Phase transitions of composition schemes and their universal limit laws

AofA Taipei, June 26-30, 2023.

Cyril Banderier (CNRS/Paris Nord)

Markus Kuba (FH Technikum Wien)

Michael Wallner (TU Wien)

article: arXiv:2103.03751, Annals of Applied Probability, to appear.

Part 1: Compositions and generalized Mittag-Leffler distributions

Ubiquity of compositions schemes in combinatorics

Combinatorial structure = assemblage of basic building blocks

random walks	permutations	tilings
Pólya urns	random mappings	 graphs
 Galton–Watson processes 	set partitions	maps
trees	 integer partitions 	•

A composition scheme for generating functions

$$\sum_{n\geq 0} f_n z^n = F(z) = G(H(z))M(z)$$

Let ρ_G and ρ_H be the radii of convergence of G(z) and H(z), resp. Then, the composition scheme is *critical* if $H(\rho_H) = \rho_G$ and $\rho_M \ge \rho_H$.

Examples:

- Bicolored supertrees: F(z) = C(2zC(z))
- Factorization of walks: $W(z) = \frac{1}{1-H(z)}M(z)$

NB: If not critical: [Bender 1973, Gourdon 1998, Hwang 1999, ...

Combinatorial structures

 $G(H(z)) \times M(z)$

For sure, sum of almost iid $\ \rightsquigarrow$ asymptotics distributions are $\$ Gaussian.

Combinatorial structures

 $G(H(z)) \times M(z)$

For sure, sum of almost iid \rightsquigarrow asymptotics distributions are NON Gaussian.

Goal 1: Analyse F(z, u) = G(uH(z))M(z)

Number of \mathcal{H} -components: Define the discrete random variable X_n of the *core size*:

$$\mathbb{P}\{X_n = k\} = \frac{[z^n u^k]F(z, u)}{[z^n]F(z, 1)}$$

Note that H(z) has typically the following singular expansion

$$H(z) = \tau_H + c_H \left(1 - \frac{z}{\rho_H}\right)^{\lambda_H} + \dots$$

 \Rightarrow the asymptotic behaviour of $\mathbb{P}\{X_n = k\}$ depends on the singular exponent λ_H !

Goal 1: Analyse F(z, u) = G(uH(z))M(z)

Number of \mathcal{H} -components: Define the discrete random variable X_n of the *core size*:

$$\mathbb{P}\{X_n = k\} = \frac{[z^n u^k]F(z, u)}{[z^n]F(z, 1)}$$

Note that H(z) has typically the following singular expansion

$$H(z) = \tau_H + c_H \left(1 - \frac{z}{\rho_H}\right)^{\lambda_H} + \dots$$

⇒ the asymptotic behaviour of $\mathbb{P}{X_n = k}$ depends on the *singular exponent* λ_H ! Limit law of X_n related to certain distributions:

- $\lambda_H < 0$: scheme *not* critical as H(z) diverges at $z = \rho_H$ (called supercritical, typically Gaussian)
- $0 < \lambda_H < 1$: generalized Mittag-Leffler distribution (this talk!) $(\lambda_H = 1/2, M(z) = 1$: Rayleigh distribution)
- $1 < \lambda_H < 2$: related to stable laws of parameter λ_H ($\lambda_H = 3/2, M(z) = 1$: map-Airy distribution [Banderier, Flajolet, Schaeffer, Soria 2001])

• $\lambda_H > 2$: Gaussian

Main results: composition scheme

Our model: $F(z, u) = G(uH(z)) \cdot M(z),$

for F/G/H/M analytic at the origin, with nonnegative coefficients, and singular exponents $\lambda_F/\lambda_G/\lambda_H/\lambda_M$, such that $0 < \lambda_H < 1$.

Main result 1: Limit laws of X_n are generalized Mittag-Leffler product distr.

A parte for systems of equations with coefficients ≥ 0 (\approx context-free grammars) [Drmota-Lalley-Woods 1995]: if strongly connected $\rightsquigarrow n^{-3/2}$ asymptotics; if not, [Flajolet 1985] conjectured that $n^{-1/3}$ never occurs...

A parte for systems of equations with coefficients ≥ 0 (\approx context-free grammars) [Drmota-Lalley-Woods 1995]: if strongly connected $\rightsquigarrow n^{-3/2}$ asymptotics; if not, [Flajolet 1985] conjectured that $n^{-1/3}$ never occurs... proven by [Banderier, Drmota 2015]: $n^{-1-\lambda_F}$, with $\lambda_F = 1/2^k$ or $\lambda_F = -m/2^k$ ($m, k \geq 1$).

Theorem (The number of patatoids)

The core size X_n in supertrees of size n has factorial moments

$$\mathbb{E}(X_n^{\underline{s}}) \sim n^{s/2} \cdot \mu_s, \qquad \mu_s = \frac{\Gamma(s - \frac{1}{2})\Gamma(-\frac{1}{4})}{\Gamma(-\frac{1}{2})\Gamma(\frac{s}{2} - \frac{1}{4})}$$

The scaled random variable $X_n/n^{1/2}$ converges in distribution with convergence of all moments to a 2-parameter Mittag-Leffler distribution:

$$\frac{X_n}{n^{1/2}} \xrightarrow{d} X, \quad \text{with} \quad X \stackrel{d}{=} \mathsf{ML}\left(\frac{1}{2}, -\frac{1}{4}\right)$$

Moreover, we have the local limit theorem $\mathbb{P}\{X_n = x \cdot n^{1/2}\} \sim n^{-1/2}f_X(x)$, with $f_X(x)$ denoting the density of the random variable X.

Cyril Banderier & Michael Wallner | (Paris Nord & TU Wien

2-parameter Mittag-Leffler distribution

• A positive random var. S_{α} follows a stable law of parameter $\alpha \in (0,1)$ if $\mathbb{E}(e^{-tS_{\alpha}}) = e^{-t^{\alpha}}$ or, equivalently, $f_{S_{\alpha}}(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n!\Gamma(-n\alpha)} x^{-n\alpha-1}$.

• A random variable M_{α} follows a **Mittag-Leffler distribution** ML(α) if

$$M_{\alpha} \stackrel{d}{=} (S_{\alpha})^{-\alpha}$$

 \Rightarrow Its MGF $\mathbb{E}(e^{xM_{\alpha}})$ is the Mittag-Leffler function $E_{\alpha}(x) = \sum_{k \ge 0} \frac{x^k}{\Gamma(1+\alpha k)}$.

Definition ([Pitman 2006, James 2015, Goldschmidt, Haas 2015])

Let $\alpha \in (0,1)$ and $\beta > -\alpha$. Then, the 2-parameter Mittag-Leffler distribution $ML(\alpha,\beta)$ is uniquely defined by its moments

$$\mathbb{E}(X^{s}) = \frac{\Gamma\left(s + \frac{\beta}{\alpha} + 1\right)\Gamma(\beta + 1)}{\Gamma(\alpha s + \beta + 1)\Gamma\left(\frac{\beta}{\alpha} + 1\right)} = \frac{\Gamma\left(s + \frac{\beta}{\alpha}\right)\Gamma(\beta)}{\Gamma(\alpha s + \beta)\Gamma\left(\frac{\beta}{\alpha}\right)}$$

ML(α, 0) = M_α
 ML(1/2, 0): half-normal distribution |N(0, σ²)| of parameter σ = √2
 ML(1/2, 1/2): Rayleigh distribution of parameter √2

Cyril Banderier & Michael Wallner (Paris Nord & TU Wien)

3-parameter Mittag-Leffler distribution

The distributions of *critical composition schemes* will be the 3-parameter Mittag-Leffler distributions $ML(\alpha, \beta, \gamma)$ defined as

$$Z \stackrel{d}{=} Y \cdot B^{\alpha}$$

where $Y \stackrel{d}{=} ML(\alpha, \beta)$ and $B \stackrel{d}{=} Beta(\beta, \gamma)$ are independent, such that $0 < \alpha < 1$, $\beta > 0$, and $\gamma \ge 0$.

Lemma

The 3-parameter Mittag-Leffler distribution $\mathsf{ML}(\alpha, \beta, \gamma)$ has the following moments

$$\mathbb{E}(Z^{s}) = \frac{\Gamma\left(s + \frac{\beta}{\alpha}\right)\Gamma\left(\beta + \gamma\right)}{\Gamma\left(\alpha s + \beta + \gamma\right)\Gamma\left(\frac{\beta}{\alpha}\right)}.$$

One has the following identity

$$Z \stackrel{d}{=} \mathsf{ML}(\alpha, \beta) \operatorname{Beta}(\beta, \gamma)^{\alpha} \stackrel{d}{=} \mathsf{ML}(\alpha, \beta + \gamma) \operatorname{Beta}(\frac{\beta}{\alpha}, \frac{\gamma}{\alpha}).$$

distribution with moments of Gamma type [Janson 2010]
 explicit representation of its density by integrals or hypergeometric functions

A moment problem

Torsten Carleman (1892-1949)

Theorem

Our X_n converges to the 3-parameter Mittag-Leffler distribution, which is characterized by its moments $\Gamma\left(r + \frac{\beta}{2}\right)\Gamma\left(\beta + \gamma\right)$

$$\mathbb{E}(\mathsf{ML}(\alpha,\beta,\gamma)^r) = \frac{\Gamma\left(r + \frac{r}{\alpha}\right)\Gamma\left(\beta + \gamma\right)}{\Gamma\left(\alpha r + \beta + \gamma\right)\Gamma\left(\frac{\beta}{\alpha}\right)}.$$

Proof. Set $m_r := \mathbb{E}[X^r]$ and $m_r(n) := \mathbb{E}[X_n^r]$. [Fréchet, Shohat 1930]: if $m_r(n) \to m_r$ then $X_n \stackrel{d}{\to} X$... if the moments determine X uniquely!

[Carleman 1923]: There is a unique distribution with such moments if :

- for support [0, ∞) (Stieljes moment problem): $\sum 1/m_r^{1/2r} = \infty$
- for support $(-\infty,\infty)$ (Hamburger moment problem): $\sum 1/m_{2r}^{1/2r} = \infty$
- for support [0,1] (Hausdorff moment problem): m_r completely monotonic.

A tool to identify densities: tilts and shifts

Lemma (Tilted lemma) Let X be a random variable with moment sequence $(\mu_s)_{s\geq 0}$ and density f(x) of support $[0, +\infty)$. For any $c \in \mathbb{R}^+$, we have a random variable X_c satisfying: $\mathbb{E}(X_c^s) = \frac{\mu_{s+c}}{\mu_c}$ $f_c(x) = \frac{x^c}{\mu_c} \cdot f(x)$ (shifted moments) (tilted density) $\mathbb{E}(e^{tX_c}) = \frac{1}{\mu_c} \partial_t^c \mathbb{E}(e^{tX})$ (MGF differentiation) (with fractional calculus definition of ∂_t^c for $c \notin \mathbb{N}$). We write $X_c = \text{tilt}_c X$.

Example:

$$\mathsf{tilt}_{\beta/\alpha}(\mathsf{ML}(\alpha)) \stackrel{d}{=} \mathsf{ML}(\alpha,\beta), \quad \text{ i.e., } \quad \mathsf{tilt}_{\beta/\alpha}(S_{\alpha}^{-\alpha}) = (\mathsf{tilt}_{-\beta}(S_{\alpha}))^{-\alpha}.$$

Three different regimes

Recall: $\lambda_F / \lambda_G / \lambda_H / \lambda_M$ are the singular exponents of F/G/H/Mi.e., $F(z) = \underbrace{\tau_F + \dots}_{\text{initial regular part}} + c_F (1 - z/\rho_F)^{\lambda_F} + \dots$

Lemma

In a critical composition scheme F(z) = G(H(z))M(z) with $0 < \lambda_H < 1$, the singular exponent λ_F of F(z) satisfies

$$\lambda_F = \min(\lambda_G \lambda_H + \lambda_M, \lambda_G \lambda_H, \lambda_H, \lambda_M).$$

Composition scheme: pure case

Theorem

In a pure critical composition scheme

$$F(z, u) = G(uH(z))M(z),$$

the core size X_n , converges in distribution and in moments to a random var. X distributed like a 3-parameter Mittag-Leffler distribution:

$$\frac{X_n}{\kappa \cdot n^{\lambda_H}} \xrightarrow{d} X, \quad \text{with} \quad X \stackrel{d}{=} \mathsf{ML}(\alpha, \beta, \gamma),$$

where $\alpha = \lambda_H$, $\beta = -\lambda_G \lambda_H$, $\gamma = -\min(0, \lambda_M)$, and $\kappa = \frac{\tau_H}{-c_H}$.

Composition scheme: pure case

Theorem

In a pure critical composition scheme

$$F(z, u) = G(uH(z))M(z),$$

the core size X_n , converges in distribution and in moments to a random var. X distributed like a 3-parameter Mittag-Leffler distribution:

$$\frac{X_n}{\kappa \cdot n^{\lambda_H}} \xrightarrow{d} X, \quad \text{with} \quad X \stackrel{d}{=} \mathsf{ML}(\alpha, \beta, \gamma),$$

where $\alpha = \lambda_H$, $\beta = -\lambda_G \lambda_H$, $\gamma = -\min(0, \lambda_M)$, and $\kappa = \frac{\tau_H}{-c_H}$. What is more, one has a local limit theorem

$$\mathbb{P}\{X_n = x \cdot \kappa n^{\lambda_H}\} \sim \frac{1}{\kappa n^{\lambda_H}} \cdot f_X(x),$$

where $f_X(x)$ is the density of X:

$$f_X(x) = \frac{\Gamma(\beta + \gamma)}{\Gamma(\beta/\alpha)} \sum_{j \ge 0} \frac{(-1)^j}{j! \Gamma(\gamma - j\alpha)} x^{\beta/\alpha + j - 1}.$$

Simplifications

$$f_{X_2}(x) = \frac{1}{\sqrt{\pi}} \exp\left(-\frac{x^2}{4}\right)$$

Composition scheme: degenerate case

Theorem

In a degenerate critical composition scheme

$$F(z,u) = G(uH(z))M(z)$$

the core size X_n converges for $0 < \lambda_G < 1$ and $\lambda_M < \lambda_G \lambda_H$ to a Boltzmann distribution:

$$\mathbb{P}\{X_n=k\}\to\mathbb{P}\{\mathcal{B}_G(\rho_G)=k\}=\frac{g_k\rho_G^k}{G(\rho_G)}.$$

The case $\lambda_G > 1$ is similar.

Definition (Boltzmann distribution $\mathcal{B}_G(x)$)

Let $G(z) = \sum_{n \ge 0} g_n z^n$ be a generating function and x > 0 inside the radius of convergence. Then, the *Boltzmann distribution* $\mathcal{B}_G(x)$ is defined by $\mathbb{P}\{X = n\} = \frac{g_n x^n}{G(x)}, \quad n \ge 0.$

 \rightsquigarrow "Boltzmann method": using this Gibbs measure for each object of size *n* lead to a revolution for uniform random generation [Flajolet, Duchon, Louchard, Schaeffer 2001]

Composition scheme: confluent case

Theorem

In a confluent (i.e., $0 < \lambda_G < 1$ and $\lambda_M = \lambda_G \lambda_H$) ext. crit. comp. scheme

$$F(z, u) = G(uH(z))M(z)$$

the core size X_n is a convex combination of a Boltzmann distribution $\mathcal{B}_G(\rho_G)$ and an asymptotically continuous random variable Z_n :

$$X_n \sim \operatorname{Be}(p) \cdot \mathcal{B}_G(\rho_G) + (1 - \operatorname{Be}(p)) \cdot Z_n, \qquad \frac{Z_n}{\kappa \cdot n^{\lambda_H}} \xrightarrow{d} \operatorname{ML}(\lambda_H, -\lambda_G \lambda_H),$$

where $p = \frac{c_M G(\rho_G)}{c_M G(\rho_G) + \tau_M c_G(-c_H/\rho_G)^{\lambda_G}}$, and indep. rv's Be(p), $\mathcal{B}_G(\rho_G)$, Z_n , and ML.

Figure: Core size in first part of pairs of supertrees: $\frac{1}{2} \mathcal{B}_{C}(\frac{1}{4}) + \frac{1}{2} \sqrt{n} ML(\frac{1}{2}, -\frac{1}{4})$.

A link with electromagnetism and special functions

Mittag-Leffler function: 1903, extended to two parameters by Wiman in 1905, and to three parameters by Prabhakar in 1971:

$$\mathcal{E}^{\gamma'}_{lpha,eta'}(t):=\sum_{k=0}^{\infty}rac{\Gamma(k+\gamma')}{\Gamma(lpha k+eta')\Gamma(\gamma')}rac{t^k}{k!}.$$

It is a special case of Fox–Wright function (\approx quotients of gamma \approx Wright's generalized hypergeometric \approx Mellin–Barnes integral).

There are many articles on this function... in physics!

A link with electromagnetism and special functions

Mittag-Leffler function: 1903, extended to two parameters by Wiman in 1905, and to three parameters by Prabhakar in 1971:

$$\mathsf{E}^{\gamma'}_{lpha,eta'}(t):=\sum_{k=0}^{\infty}rac{\Gamma(k+\gamma')}{\Gamma(lpha k+eta')\Gamma(\gamma')}rac{t^k}{k!}.$$

For $\beta' = \alpha \gamma'$, this "is" the inverse Laplace transform of $1/(1 + s^{\alpha})\gamma'$, the right part of the Havriliak–Negami generalization of the Debye and Cole–Cole equations, which are classical models of dielectric relaxation in electromagnetism. [Capelas Mainardi Vaz 2011, Garra(ppa) 2018, Górska Horzela Bratek Dattoli Penson 2018]. totally monotone: $(-1)^n \partial_t^n g(t) > 0$ for $t \in \mathbb{R}^+$. Bernstein's theorem \Rightarrow density!?

The Mittag-Leffler distributions

Distribution	Moment gen. function	History of the MGF
$\begin{array}{c} Mittag-Leffler \\ ML(\alpha) \end{array}$	$\mathbb{E}ig(e^{tX}ig)= {\sf E}_lpha(t)={\sf E}^1_{lpha,1}(t)$	Laplace transform of stable distribu- tions, subordinators [Feller 1949], MGF of local time of Markov processes [Darling, Kac 1957].
two-parameter Mittag-Leffler ML (α, β)	$\mathbb{E}ig(e^{tX}ig) = \Gamma(eta') E^{\gamma'}_{lpha,eta'}(t) \ (eta',\gamma') = ig(eta,rac{eta}{lpha}ig)$	Chinese restaurant [Pitman 2002], line-breaking construction of stable trees [Goldschmidt, Haas 2015], triangular Pólya urns [Flajolet, Dumas, Puyhaubert 2006], [Janson 2006 & 2010].
three-parameter Mittag-Leffler $ML(lpha,eta,\gamma)$	$\mathbb{E}ig(e^{tX}ig) = \Gamma(eta') E^{\gamma'}_{lpha,eta'}(t) \ (eta',\gamma') = ig(eta+\gamma,rac{eta}{lpha}ig)$	critical composition schemes [Banderier, Kuba, Wallner 2021], Pólya urns [Goldschmidt, Haas, Sénizergues 2022]

This concludes our analysis of the size of the core in $F(z, u) = G(uH(z)) \times M(z)$.

Part 2: Compositions capturing size/distance and mixed Poisson distributions

Goal 2: Analyse $F_j(z, v) = G(H(z) - (1 - v)h_j z^j)M(z)$

Profile: Number of \mathcal{H} -components of given size j

Let $H(z) = \sum_{n \ge 0} h_j z^n$ and define the discrete random variable $X_{n,j}$:

$$\mathbb{P}\{X_{n,j}=k\}=\frac{[z^nv^k]F_j(z,v)}{[z^n]F_j(z,1)}$$

• $X_{n,j}$ naturally refines X_n :

$$\sum_{j\in\mathbb{N}}X_{n,j}=X_n.$$

• We now show that the limit laws of $X_{n,j}$ involve *mixed Poisson distributions*.

Mixed Poisson distribution

- First introduced for actuarial math./insurance modelling [Dubourdieu 1939]
- studied by Lundberg under the name "compound Poisson processes"
- used in bacteriology [Neyman 1939]
- unimodality properties [Masse, Theodorescu 2005]
- tail asymptotics [Willmot, Lin 2001]
- combinatorics [Kuba, Panholzer 2016]

Definition

Let X be a nonneg. random variable with cumulative distribution function U. Then, Y has a **mixed Poisson distribution with mixing distribution** U and scale parameter $\xi \ge 0$, if its probability mass function is given for $\ell \ge 0$ by

$$\mathbb{P}\{Y=\ell\}=\frac{\xi^{\ell}}{\ell!}\int_{\mathbb{R}^+}X^{\ell}e^{-\xi X}dU=\frac{\xi^{\ell}}{\ell!}\mathbb{E}(X^{\ell}e^{-\xi X}).$$

Notation: $Y \stackrel{d}{=} \mathsf{MPo}(\xi U)$ or $Y \stackrel{d}{=} \mathsf{MPo}(\xi X)$.

Important: $\mathbb{E}(Y^{\underline{s}}) = \xi^{s} \mathbb{E}(X^{s}), \quad s \geq 1.$

Refined scheme

Theorem

Consider a size-refined pure critical composition scheme $F_{j}(z, v) = G(H(z) - (1 - v)h_{j}z^{j})M(z),$ with $j \in \mathbb{N}$. Let $\xi_{n,j} = \frac{\rho_{H}^{j}}{-c_{H}}h_{j}n^{\lambda_{H}}$. Then, $\mathbf{1} \quad j \ll n^{\frac{\lambda_{H}}{1+\lambda_{H}}}$: we have $\xi_{n,j} \to +\infty$ and $\frac{X_{n,j}}{\xi_{n,j}} \stackrel{d}{\longrightarrow} ML(\alpha, \beta, \gamma)$

the 3-param. Mittag-Leffler with $\alpha = \lambda_H$, $\beta = -\lambda_G \lambda_H$, $\gamma = -\min(0, \lambda_M)$.

Refined scheme

Theorem

Consider a size-refined pure critical composition scheme $F_i(z, v) = G(H(z) - (1 - v)h_i z^j)M(z),$ with $j \in \mathbb{N}$. Let $\xi_{n,j} = \frac{\rho_H^j}{-c_{ij}} h_j n^{\lambda_H}$. Then, 1 $j \ll n^{\frac{\lambda_H}{1+\lambda_H}}$: we have $\xi_{n,j} \to +\infty$ and $\frac{X_{n,j}}{\xi_{n,i}} \xrightarrow{d} \mathsf{ML}(\alpha,\beta,\gamma)$ the 3-param. Mittag-Leffler with $\alpha = \lambda_H$, $\beta = -\lambda_G \lambda_H$, $\gamma = -\min(0, \lambda_M)$. 2 $j \sim r \cdot n^{\frac{\lambda_H}{1+\lambda_H}}$, $r \in (0,\infty)$: we have $\xi_{n,j} \to \xi$ with $\xi = r^{-\frac{\lambda_H}{1+\lambda_H}} \cdot \frac{1}{-\Gamma(-\lambda_H)}$ and $X_{n,i} \xrightarrow{d} MPo(\xi X),$

the mixed Poisson distribution with mixing distribution $X \stackrel{d}{=} ML(\alpha, \beta, \gamma)$.

Refined scheme

Theorem

Consider a size-refined pure critical composition scheme $F_i(z, v) = G(H(z) - (1 - v)h_i z^j)M(z),$ with $j \in \mathbb{N}$. Let $\xi_{n,j} = \frac{\rho_H^j}{-c_{ij}} h_j n^{\lambda_H}$. Then, 1 $j \ll n^{\frac{\lambda_H}{1+\lambda_H}}$: we have $\xi_{n,j} \to +\infty$ and $\frac{X_{n,j}}{\xi_{n,i}} \xrightarrow{d} \mathsf{ML}(\alpha,\beta,\gamma)$ the 3-param. Mittag-Leffler with $\alpha = \lambda_H$, $\beta = -\lambda_G \lambda_H$, $\gamma = -\min(0, \lambda_M)$. 2 $j \sim r \cdot n^{\frac{\lambda_H}{1+\lambda_H}}$, $r \in (0,\infty)$: we have $\xi_{n,j} \to \xi$ with $\xi = r^{-\frac{\lambda_H}{1+\lambda_H}} \cdot \frac{1}{-\Gamma(-\lambda_H)}$ and $X_n : \xrightarrow{d} MPo(\xi X).$

the mixed Poisson distribution with mixing distribution $X \stackrel{d}{=} ML(\alpha, \beta, \gamma)$. $j \gg n^{\frac{\lambda_H}{1+\lambda_H}}$: we have $\xi_{n,j} \to 0$ and $X_{n,j}$ converges to a Dirac distr. at 0.

Phase transitions for the profile $F(z, v) = G(H(z) - (1 - v)h_j z^j)M(z)$

- **1** For large *n* there are typically many small $(j \ll n^{\frac{\lambda_H}{1+\lambda_H}})$, some giant $(j \sim rn^{\frac{\lambda_H}{1+\lambda_H}})$, and no super-giant $(j \gg n^{\frac{\lambda_H}{1+\lambda_H}})$ \mathcal{H} -components of size *j*.
- 2 Conditioning on super-giant case a point process appears; see [Stufler 2022].
 3 Universality of the window Θ(n^{1/3}): ubiquitous square-root behaviour (λ_H = ¹/₂)

$$\Rightarrow$$
 universality of the window $j = \Theta(n^{\frac{\lambda_H}{1+\lambda_H}}) = \Theta(n^{1/3}).$

Cyril Banderier & Michael Wallner | (Paris Nord & TU Wien)

Applications

In our paper:

- **1** Core size of **supertrees**
- 2 Root degree and branching structure in bilabelled increasing trees
- 3 Returns to zero in walks and bridges with drift zero
- 4 Initial returns in coloured bridges
- 5 Sign changes in Motzkin walks
- 6 Table sizes in the Chinese restaurant process
- Compositions in balanced triangular urn models
- + cycle compositions, multivariate extensions.

Example: Bicolored supertrees refined

Refined scheme: $F_j(z, v) = C(2zC(z) + (v - 1)2c_{j-1}z^j)$ where $C(z) = \frac{1-\sqrt{1-4z}}{2z}$ is the generating function of plane trees.

Theorem (Number of patatoids of size i)

The number of coloured trees of size *j* in supertrees of size *n* has factorial moments of mixed Poisson type given by

$$\mathbb{E}(X_{n,j}^{\underline{s}}) = \xi_{n,j}^{s} \cdot \mu_{s}(1+o(1)),$$

with $\xi_{n,i} = 2(\frac{1}{4})^{j-1}c_{j-1}n^{1/2}$ and mixing distribution $X = ML(\frac{1}{2}, -\frac{1}{4})$ with

$$\mathbb{E}(X^s) = \mu_s = \frac{\Gamma(s-\frac{1}{2})\Gamma(-\frac{1}{4})}{\Gamma(-\frac{1}{2})\Gamma(\frac{s}{2}-\frac{1}{4})}.$$

Furthermore, the random variable $X_{n,i}$ possesses the three previous distinct asymptotic régimes, with a phase transition at $j = \Theta(n^{1/3})$.

Walks with zero drift: Returns to zero

Walk: Sequence of vectors $(v_1, \ldots, v_n) \in S^n$ Step set: $S = \{s_1, \ldots, s_m\} \subset \mathbb{Z}$ with weights $\{p_1, \ldots, p_m\}$ Step polynomial $P(u) = \sum_{i=1}^m p_i u^{s_i} \Rightarrow \text{ drift } 0: P'(1) = 0$

Walks with zero drift: Returns to zero

Walk: Sequence of vectors $(v_1, \ldots, v_n) \in S^n$ Step set: $S = \{s_1, \ldots, s_m\} \subset \mathbb{Z}$ with weights $\{p_1, \ldots, p_m\}$ Step polynomial $P(u) = \sum_{i=1}^m p_i u^{s_i} \Rightarrow \text{drift } 0$: P'(1) = 0

- Walk "=" initial bridge B(z) + final walk M(z) = W(z)/B(z) (not returning to 0)
 The bridge part contains all the returns to zero
- Decomposing this bridge into a sequence of "minimal bridges" $B(z) = \frac{1}{1-A(z)}$

$$\Rightarrow \qquad W(z,u) = \frac{1}{1 - uA(z)} \frac{W(z)}{B(z)}$$

Profile of returns to zero

Corollary

Let $X_{n,j}$ be the number of distance-j-zeroes in walks (bridges) with zero drift of length n. Then, $X_{n,j}$ has factorial moments of mixed Poisson type

$$\mathbb{E}(X_{n,j}^{\underline{s}}) = \xi_{n,j}^{s} \cdot \mathbb{E}(X^{s}) \left(1 + o(1)\right),$$

with $\xi_{n,j} = \sqrt{\frac{P(1)}{2P''(1)}} \frac{h_j}{P(1)^j} \cdot n^{1/2}$, where X is given by

$$X = \begin{cases} HN(\sigma) & \text{for walks,} \\ Rayleigh(\sigma) & \text{for bridges,} \end{cases} \qquad \sigma = \sqrt{\frac{P(1)}{P''(1)}}.$$

Furthermore, the random variable $X_{n,j}$ possesses our three distinct asymptotic régimes, with a phase transition at $j = \Theta(n^{1/3})$.

Initial returns in coloured walks with zero drift

A 4-coloured bridge, with all its initial returns to zero marked by red dots:

Generating functions for *m*-colored bridges and walks:

$$B_m(z, u) = \left(\frac{1}{1 - uA(z)} - 1\right) (B(z) - 1)^{m-1}$$
$$W_m(z, u) = (1 + B_m(z, u)) \frac{W(z)}{B(z)}$$

 \Rightarrow apply our blackbox theorems!

Corollary

The random variable X_n counting the number of initial returns in a m-coloured walk (resp. bridge) of length n satisfies

$$\mathbb{E}(X_n^{\underline{s}}) \sim n^{s/2} \left(\frac{\sigma}{\sqrt{2}}\right)^n \mu_s, \quad \sigma = \sqrt{\frac{P(1)}{P''(1)}}, \quad \mu_s = \begin{cases} \frac{\Gamma(s+1)\Gamma((m+1)/2)}{\Gamma((m+s+1)/2)}, & \text{for walks,} \\ \frac{\Gamma(s+1)\Gamma(m/2)}{\Gamma((m+s)/2)}, & \text{for bridges.} \end{cases}$$

Corollary

The random variable X_n counting the number of initial returns in a m-coloured walk (resp. bridge) of length n satisfies

$$\mathbb{E}(X_n^{\underline{s}}) \sim n^{s/2} \left(\frac{\sigma}{\sqrt{2}}\right)^n \mu_s, \quad \sigma = \sqrt{\frac{P(1)}{P''(1)}}, \quad \mu_s = \begin{cases} \frac{\Gamma(s+1)\Gamma((m+1)/2)}{\Gamma((m+s+1)/2)}, & \text{for walks,} \\ \frac{\Gamma(s+1)\Gamma(m/2)}{\Gamma((m+s)/2)}, & \text{for bridges.} \end{cases}$$

The random variable $X_n/n^{1/2}$ converges in distribution with convergence of all moments to the product of a Rayleigh and a scaled beta distribution:

$$\frac{X_n}{n^{1/2}} \stackrel{d}{\longrightarrow} X, \qquad \qquad X \stackrel{d}{=} \mathsf{Rayleigh}(\sigma) \cdot B^{1/2},$$

with independent random variables

$$Rayleigh(\sigma) \quad and \quad B = \begin{cases} \text{Beta}\left(\frac{1}{2}, \frac{m}{2}\right), & \text{for walks,} \\ \text{Beta}\left(\frac{1}{2}, \frac{m-1}{2}\right), & \text{for bridges} \end{cases}$$

Corollary

The random variable X_n counting the number of initial returns in a m-coloured walk (resp. bridge) of length n satisfies

$$\mathbb{E}(X_n^{\underline{s}}) \sim n^{s/2} \left(\frac{\sigma}{\sqrt{2}}\right)^n \mu_s, \quad \sigma = \sqrt{\frac{P(1)}{P''(1)}}, \quad \mu_s = \begin{cases} \frac{\Gamma(s+1)\Gamma((m+1)/2)}{\Gamma((m+s+1)/2)}, & \text{for walks,} \\ \frac{\Gamma(s+1)\Gamma(m/2)}{\Gamma((m+s)/2)}, & \text{for bridges} \end{cases}$$

The random variable $X_n/n^{1/2}$ converges in distribution with convergence of all moments to the product of a Rayleigh and a scaled beta distribution:

$$\frac{X_n}{n^{1/2}} \stackrel{d}{\longrightarrow} X, \qquad \qquad X \stackrel{d}{=} \mathsf{Rayleigh}(\sigma) \cdot B^{1/2},$$

with independent random variables

$$Rayleigh(\sigma) \quad and \quad B = \begin{cases} \mathsf{Beta}\left(\frac{1}{2}, \frac{m}{2}\right), & \text{for walks,} \\ \mathsf{Beta}\left(\frac{1}{2}, \frac{m-1}{2}\right), & \text{for bridges.} \end{cases}$$

We have the local limit theorem $\mathbb{P}\{X_n = x \cdot n^{1/2}\} \sim n^{-1/2} \cdot f_X(x)$, where, for bridges

$$f_X(x) = \sqrt{\frac{2}{\pi\sigma^2}} \, \Gamma\left(\frac{m}{2}\right) e^{-\frac{x^2}{2\sigma^2}} \, U\left(\frac{m}{2} - 1, \frac{1}{2}, \frac{x^2}{2\sigma^2}\right),$$

where U(a, b, x) is the confluent hypergeometric function of the second kind. For walks, one replaces m by m + 1.

Tables in the Chinese restaurant process

- Studied by Aldous, Pitman, Yor
- Links with fragmentation/stick breaking/Poisson-Dirichlet processes
- Discrete-time stochastic process: at time n a set partition of $\{1, \ldots, n\}$
 - Start at time n = 1 with the partition $\{\{1\}\}$
 - Given partition $T = \{t_1, \ldots, t_k\}$ of [n] either add n + 1 to $t_i \in T$ with prob.

$$\mathbb{P}\{n+1 \hookrightarrow t_i\} = \frac{|t_i|-\alpha}{n+\beta}, \quad 1 \le i \le k,$$

• or as a new singleton block with remaining probability.

Embedding into plane-oriented recursive trees [Kuba, Panholzer 2016] \Rightarrow Number of tables with *j* customers $\stackrel{d}{=}$ branches of size *j*

Let a > 0, b > -1. The random variable $X_{n,j}$ counting the number of tables with j customers in a Chinese restaurant process of parameter

$$\alpha = \frac{1}{1+a} \qquad \qquad \beta = \frac{b}{1+a},$$

with a total of n - 1 customers possesses our three distinct asymptotic régimes, with a phase transition at $j = \Theta(n^{1/(a+2)})$:

Let a > 0, b > -1. The random variable $X_{n,j}$ counting the number of tables with j customers in a Chinese restaurant process of parameter

$$\alpha = \frac{1}{1+a} \qquad \qquad \beta = \frac{b}{1+a},$$

with a total of n - 1 customers possesses our three distinct asymptotic régimes, with a phase transition at $j = \Theta(n^{1/(a+2)})$:

1 For $j \ll n^{\frac{1}{a+2}}$ we have $\xi_{n,j} = \frac{\alpha n^{\alpha}}{j} {j-1-\alpha \choose j-1} \to \infty$ and $\frac{X_{n,j}}{\xi_{n,j}}$ converges in distr. with convergence of all moments, to a 2-parameter Mittag-Leffler distr.:

$$\frac{X_{n,j}}{\xi_{n,j}} \xrightarrow{d} X \quad \text{with} \quad X \stackrel{d}{=} \mathsf{ML}(\alpha,\beta).$$

Let a > 0, b > -1. The random variable $X_{n,j}$ counting the number of tables with j customers in a Chinese restaurant process of parameter

$$\alpha = \frac{1}{1+a} \qquad \qquad \beta = \frac{b}{1+a},$$

with a total of n - 1 customers possesses our three distinct asymptotic régimes, with a phase transition at $j = \Theta(n^{1/(a+2)})$:

1 For $j \ll n^{\frac{1}{a+2}}$ we have $\xi_{n,j} = \frac{\alpha n^{\alpha}}{j} {j-1-\alpha \choose j-1} \to \infty$ and $\frac{X_{n,j}}{\xi_{n,j}}$ converges in distr. with convergence of all moments, to a 2-parameter Mittag-Leffler distr.:

$$\frac{X_{n,j}}{\xi_{n,j}} \xrightarrow{d} X \quad \text{with} \quad X \stackrel{d}{=} \mathsf{ML}(\alpha,\beta).$$

2 For $j \sim r \cdot n^{\frac{1}{a+2}}$, $r \in (0, \infty)$, we have $\xi_{n,j} \to \xi$, and the $X_{n,j}$ converges in distr. with convergence of all moments, to a mixed Poisson distr.:

$$X_{n,j} \xrightarrow{d} MPo(\xi X).$$

Let a > 0, b > -1. The random variable $X_{n,j}$ counting the number of tables with j customers in a Chinese restaurant process of parameter

$$\alpha = \frac{1}{1+a} \qquad \qquad \beta = \frac{b}{1+a},$$

with a total of n - 1 customers possesses our three distinct asymptotic régimes, with a phase transition at $j = \Theta(n^{1/(a+2)})$:

I For $j \ll n^{\frac{1}{a+2}}$ we have $\xi_{n,j} = \frac{\alpha n^{\alpha}}{j} {j-1-\alpha \choose j-1} \to \infty$ and $\frac{X_{n,j}}{\xi_{n,j}}$ converges in distr. with convergence of all moments, to a 2-parameter Mittag-Leffler distr.:

$$\frac{X_{n,j}}{\xi_{n,j}} \xrightarrow{d} X \quad \text{with} \quad X \stackrel{d}{=} \mathsf{ML}(\alpha,\beta).$$

2 For $j \sim r \cdot n^{\frac{1}{a+2}}$, $r \in (0, \infty)$, we have $\xi_{n,j} \to \xi$, and the $X_{n,j}$ converges in distr. with convergence of all moments, to a mixed Poisson distr.:

$$X_{n,j} \xrightarrow{d} MPo(\xi X).$$

3 For $j \gg n^{\frac{1}{a+2}}$, $\xi_{n,j} \to 0$, and $X_{n,j}$ converges to a Dirac distribution at 0.

Phase transitions of composition schemes

Balanced triangular Pólya urns

Phase transitions of composition schemes

Balanced triangular Pólya urns

Limit law for balanced triangular Pólya urns

Problem 1.15. [Janson 2006]

Find better descriptions of the limits of triangular Pólya urns.

- Closed form of the moments known [Theorem 1.7, Janson 2006]
- For $b_0 > 0$ and $w_0 = 0$ or $w_0 = b$ Janson observed a moment-tilted stable law

History generating function [Flajolet, Dumas, Puyhaubert 2006]:

$$F(z, u) = u^{w_0}(1 - \sigma z)^{-b_0/\sigma} \left(1 - u^a (1 - (1 - \sigma z)^{a/\sigma})\right)^{-w_0/a}$$

Limit law for balanced triangular Pólya urns

Problem 1.15. [Janson 2006]

Find better descriptions of the limits of triangular Pólya urns.

- Closed form of the moments known [Theorem 1.7, Janson 2006]
- For $b_0 > 0$ and $w_0 = 0$ or $w_0 = b$ Janson observed a moment-tilted stable law

History generating function [Flajolet, Dumas, Puyhaubert 2006]:

$$F(z, u) = u^{w_0}(1 - \sigma z)^{-b_0/\sigma} \left(1 - u^a \left(1 - (1 - \sigma z)^{a/\sigma}\right)\right)^{-w_0/a}$$

Corollary

Let W_n be the rv for the number of white balls in a balanced triangular urn with initially $w_0 > 0$ white and $b_0 \ge 0$ black balls. Then, we have a convergence in distr., with convergence of all moments, to a 3-parameter Mittag-Leffler distr.

$$\frac{\mathcal{W}_n}{an^{a/\sigma}} \xrightarrow{d} \mathsf{ML}\left(\frac{a}{\sigma}, \frac{w_0}{a}, \frac{b_0}{a}\right)$$

Same limit for urns with noninteger weights [Goldschmidt, Haas, Sénizergues 2022]

Summary and extensions: a unified and generic approach!

Composition scheme	Symbolic form	Limit law
Ordinary	G(uH(z))	Mittag-Leffler $ML(lpha,\gamma)$
Extended	M(z)G(uH(z))	$\frac{Mittag-Leffler}{ML(\alpha,\beta,\gamma)}$ and Boltzmann distribution
Cyclic	$-\log\left(1-uH(z) ight)$	Mittag-Leffler $ML(lpha)$
Multivariate extended	$M(z)\prod_{\ell=1}^m G_\ellig(u_\ell H_\ell(z)ig)$	multivariate product distribution
Refined	$M(z)G(H(z)-z^{j}h_{j}(1-v))$	mixed Poisson type phase transition
Refined cyclic	$-\log\left(1-\left(H(z)-(1-v)h_jz^j/j!\right)\right)$	mixed Poisson type phase transition
Multivariate size-refined	$M(z)\prod_{\ell=1}^m G_\ell \left(H_\ell(z) - z^{j_\ell}h_{\ell,j_\ell}(1-v_\ell) ight)$	mv. mixed Poisson type phase transition

 \rightsquigarrow universality of phase transitions at $\Theta(n^{\frac{\Lambda_H}{1+\lambda_H}})$ (= $\Theta(n^{1/3})$ for $\lambda_H = 1/2$)

Summary and extensions: a unified and generic approach!

Composition scheme	Symbolic form	Limit law
Ordinary	G(uH(z))	Mittag-Leffler $ML(lpha,\gamma)$
Extended	M(z)G(uH(z))	Mittag-Leffler ML(α, β, γ) and Boltzmann distribution
Cyclic	$-\log\left(1-uH(z) ight)$	Mittag-Leffler ML($lpha$)
Multivariate extended	$M(z)\prod_{\ell=1}^m G_\ellig(u_\ell H_\ell(z)ig)$	multivariate product distribution
Refined	$M(z)G(H(z)-z^{j}h_{j}(1-v))$	mixed Poisson type phase transition
Refined cyclic	$-\log\left(1\!-\!\left(H(z)\!-\!(1\!-\!v)h_jz^j/j! ight) ight)$	mixed Poisson type phase transition
Multivariate size-refined	$M(z)\prod_{\ell=1}^m G_\ell\big(H_\ell(z)-z^{j_\ell}h_{\ell,j_\ell}(1-v_\ell)\big)$	mv. mixed Poisson type phase transition
1 IV. C	λ_{H}	(1/3) () 1/0)

→ universality of phase transitions at $\Theta(n^{1+\lambda_H})$ (= $\Theta(n^{1/3})$ for $\lambda_H = 1/2$) Thanks(Thanks)! \bigcirc