Detailed Asymptotic Analysis of k-recursive Sequences

Daniel Krenn

June 29, 2023

(Un-)bordered Factors

(Un-)bordered

- word w bordered:
- exists non-empty word $v \neq w$
- v is prefix and suffix of w
- otherwise unbordered

(Un-)bordered Factors

(Un-)bordered

- word w bordered:
- exists non-empty word $v \neq w$
- v is prefix and suffix of w
- otherwise unbordered

bordered factor	border	length
00	0	2
11	1	2
010	0	3
101	1	3
1010	10	4
0110100110	0110	10

unbordered factor	length
ε	0
0	1
1	1
01	2
10	2
011	3
110	3
100	3
001	3

(Un-)bordered Factors

(Un-)bordered

- word w bordered:
- exists non-empty word $v \neq w$
- v is prefix and suffix of w
- otherwise unbordered

bordered factor	border	length
$t[5 \ldots 6]=00$	0	2
$t[1 \ldots 2]=11$	1	2
$t[3 \ldots 5]=010$	0	3
$t[2 \ldots 4]=101$	1	3
$t[2 \ldots 5]=1010$	10	4
$t[0 \ldots 9]=0110100110$	0110	10

Thue-Morse Sequence

$$
t=01101001100101101001011001101001 \ldots
$$

Number of Unbordered Factors

Theorem (Goč-Henshall-Shallit 2013)
exists unbordered factor of length n $\Longleftrightarrow \quad(n)_{2} \notin 1\left(01^{*} 0\right)^{*} 10^{*} 1$
in Thue-Morse sequence

Number of Unbordered Factors

Theorem (Goč-Henshall-Shallit 2013)

exists unbordered factor

 of length n $\Longleftrightarrow \quad(n)_{2} \notin 1\left(01^{*} 0\right)^{*} 10^{*} 1$in Thue-Morse sequence

- number $f(n)$ of unbordered factors of length n in the Thue-Morse sequence

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$f(n)$	1	2	2	4	2	4	6	0	4	4	4	4	12	0	4	4

Number of Unbordered Factors

Theorem (Goč-Henshall-Shallit 2013)

exists unbordered factor of length $n \quad \Longleftrightarrow \quad(n)_{2} \notin 1\left(01^{*} 0\right)^{*} 10^{*} 1$
in Thue-Morse sequence

- number $f(n)$ of unbordered factors of length n in the Thue-Morse sequence

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$f(n)$	1	2	2	4	2	4	6	0	4	4	4	4	12	0	4	4

Theorem (Goč-Mousavi-Shallit 2013)

- inequality $f(n) \leq n$ holds for all $n \geq 4$
- $f(n)=n$ infinitely often
- $\lim \sup _{n \geq 1} \frac{f(n)}{n}=1$

Recurrence Relations

- number $f(n)$ of unbordered factors of length n in Thue-Morse sequence
- recurrence relations

$$
\begin{aligned}
f(4 n) & =2 f(2 n) \\
f(4 n+1) & =f(2 n+1) \\
f(8 n+2) & =f(2 n+1)+f(4 n+3) \\
f(8 n+3) & =-f(2 n+1)+f(4 n+2) \\
f(8 n+6) & =-f(2 n+1)+f(4 n+2)+f(4 n+3) \\
f(8 n+7) & =2 f(2 n+1)+f(4 n+3)
\end{aligned}
$$

$$
(n \geq 2)
$$

$$
(n \geq 0)
$$

$$
(n \geq 1)
$$

$$
(n \geq 2)
$$

$$
(n \geq 2)
$$

$$
(n \geq 3)
$$

Theorem (Goč-Mousavi-Shallit 2013)

$f(n)$ satisfies recurrence relations above

Recurrence Relations

- number $f(n)$ of unbordered factors of length n in Thue-Morse sequence
- recurrence relations

$$
\begin{aligned}
f(8 n) & =2 f(4 n) \\
f(8 n+1) & =f(4 n+1) \\
f(8 n+2) & =f(4 n+1)+f(4 n+3) \\
f(8 n+3) & =-f(4 n+1)+f(4 n+2) \\
f(8 n+4) & =2 f(4 n+2) \\
f(8 n+5) & =f(4 n+3) \\
f(8 n+6) & =-f(4 n+1)+f(4 n+2)+f(4 n+3) \\
f(8 n+7) & =2 f(4 n+1)+f(4 n+3)
\end{aligned}
$$

$$
(n \geq 1)
$$

$$
(n \geq 0)
$$

$$
(n \geq 1)
$$

$$
(n \geq 2)
$$

$$
(n \geq 1)
$$

$$
(n \geq 0)
$$

$$
(n \geq 2)
$$

$$
(n \geq 3)
$$

Recurrence Relations

- number $f(n)$ of unbordered factors of length n in Thue-Morse sequence
- recurrence relations

$$
\begin{aligned}
f(8 n) & =2 f(4 n) \\
f(8 n+1) & =f(4 n+1) \\
f(8 n+2) & =f(4 n+1)+f(4 n+3) \\
f(8 n+3) & =-f(4 n+1)+f(4 n+2) \\
f(8 n+4) & =2 f(4 n+2) \\
f(8 n+5) & =f(4 n+3) \\
f(8 n+6) & =-f(4 n+1)+f(4 n+2)+f(4 n+3) \\
f(8 n+7) & =2 f(4 n+1)+f(4 n+3)
\end{aligned}
$$

$$
(n \geq 1)
$$

$$
(n \geq 0)
$$

$$
(n \geq 1)
$$

$$
(n \geq 2)
$$

$$
(n \geq 1)
$$

$$
(n \geq 0)
$$

$$
(n \geq 2)
$$

$$
(n \geq 3)
$$

- $f(n)$ is a 2 -recursive sequence

k-recursive Sequence

- integer $k \geq 2$
k-recursive Sequence $x(n)$
there exist
- integers $M>m \geq 0, \ell \leq u$, $n_{0} \geq \max \left\{-\ell / k^{m}, 0\right\}$
- constants $c_{s, j} \in \mathbb{C}$

such that

$x\left(k^{M} n+s\right)=\sum_{\ell \leq j \leq u} c_{s, j} x\left(k^{m} n+j\right)$
holds for all $n \geq n_{0}$ and $0 \leq s<k^{M}$

k-recursive Sequence

- integer $k \geq 2$

k-recursive Sequence $x(n)$

there exist

- integers $M>m \geq 0, \ell \leq u$, $n_{0} \geq \max \left\{-\ell / k^{m}, 0\right\}$
- constants $c_{s, j} \in \mathbb{C}$

such that

$x\left(k^{M} n+s\right)=\sum_{\ell \leq j \leq u} c_{s, j} x\left(k^{m} n+j\right)$
holds for all $n \geq n_{0}$ and $0 \leq s<k^{M}$

- $h(n) \ldots$ largest power of 2 less than or equal to n
- $h(2 n)=2 h(n), h(2 n+1)=2 h(n)$ for $n \geq 1, h(1)=1$
- $k=2, M=1, m=0, \ell=0, u=1, n_{0}=1$

k-recursive Sequence

- integer $k \geq 2$

k-recursive Sequence $x(n)$

there exist

- integers $M>m \geq 0, \ell \leq u$, $n_{0} \geq \max \left\{-\ell / k^{m}, 0\right\}$
- constants $c_{s, j} \in \mathbb{C}$

such that

$x\left(k^{M} n+s\right)=\sum_{\ell \leq j \leq u} c_{s, j} x\left(k^{m} n+j\right)$
holds for all $n \geq n_{0}$ and $0 \leq s<k^{M}$

- $h(n) \ldots$ largest power of 2 less than or equal to n
- $h(2 n)=2 h(n), h(2 n+1)=2 h(n)$ for $n \geq 1, h(1)=1$
- $k=2, M=1, m=0, \ell=0, u=1, n_{0}=1$
- binary sum of digits
- $s(2 n)=s(n), s(2 n+1)=s(n)+1$
- no direct fit because of constant sequence
- deal with inhomogeneities by increasing the exponents

k-recursive Sequence

- integer $k \geq 2$

k-recursive Sequence $x(n)$

there exist

- integers $M>m \geq 0, \ell \leq u$, $n_{0} \geq \max \left\{-\ell / k^{m}, 0\right\}$
- constants $c_{s, j} \in \mathbb{C}$

such that

$x\left(k^{M} n+s\right)=\sum_{\ell \leq j \leq u} c_{s, j} x\left(k^{m} n+j\right)$
holds for all $n \geq n_{0}$ and $0 \leq s<k^{M}$

- $h(n) \ldots$ largest power of 2 less than or equal to n
- $h(2 n)=2 h(n), h(2 n+1)=2 h(n)$ for $n \geq 1, h(1)=1$
- $k=2, M=1, m=0, \ell=0, u=1, n_{0}=1$
- binary sum of digits
- $s(2 n)=s(n), s(2 n+1)=s(n)+1$
- no direct fit because of constant sequence
- deal with inhomogeneities by increasing the exponents
- number of comparisons for MergeSort

k-recursive Sequence

- integer $k \geq 2$

k-recursive Sequence $x(n)$

there exist

- integers $M>m \geq 0, \ell \leq u$, $n_{0} \geq \max \left\{-\ell / k^{m}, 0\right\}$
- constants $c_{s, j} \in \mathbb{C}$

such that

$x\left(k^{M} n+s\right)=\sum_{\ell \leq j \leq u} c_{s, j} x\left(k^{m} n+j\right)$
holds for all $n \geq n_{0}$ and $0 \leq s<k^{M}$

- $h(n) \ldots$ largest power of 2 less than or equal to n
- $h(2 n)=2 h(n), h(2 n+1)=2 h(n)$ for $n \geq 1, h(1)=1$
- $k=2, M=1, m=0, \ell=0, u=1, n_{0}=1$
- binary sum of digits
- $s(2 n)=s(n), s(2 n+1)=s(n)+1$
- no direct fit because of constant sequence
- deal with inhomogeneities by increasing the exponents
- number of comparisons for MergeSort
- number of unbordered factors of length n in Thue-Morse sequence

k-linear Representation

binary sum of digits $s(n)$:

- recurrence relations
even numbers: $\quad s(2 n)=s(n)$
odd numbers: $\quad s(2 n+1)=s(n)+1$

k-linear Representation

binary sum of digits $s(n)$:

- recurrence relations
even numbers: $\quad s(2 n)=s(n)$
odd numbers: $\quad s(2 n+1)=s(n)+1$
- vector-valued sequence
set

$$
v(n)=(s(n), 1)^{T}
$$

even $\quad v(2 n)=\binom{s(n)}{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) v(n)$
odd $\quad v(2 n+1)=\binom{s(n)+1}{1}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) v(n)$

k-linear Representation

binary sum of digits $s(n)$:

- recurrence relations
even numbers: $\quad s(2 n)=s(n)$
odd numbers: $\quad s(2 n+1)=s(n)+1$
- vector-valued sequence
set

$$
v(n)=(s(n), 1)^{T}
$$

even $\quad v(2 n)=\binom{s(n)}{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) v(n)$
odd $\quad v(2 n+1)=\binom{s(n)+1}{1}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) v(n)$

- iterate \rightsquigarrow product of matrices

k-linear Representation

binary sum of digits $s(n)$:

- recurrence relations
even numbers: $\quad s(2 n)=s(n)$
odd numbers: $\quad s(2 n+1)=s(n)+1$
- vector-valued sequence
set

$$
v(n)=(s(n), 1)^{T}
$$

even $\quad v(2 n)=\binom{s(n)}{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) v(n)$
odd $\quad v(2 n+1)=\binom{s(n)+1}{1}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) v(n)$

- iterate \rightsquigarrow product of matrices

Some k-regular Sequences

- $h(n)$... largest power of 2 less than or equal to n - $h\left(2^{j} n+r\right)=2^{j} h(n)$ for $n \geq 1, j \geq 0,0 \leq r<2^{j}$
- binary sum of digits

Some k-regular Sequences

- $h(n)$... largest power of 2 less than or equal to n - $h\left(2^{j} n+r\right)=2^{j} h(n)$ for $n \geq 1, j \geq 0,0 \leq r<2^{j}$
- binary sum of digits
- k-recursive sequences:

Theorem (Heuberger-K-Lipnik 2022)

- k-recursive sequence $x(n)$

Then

- $x(n)$ is k-regular sequence
- k-linear representation of $x(n)$
- vector-valued sequence $v(n)$ in block form
- block matrices M_{0}, \ldots, M_{k-1}
- computed by coefficients of k-recursive sequence
- explicit formulæ for the rows available

Unbordered Factors: Coefficient Matrices

- number $f(n)$ of unbordered factors of length n in Thue-Morse sequence

$$
\begin{aligned}
f(8 n) & =2 f(4 n) \\
f(8 n+1) & =f(4 n+1) \\
f(8 n+2) & =f(4 n+1)+f(4 n+3) \\
f(8 n+3) & =-f(4 n+1)+f(4 n+2) \\
f(8 n+4) & =2 f(4 n+2) \\
f(8 n+5) & =f(4 n+3) \\
f(8 n+6) & =-f(4 n+1)+f(4 n+2)+f(4 n+3) \\
f(8 n+7) & =2 f(4 n+1)+f(4 n+3)
\end{aligned}
$$

Unbordered Factors: Coefficient Matrices

- number $f(n)$ of unbordered factors of length n in Thue-Morse sequence
- coefficient matrices B_{0}, B_{1} :

$$
\begin{aligned}
f(8 n) & =2 f(4 n) \\
f(8 n+1) & =f(4 n+1) \\
f(8 n+2) & =f(4 n+1)+f(4 n+3) \\
f(8 n+3) & =-f(4 n+1)+f(4 n+2) \\
f(8 n+4) & =2 f(4 n+2) \\
f(8 n+5) & =f(4 n+3) \\
f(8 n+6) & =-f(4 n+1)+f(4 n+2)+f(4 n+3) \\
f(8 n+7) & =2 f(4 n+1)+f(4 n+3)
\end{aligned}
$$

$$
\begin{aligned}
& B_{0}=\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & -1 & 1 & 0
\end{array}\right) \\
& B_{1}=\left(\begin{array}{cccc}
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 \\
0 & -1 & 1 & 1 \\
0 & 2 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Unbordered Factors: Linear Representation

- coefficient matrices B_{0}, B_{1}
- 2-linear representation of $f(n)$:

$$
v=\left(\begin{array}{c}
f \\
f \circ(n \mapsto 2 n) \\
f \circ(n \mapsto 2 n+1) \\
f \circ(n \mapsto 4 n) \\
f \circ(n \mapsto 4 n+1) \\
f \circ(n \mapsto 4 n+2) \\
f \circ(n \mapsto 4 n+3)
\end{array}\right) \quad M_{0}=\left(\begin{array}{cc}
J_{00} & J_{01} \\
0 & B_{0}
\end{array}\right)
$$

- $J_{r 0}, J_{r 1}$ entries 0,1

Unbordered Factors: Linear Representation

- coefficient matrices B_{0}, B_{1}
- 2-linear representation of $f(n)$:

$$
v=\left(\begin{array}{c}
f \\
f \circ(n \mapsto 2 n) \\
f \circ(n \mapsto 2 n+1) \\
f \circ(n \mapsto 4 n) \\
f \circ(n \mapsto 4 n+1) \\
f \circ(n \mapsto 4 n+2) \\
f \circ(n \mapsto 4 n+3)
\end{array}\right) \quad M_{0}=\left(\begin{array}{cc}
J_{00} & J_{01} \\
0 & B_{0}
\end{array}\right)
$$

- $J_{r 0}, J_{r 1}$ entries 0,1
- initial value compensation $\rightsquigarrow 2$-linear representation of $f(n)$:

$$
\widetilde{M}_{0}=\left(\begin{array}{cc}
M_{0} & W_{0} \\
0 & J_{0}
\end{array}\right) \quad \text { and } \quad \widetilde{M}_{1}=\left(\begin{array}{cc}
M_{1} & W_{1} \\
0 & J_{1}
\end{array}\right)
$$

- J_{r} entries 0,1
- W_{r} entries from initial values

Unbordered Factors: Linear Representation

- coefficient matrices B_{0}, B_{1}
- 2-linear representation of $f(n)$:

$$
v=\left(\begin{array}{c}
f \\
f \circ(n \mapsto 2 n) \\
f \circ(n \mapsto 2 n+1) \\
f \circ(n \mapsto 4 n) \\
f \circ(n \mapsto 4 n+1) \\
f \circ(n \mapsto 4 n+2) \\
f \circ(n \mapsto 4 n+3)
\end{array}\right) \quad M_{0}=\left(\begin{array}{cc}
J_{00} & J_{01} \\
0 & B_{0}
\end{array}\right)
$$

- $J_{r 0}, J_{r 1}$ entries 0,1
- initial value compensation $\rightsquigarrow 2$-linear representation of $f(n)$:

$$
\widetilde{M}_{0}=\left(\begin{array}{cc}
M_{0} & W_{0} \\
0 & J_{0}
\end{array}\right) \quad \text { and } \quad \widetilde{M}_{1}=\left(\begin{array}{cc}
M_{1} & W_{1} \\
0 & J_{1}
\end{array}\right)
$$

- J_{r} entries 0,1
- W_{r} entries from initial values
- minimization algorithm: dimension $10 \rightsquigarrow$ dimension 8

Asymptotics of Partial Sums

- k-regular sequence $f(n)$
- partial sums $F(N)=\sum_{n<N} f(n)$

Asymptotics of Partial Sums

- k-regular sequence $f(n)$
- partial sums $F(N)=\sum_{n<N} f(n)$

Theorem (Heuberger-K-Prodinger 2018, Heuberger-K 2020)

$$
\begin{aligned}
F(N)=\sum_{\substack{\lambda \in \sigma\left(M_{0}+\cdots+M_{k-1}\right) \\
|\lambda|>\rho}} N^{\log _{k} \lambda} \sum_{0 \leq \ell<m(\lambda)}\left(\log _{k} N\right)^{\ell} \Phi_{\lambda \ell}\left(\left\{\log _{k} N\right\}\right) \\
+O\left(N^{\log _{k} R}(\log N)^{\hat{m}}\right)
\end{aligned}
$$

- 1-periodic (Hölder) continuous functions $\Phi_{\lambda \ell}$
- functional equation
$\left(I-\frac{1}{k^{s}}\left(M_{0}+\cdots+M_{k-1}\right)\right) \mathcal{V}(s)=\sum_{n=1}^{k-1} \frac{v(n)}{n^{s}}+\frac{1}{k^{s}} \sum_{r=0}^{k-1} M_{r} \sum_{\ell>1}\binom{-s}{\ell}\left(\frac{r}{k}\right)^{\ell} \mathcal{V}(s+\ell)$
- meromorphic continuation on the half plane $\Re s>\operatorname{tog}_{k} R$
- Fourier series $\Phi_{\lambda \ell}(u)=\sum_{h \in \mathbb{Z}} \varphi_{\lambda \ell h} \exp (2 \ell \pi i u)$
$\varphi_{\lambda \ell h}=\frac{(\log k)^{\ell}}{\ell!} \operatorname{Res}\left(\frac{(f(0)+\mathcal{F}(s))\left(s-\log _{k} \lambda-\frac{2 h \pi i}{\log k}\right)^{\ell}}{s}, s=\log _{k} \lambda+\frac{2 h \pi i}{\log k}\right)$

Unbordered Factors: towards Asymptotics

Asymptotics of k-recursive Sequences

Only properties of coefficient matrices needed from k-linear representation!

- coefficient matrices

$$
B_{0}=\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & -1 & 1 & 0
\end{array}\right) \quad B_{1}=\left(\begin{array}{cccc}
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 \\
0 & -1 & 1 & 1 \\
0 & 2 & 0 & 1
\end{array}\right)
$$

Unbordered Factors: towards Asymptotics

Asymptotics of k-recursive Sequences

Only properties of coefficient matrices needed from k-linear representation!

- coefficient matrices

$$
B_{0}=\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & -1 & 1 & 0
\end{array}\right) \quad B_{1}=\left(\begin{array}{cccc}
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 \\
0 & -1 & 1 & 1 \\
0 & 2 & 0 & 1
\end{array}\right)
$$

- spectrum

$$
\sigma\left(B_{0}+B_{1}\right)=\{1-\sqrt{3}, 1,2,1+\sqrt{3}\}
$$

Unbordered Factors: towards Asymptotics

Asymptotics of k-recursive Sequences

Only properties of coefficient matrices needed from k-linear representation!

- coefficient matrices

$$
B_{0}=\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & -1 & 1 & 0
\end{array}\right) \quad B_{1}=\left(\begin{array}{cccc}
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 \\
0 & -1 & 1 & 1 \\
0 & 2 & 0 & 1
\end{array}\right)
$$

- spectrum

$$
\sigma\left(B_{0}+B_{1}\right)=\{1-\sqrt{3}, 1,2,1+\sqrt{3}\}
$$

- joint spectral radius of $\left\{B_{0}, B_{1}\right\}$ is 2
- has simple growth property

Unbordered Factors: Asymptotics

- number $f(n)$ of unbordered factors of length n in the Thue-Morse sequence

Theorem (Heuberger-K-Lipnik 2022)

$$
F(N)=\sum_{0 \leq n<N} f(n)=N^{\kappa} \cdot \Phi_{F}\left(\left\{\log _{2} N\right\}\right)+O(N \log N) \quad \text { as } N \rightarrow \infty
$$

- - $\kappa=\log _{2}(1+\sqrt{3})=1.44998431347650 \ldots$
- 1-periodic continuous function Φ_{F}, Hölder continuous with any exponent smaller than $\kappa-1$
- - explicit functional equation for Dirichlet series + analyticity properties, poles
- efficiently computable Fourier coefficients of Φ_{F}

Stern's Diatomic Sequence

Stern's Diatomic Sequence

$$
\begin{aligned}
d(2 n) & =d(n) \\
d(2 n+1) & =d(n)+d(n+1)
\end{aligned}
$$

for all $n \geq 0$ and

$$
d(0)=0, d(1)=1
$$

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$d(n)$	0	1	1	2	1	3	2	3	1	4	3	5	2	5	3	4

Stern's Diatomic Sequence

- number of different hyperbinary representations (Northshield 2010)
- number of integers $r \in \mathbb{N}_{0}$ such that Stirling partition numbers $\left\{\begin{array}{c}n \\ 2 r\end{array}\right\}$ are even and non-zero (Carlitz 1964)
- number of different representations as a sum of distinct Fibonacci numbers $F_{2 k}$ (Bicknell-Johnson 2003)
- number of different alternating bit sets (Finch 2003)
- relation to the Towers of Hanoi (Hinz-Klavžar-Milutinović-Parisse-Petr 2005)

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$d(n)$	0	1	1	2	1	3	2	3	1	4	3	5	2	5	3	4

Stern's Diatomic Sequence: Asymptotics

- Stern's diatomic sequence $d(n)$
- 2-recursive, 2-regular

Asymptotics

$$
D(N)=\sum_{0 \leq n<N} d(n)=N^{\kappa} \cdot \Phi_{D}\left(\left\{\log _{2} N\right\}\right)+O\left(N^{\log _{2} \varphi}\right) \quad \text { as } N \rightarrow \infty
$$

- $\quad \kappa=\log _{2} 3=1.5849625007211 \ldots$
- $\varphi=\frac{1+\sqrt{5}}{2}=1.6180339887498 \ldots, \log _{2} \varphi=0.69424191363061 \ldots$
- 1-periodic continuous function Φ_{D}, Hölder continuous with any exponent smaller than $\kappa-\log _{2} \varphi$
- explicit functional equation for Dirichlet series + analyticity properties, poles
- efficiently computable Fourier coefficients of Φ_{D}

Generalized Pascal's Triangle

Binomial Coefficients of Words
 binomial coefficient $\binom{u}{v}$ equals number of different occurrences of v as a scattered subword of u

Generalized Pascal's Triangle

Binomial Coefficients of Words

binomial coefficient $\binom{u}{v}$ equals
number of different occurrences of v as a scattered subword of u

	k	0	1	2	3	4	5	6	7	8	
n	$u=(n)_{2}$	$v=(k)_{2}$	ε	1	10	11	100	101	110	111	1000
0	ε	1	0	0	0	0	0	0	0	0	$1(n)$
1	1	1	1	0	0	0	0	0	0	0	2
2	10	1	1	1	0	0	0	0	0	0	3
3	11	1	2	0	1	0	0	0	0	0	3
4	100	1	1	2	0	1	0	0	0	0	4
5	101	1	2	1	1	0	1	0	0	0	5
6	110	1	2	2	1	0	0	1	0	0	5
7	111	1	3	0	3	0	0	0	1	0	4
8	1000	1	1	3	0	3	0	0	0	1	5

Generalized Pascal's Triangle

Binomial Coefficients of Words

binomial coefficient $\binom{u}{v}$ equals
number of different occurrences of v as a scattered subword of u
"classical"
binomial coefficient

$$
\binom{n}{k}=\binom{1^{n}}{1^{k}}
$$

	k	0	1	2	3	4	5	6	7	8	
n	$u=(n)_{2}$	$v=(k)_{2}$	ε	1	10	11	100	101	110	111	1000
0	ε	1	0	0	0	0	0	0	0	0	$1(n)$
1	1	1	1	0	0	0	0	0	0	0	2
2	10	1	1	1	0	0	0	0	0	0	3
3	11	1	2	0	1	0	0	0	0	0	3
4	100	1	1	2	0	1	0	0	0	0	4
5	101	1	2	1	1	0	1	0	0	0	5
6	110	1	2	2	1	0	0	1	0	0	5
7	111	1	3	0	3	0	0	0	1	0	4
8	1000	1	1	3	0	3	0	0	0	1	5

Non-zeros in Generalized Pascal's Triangle

Stern's Diatomic Sequence \& Generalized Pascal's Triangle

- Stern's diatomic sequence $d(n)$
- number $z(n)$ of non-zero elements in nth row of generalized Pascal's triangle $\binom{(n)_{2}}{(k)_{2}}$

$$
z(n)=d(2 n+1) \quad \text { for all } n \geq 0
$$

Stern's Diatomic Sequence \& Generalized Pascal's Triangle

- Stern's diatomic sequence $d(n)$
- number $z(n)$ of non-zero elements in nth row of generalized Pascal's triangle $\binom{(n)_{2}}{(k)_{2}}$

Theorem (Leroy-Rigo-Stipulanti 2017)

$$
z(n)=d(2 n+1) \quad \text { for all } n \geq 0
$$

Theorem (Leroy-Rigo-Stipulanti 2017)
recurrence relations

$$
\begin{aligned}
z(2 n+1) & =3 z(n)-z(2 n) \\
z(4 n) & =-z(n)+2 z(2 n) \\
z(4 n+2) & =4 z(n)-z(2 n) \\
& \quad \text { for all } n \geq 0
\end{aligned}
$$

Generalized Pascal's Triangle: Asymptotic Analysis

- reformulate as 2 -recursive sequence:

$$
\begin{aligned}
z(4 n) & =\frac{5}{3} z(2 n)-\frac{1}{3} z(2 n+1) \\
z(4 n+1) & =\frac{4}{3} z(2 n)+\frac{1}{3} z(2 n+1) \\
z(4 n+2) & =\frac{1}{3} z(2 n)+\frac{4}{3} z(2 n+1) \\
z(4 n+3) & =-\frac{1}{3} z(2 n)+\frac{5}{3} z(2 n+1)
\end{aligned}
$$

Generalized Pascal's Triangle: Asymptotic Analysis

- reformulate as 2-recursive sequence \& read off coefficient matrices:

$$
\begin{aligned}
z(4 n) & =\frac{5}{3} z(2 n)-\frac{1}{3} z(2 n+1) \\
z(4 n+1) & =\frac{4}{3} z(2 n)+\frac{1}{3} z(2 n+1) \\
z(4 n+2) & =\frac{1}{3} z(2 n)+\frac{4}{3} z(2 n+1) \\
z(4 n+3) & =-\frac{1}{3} z(2 n)+\frac{5}{3} z(2 n+1)
\end{aligned} \quad \Longrightarrow \begin{aligned}
B_{0} & =\frac{1}{3}\left(\begin{array}{cc}
5 & -1 \\
4 & 1
\end{array}\right) \\
B_{1} & =\frac{1}{3}\left(\begin{array}{cc}
1 & 4 \\
-1 & 5
\end{array}\right)
\end{aligned}
$$

- 2-linear representation of dimension 3

Generalized Pascal's Triangle: Asymptotic Analysis

- reformulate as 2 -recursive sequence \& read off coefficient matrices:

$$
\begin{aligned}
z(4 n) & =\frac{5}{3} z(2 n)-\frac{1}{3} z(2 n+1) \\
z(4 n+1) & =\frac{4}{3} z(2 n)+\frac{1}{3} z(2 n+1) \\
z(4 n+2) & =\frac{1}{3} z(2 n)+\frac{4}{3} z(2 n+1) \\
z(4 n+3) & =-\frac{1}{3} z(2 n)+\frac{5}{3} z(2 n+1)
\end{aligned} \quad \Longrightarrow \begin{aligned}
& B_{0}=\frac{1}{3}\left(\begin{array}{cc}
5 & -1 \\
4 & 1
\end{array}\right) \\
&
\end{aligned}
$$

- 2-linear representation of dimension 3
- towards asymptotics: spectrum \& joint spectral radius
- investigating eigenstructure \rightsquigarrow no error term

Generalized Pascal's Triangle: Asymptotic Analysis

- reformulate as 2 -recursive sequence \& read off coefficient matrices:

$$
\begin{aligned}
z(4 n) & =\frac{5}{3} z(2 n)-\frac{1}{3} z(2 n+1) \\
z(4 n+1) & =\frac{4}{3} z(2 n)+\frac{1}{3} z(2 n+1) \\
z(4 n+2) & =\frac{1}{3} z(2 n)+\frac{4}{3} z(2 n+1) \\
z(4 n+3) & =-\frac{1}{3} z(2 n)+\frac{5}{3} z(2 n+1)
\end{aligned} \quad \Longrightarrow \begin{aligned}
& B_{0}=\frac{1}{3}\left(\begin{array}{cc}
5 & -1 \\
4 & 1
\end{array}\right) \\
&
\end{aligned}
$$

- 2-linear representation of dimension 3
- towards asymptotics: spectrum \& joint spectral radius
- investigating eigenstructure \rightsquigarrow no error term
- reconsider connection to Stern's diatomic sequence
- (compute Fourier coefficients of fluctuation)

Generalized Pascal's Triangle: Asymptotics

- number $z(n)$ of non-zero elements in nth row of generalized Pascal's triangle $\binom{(n)_{2}}{(k)_{2}}$
Asymptotics

$$
Z(N)=\sum_{0 \leq n<N} z(n)=N^{\kappa} \cdot \Phi_{Z}\left(\left\{\log _{2} N\right\}\right) \quad \text { for } N \geq 1
$$

- $\kappa=\log _{2} 3$
- $\Phi_{Z}=2 \Phi_{D}$ (with Φ_{D} from Stern's diatomic sequence)

Generalized Pascal's Triangle: Asymptotics

- number $z(n)$ of non-zero elements in nth row of generalized Pascal's triangle $\binom{(n)_{2}}{(k)_{2}}$

Asymptotics

$$
Z(N)=\sum_{0 \leq n<N} z(n)=N^{\kappa} \cdot \Phi_{Z}\left(\left\{\log _{2} N\right\}\right) \quad \text { for } N \geq 1
$$

- $\kappa=\log _{2} 3$
- $\Phi_{Z}=2 \Phi_{D}$ (with Φ_{D} from Stern's diatomic sequence)

Corollary (Heuberger-K-Lipnik 2022)

- Stern's diatomic sequence $d(n)$

$$
\sum_{0 \leq n<N} d(n)+\frac{1}{2} d(N)=N^{\kappa} \cdot \Phi_{D}\left(\left\{\log _{2} N\right\}\right)
$$

