,\ d(1)=1$																	
	n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	d(n)	0	1	1	2	1	3	2	3	1	4	3	5	2	5	3	4

Asymptotics

Further Examples

Stern's Diatomic Sequence

Stern's Diatomic Sequence

$$d(2n) = d(n)$$

$$d(2n+1) = d(n) + d(n+1)$$

for all $n \geq 0$ and d(0) = 0, d(1) = 1

- number of different hyperbinary representations (Northshield 2010)
- number of integers $r \in \mathbb{N}_0$ such that Stirling partition numbers $\binom{n}{2r}$ are even and non-zero (Carlitz 1964)
- number of different representations as a sum of distinct Fibonacci numbers F_{2k} (Bicknell-Johnson 2003)
- number of different alternating bit sets (Finch 2003)
- relation to the Towers of Hanoi (*Hinz–Klavžar–Milutinović–Parisse–Petr 2005*)

п	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
d(n)	0	1	1	2	1	3	2	3	1	4	3	5	2	5	3	4

11

12

10

1.3

Asymptotics

Further Examples

Generalized Pascal's Triangle

Binomial Coefficients of Words

binomial coefficient $\binom{u}{v}$ equals number of different occurrences of vas a scattered subword of u

Asymptotics

Further Examples

Generalized Pascal's Triangle

Binomial Coefficients of Words

binomial coefficient $\binom{u}{v}$ equals number of different occurrences of vas a scattered subword of u

	k	0	1	2	3	4	5	6	7	8	
n	$v = (k)_2$ $u = (n)_2$	ε	1	10	11	100	101	110	111	1000	<i>z</i> (<i>n</i>)
0	ε	1	0	0	0	0	0	0	0	0	1
1	1	1	1	0	0	0	0	0	0	0	2
2	10	1	1	1	0	0	0	0	0	0	3
3	11	1	2	0	1	0	0	0	0	0	3
4	100	1	1	2	0	1	0	0	0	0	4
5	101	1	2	1	1	0	1	0	0	0	5
6	110	1	2	2	1	0	0	1	0	0	5
7	111	1	3	0	3	0	0	0	1	0	4
8	1000	1	1	3	0	3	0	0	0	1	5

Asymptotics

Further Examples

Generalized Pascal's Triangle

Binomial Coefficients of Words

binomial coefficient $\binom{u}{v}$ equals number of different occurrences of vas a scattered subword of u "classical" binomial coefficient $\binom{n}{k} = \binom{1^n}{1^k}$

	k	0	1	2	3	4	5	6	7	8	
n	$v = (k)_2$ $u = (n)_2$	ε	1	10	11	100	101	110	111	1000	<i>z</i> (<i>n</i>)
0	ε	1	0	0	0	0	0	0	0	0	1
1	1	1	1	0	0	0	0	0	0	0	2
2	10	1	1	1	0	0	0	0	0	0	3
3	11	1	2	0	1	0	0	0	0	0	3
4	100	1	1	2	0	1	0	0	0	0	4
5	101	1	2	1	1	0	1	0	0	0	5
6	110	1	2	2	1	0	0	1	0	0	5
7	111	1	3	0	3	0	0	0	1	0	4
8	1000	1	1	3	0	3	0	0	0	1	5

Non-zeros in Generalized Pascal's Triangle

$$z(n) = d(2n+1)$$
 for all $n \ge 0$

- Stern's diatomic sequence d(n)
- number z(n) of non-zero elements in *n*th row of generalized Pascal's triangle $\binom{(n)_2}{(k)_2}$

Theorem (Leroy–Rigo–Stipulanti 2017)

z(n) = d(2n+1) for all $n \ge 0$

heorem (Leroy-Rigo-Stipulanti 2017)
ecurrence relations

$$z(2n + 1) = 3z(n) - z(2n)$$

 $z(4n) = -z(n) + 2z(2n)$
 $z(4n + 2) = 4z(n) - z(2n)$
for all $n \ge 0$

• reformulate as 2-recursive sequence:

$$z(4n) = \frac{5}{3}z(2n) - \frac{1}{3}z(2n+1)$$

$$z(4n+1) = \frac{4}{3}z(2n) + \frac{1}{3}z(2n+1)$$

$$z(4n+2) = \frac{1}{3}z(2n) + \frac{4}{3}z(2n+1)$$

$$z(4n+3) = -\frac{1}{3}z(2n) + \frac{5}{3}z(2n+1)$$

• reformulate as 2-recursive sequence & read off coefficient matrices:

• 2-linear representation of dimension 3

• reformulate as 2-recursive sequence & read off coefficient matrices:

$$\begin{aligned} z(4n) &= \frac{5}{3}z(2n) - \frac{1}{3}z(2n+1) \\ z(4n+1) &= \frac{4}{3}z(2n) + \frac{1}{3}z(2n+1) \\ z(4n+2) &= \frac{1}{3}z(2n) + \frac{4}{3}z(2n+1) \\ z(4n+3) &= -\frac{1}{3}z(2n) + \frac{5}{3}z(2n+1) \end{aligned} \qquad B_1 = \frac{1}{3} \begin{pmatrix} 1 & 4 \\ -1 & 5 \end{pmatrix} \end{aligned}$$

- 2-linear representation of dimension 3
- towards asymptotics: spectrum & joint spectral radius
- \bullet investigating eigenstructure \rightsquigarrow no error term

• reformulate as 2-recursive sequence & read off coefficient matrices:

- 2-linear representation of dimension 3
- towards asymptotics: spectrum & joint spectral radius
- investigating eigenstructure \rightsquigarrow no error term
- reconsider connection to Stern's diatomic sequence
- (compute Fourier coefficients of fluctuation)

