
The Analysis of Data Stream Algorithms

Conrado Martínez
Universitat Politècnica de Catalunya

AofA2023@Taipei, June 26–30, 2023

Outline of the Talk

1 Introduction
2 Cardinality Estimation

Probabilistic Counting
LogLog & HyperLogLog
Order Statistics
Recordinality

3 Random Sampling and Applications
Adaptive Sampling
Affirmative Sampling
Similarity Estimation

Part I

Random Musings

The fate of AofA (in CS)?

The fate of AofA (in CS)?

While many of the techniques and results of our area are received
with interest and recognition outside Computer Science, is it the
case for CS anymore?

Do our papers often succeed in major CS journals and conferences?

Do our results have a noticeable impact in other CS research
communities?

The fate of AofA (in CS)?

Troubles in AofA land:
Are we analyzing algorithms and data structures often enough
(aren’t we AofA?)
Are we trying hard enough to provide new insights and useful
answers in many striving areas of CS?
Drawback: scientific mindset (why does it work? why doesn’t
it work!?) vs engineering mindset (does it work? how does it
work?)

The fate of AofA (in CS)?

A roadmap to find the way in AofA land:
1 Consider submitting your work to major (T)CS conferences

and journals
2 Advocate for AofA methods and results whenever the

opportunity arises
3 Promote the scientific mindset in CS (not just in the

theoretical areas!) → Algorithm Science
4 Look for problems where a precise probabilistic analysis is

crucial or the only reasonable option
5 “Package” your results in general form (maybe as software

tools?) and try to make them easy to use and to benefit from

The fate of AofA (in CS)?

Promising lands for AofA, some new, some old:
1 Data streaming algorithms
2 Similarity & proximity search
3 Randomized metaheuristics: EA, GAs, Simulated annealing,

ACO, PSO, . . . (→ Benjamin’s talk)
4 Deep learning & stochastic gradient descent (→ Chih-Jen’s

talk)
5 Data & process mining
6 . . .

A personal account

Ph. Flajolet

My first incursion into the very rich area of data stream algorithms
dates back to 2011, and I am still interested and in love with it.
Isn’t it ironic that 2011 was the year that Flajolet passed away ?

Philippe, the person who, besides many other fundamental
achievements in AofA & Analytic Combinatorics, had developed
some of the most elegant and practical algorithms in the area,
beginning with his celebrated Probabilistic Count together with
G.N. Martin in the mid eighties.

So let’s move on . . . and talk a bit about Data Stream Algorithms
and the fundamental contributions of AofA to the area!

Part II

Introduction

Introduction

A data stream is a (very long) sequence

Z = z1, z2, z3, . . . , zN

of elements drawn from a (very large) domain U (zi ∈ U)
The goal: to compute f(Z), but . . .

Introduction

A data stream is a (very long) sequence

Z = z1, z2, z3, . . . , zN

of elements drawn from a (very large) domain U (zi ∈ U)
The goal: to compute f(Z), but . . .

Introduction

. . . under rather stringent constraints (data stream model)
a single pass over the data stream
extremely short time spent on each single data item
a limited amount M of auxiliary memory, M� N; ideally
M = Θ(1) or M = Θ(logN)

no statistical hypothesis about the data

Introduction

. . . under rather stringent constraints (data stream model)
a single pass over the data stream
extremely short time spent on each single data item
a limited amount M of auxiliary memory, M� N; ideally
M = Θ(1) or M = Θ(logN)

no statistical hypothesis about the data

Introduction

. . . under rather stringent constraints (data stream model)
a single pass over the data stream
extremely short time spent on each single data item
a limited amount M of auxiliary memory, M� N; ideally
M = Θ(1) or M = Θ(logN)

no statistical hypothesis about the data

Introduction

. . . under rather stringent constraints (data stream model)
a single pass over the data stream
extremely short time spent on each single data item
a limited amount M of auxiliary memory, M� N; ideally
M = Θ(1) or M = Θ(logN)

no statistical hypothesis about the data

Introduction

There is a wide range of applications for the data stream model
Network traffic analysis ⇒ DoS/DDoS attacks, worms, . . .
Database query optimization
Information retrieval ⇒ similarity index
Data mining
Recommedation systems
and many more . . .

Introduction

There is a wide range of applications for the data stream model
Network traffic analysis ⇒ DoS/DDoS attacks, worms, . . .
Database query optimization
Information retrieval ⇒ similarity index
Data mining
Recommedation systems
and many more . . .

Introduction

There is a wide range of applications for the data stream model
Network traffic analysis ⇒ DoS/DDoS attacks, worms, . . .
Database query optimization
Information retrieval ⇒ similarity index
Data mining
Recommedation systems
and many more . . .

Introduction

There is a wide range of applications for the data stream model
Network traffic analysis ⇒ DoS/DDoS attacks, worms, . . .
Database query optimization
Information retrieval ⇒ similarity index
Data mining
Recommedation systems
and many more . . .

Introduction

There is a wide range of applications for the data stream model
Network traffic analysis ⇒ DoS/DDoS attacks, worms, . . .
Database query optimization
Information retrieval ⇒ similarity index
Data mining
Recommedation systems
and many more . . .

Introduction

There is a wide range of applications for the data stream model
Network traffic analysis ⇒ DoS/DDoS attacks, worms, . . .
Database query optimization
Information retrieval ⇒ similarity index
Data mining
Recommedation systems
and many more . . .

Introduction

We’ll often look at Z as a multiset {x1 ◦ f1, . . . , xn ◦ fn}, where

fi = frequency of the i-th distinct element xi

Some fundamental problems in data stream analysis:
Number of distinct elements: card(Z) = n 6 N

Random samples of distinct elements

Frequency moments Fp =
∑

16i6n f
P
i

(N.B. n = F0,N = F1)

(Number of) Elements xi such that fi > k (k-elephants) or
fi < k (k-mice)
(Number of) Elements xi such that fi/N > c, 0 < c < 1
(c-icebergs, a.k.a. heavy hitters)
The k most frequent elements (top-k elements)

Introduction

We’ll often look at Z as a multiset {x1 ◦ f1, . . . , xn ◦ fn}, where

fi = frequency of the i-th distinct element xi

Some fundamental problems in data stream analysis:
Number of distinct elements: card(Z) = n 6 N

Random samples of distinct elements

Frequency moments Fp =
∑

16i6n f
P
i

(N.B. n = F0,N = F1)

(Number of) Elements xi such that fi > k (k-elephants) or
fi < k (k-mice)
(Number of) Elements xi such that fi/N > c, 0 < c < 1
(c-icebergs, a.k.a. heavy hitters)
The k most frequent elements (top-k elements)

Introduction

We’ll often look at Z as a multiset {x1 ◦ f1, . . . , xn ◦ fn}, where

fi = frequency of the i-th distinct element xi

Some fundamental problems in data stream analysis:
Number of distinct elements: card(Z) = n 6 N

Random samples of distinct elements

Frequency moments Fp =
∑

16i6n f
P
i

(N.B. n = F0,N = F1)

(Number of) Elements xi such that fi > k (k-elephants) or
fi < k (k-mice)
(Number of) Elements xi such that fi/N > c, 0 < c < 1
(c-icebergs, a.k.a. heavy hitters)
The k most frequent elements (top-k elements)

Introduction

We’ll often look at Z as a multiset {x1 ◦ f1, . . . , xn ◦ fn}, where

fi = frequency of the i-th distinct element xi

Some fundamental problems in data stream analysis:
Number of distinct elements: card(Z) = n 6 N

Random samples of distinct elements

Frequency moments Fp =
∑

16i6n f
P
i

(N.B. n = F0,N = F1)

(Number of) Elements xi such that fi > k (k-elephants) or
fi < k (k-mice)
(Number of) Elements xi such that fi/N > c, 0 < c < 1
(c-icebergs, a.k.a. heavy hitters)
The k most frequent elements (top-k elements)

Introduction

We’ll often look at Z as a multiset {x1 ◦ f1, . . . , xn ◦ fn}, where

fi = frequency of the i-th distinct element xi

Some fundamental problems in data stream analysis:
Number of distinct elements: card(Z) = n 6 N

Random samples of distinct elements

Frequency moments Fp =
∑

16i6n f
P
i

(N.B. n = F0,N = F1)

(Number of) Elements xi such that fi > k (k-elephants) or
fi < k (k-mice)
(Number of) Elements xi such that fi/N > c, 0 < c < 1
(c-icebergs, a.k.a. heavy hitters)
The k most frequent elements (top-k elements)

Introduction

We’ll often look at Z as a multiset {x1 ◦ f1, . . . , xn ◦ fn}, where

fi = frequency of the i-th distinct element xi

Some fundamental problems in data stream analysis:
Number of distinct elements: card(Z) = n 6 N

Random samples of distinct elements

Frequency moments Fp =
∑

16i6n f
P
i

(N.B. n = F0,N = F1)

(Number of) Elements xi such that fi > k (k-elephants) or
fi < k (k-mice)
(Number of) Elements xi such that fi/N > c, 0 < c < 1
(c-icebergs, a.k.a. heavy hitters)
The k most frequent elements (top-k elements)

Introduction

Very limited available memory ⇒ exact solution too costly or
unfeasible
⇒ Randomized algorithms ⇒ estimation q̂ of the quantity of
interest q = f(Z)

q̂ must be an unbiased estimator

E [q̂] = q

The estimator must accurate, for example, it must have a
small standard error

SE [q̂] :=

√
Var [q̂]
E [q̂]

< ε,

e.g., ε = 0.01 (1%)

Introduction

Very limited available memory ⇒ exact solution too costly or
unfeasible
⇒ Randomized algorithms ⇒ estimation q̂ of the quantity of
interest q = f(Z)

q̂ must be an unbiased estimator

E [q̂] = q

The estimator must accurate, for example, it must have a
small standard error

SE [q̂] :=

√
Var [q̂]
E [q̂]

< ε,

e.g., ε = 0.01 (1%)

Part III

Cardinality Estimation

1 Probabilistic Counting

2 LogLog & HyperLogLog

3 Order Statistics

4 Recordinality

Probabilistic Counting

G.N. Martin

In late 70s G. Nigel Martin invented probabilistic counting to
optimize database query performance

To correct the bias that he systematically found in his experiments,
he introduced a “fudge” factor in the estimator

Probabilistic Counting

When Philippe Flajolet learnt about the algorithm, he put it on a
solid scientific ground, with a detailed mathematical analysis which
delivered the exact value of the correction factor and a tight upper
bound on the standard error

Probabilistic Counting

Key idea: every element is hashed to a real value in (0, 1) ⇒
reproductible randomness
The “multiset” Z is mapped by the hash function
h : U→ (0, 1) to a multiset

Z ′ = h(Z) = {y1 ◦ f1, . . . ,yn ◦ fn},

with yi = hash(xi), fi = frequency of xi in Z

The set of distinct∗ elements Y = {y1, . . . ,yn} is a set of n
random numbers, independent and uniformly drawn from (0, 1)

Probabilistic Counting

Key idea: every element is hashed to a real value in (0, 1) ⇒
reproductible randomness
The “multiset” Z is mapped by the hash function
h : U→ (0, 1) to a multiset

Z ′ = h(Z) = {y1 ◦ f1, . . . ,yn ◦ fn},

with yi = hash(xi), fi = frequency of xi in Z

The set of distinct∗ elements Y = {y1, . . . ,yn} is a set of n
random numbers, independent and uniformly drawn from (0, 1)

Probabilistic Counting

Key idea: every element is hashed to a real value in (0, 1) ⇒
reproductible randomness
The “multiset” Z is mapped by the hash function
h : U→ (0, 1) to a multiset

Z ′ = h(Z) = {y1 ◦ f1, . . . ,yn ◦ fn},

with yi = hash(xi), fi = frequency of xi in Z

The set of distinct∗ elements Y = {y1, . . . ,yn} is a set of n
random numbers, independent and uniformly drawn from (0, 1)

∗We’ll neglect the probability of collisions, i.e., h(xi) = h(xj) for some xi 6= xj;
this is reasonable if h(x) has enough bits

Probabilistic Counting

Flajolet & Martin (JCSS, 1985) proposed to find, among the set of
hash values, the length of the largest R such that hash values with
the prefix 0.0p−11 . . ., have appeared in the stream, for all p,
1 6 p 6 R

The value R is an observable which can be easily be computed
using a small auxiliary memory and it is insensitive to repetitions ←
the observable is a function of Y, not of the fi’s

Probabilistic Counting

For a set of n random numbers in (0, 1) →

E [R] ≈ log2 n

However E
[
2R
]
6∼ n, there is a significant bias and we need φ

such that
E
[
φ · 2R

]
∼ n

Probabilistic Counting

For a set of n random numbers in (0, 1) →

E [R] ≈ log2 n

However E
[
2R
]
6∼ n, there is a significant bias and we need φ

such that
E
[
φ · 2R

]
∼ n

Probabilistic Counting

procedure ProbabilisticCounting(Z)
bmap← 〈0, 0, . . . , 0〉
for z ∈ Z do
y← hash(z)
p← lenght of the largest prefix 0.0p−11 . . . in y
bmap[p]← 1

end for
R← largest p such that bmap[i] = 1 for all 1 6 i 6 p

// φ is the correction factor: E
[
φ · 2R

]
= n

return Z := φ · 2R
end procedure

A very precise mathematical analysis gives
(γ = Euler’s gamma constant,
ν(k) = # of 1’s in binary repr. of k):

φ−1 =
eγ
√
2

3

∏
k>1

(
(4k+ 1)(2k+ 1)

2k(4k+ 3)

)(−1)ν(k)

≈ 0.77351 . . .

Stochastic averaging

The standard error of Z := φ · 2R, despite constant, is too
large: SE [Z] > 1
Second key idea: “repeat” several times to reduce variance and
improve precision
Problem: using m hash functions to generate m streams is
too costly and it’s very difficult to guarantee independence
between the hash values

Stochastic averaging

The standard error of Z := φ · 2R, despite constant, is too
large: SE [Z] > 1
Second key idea: “repeat” several times to reduce variance and
improve precision
Problem: using m hash functions to generate m streams is
too costly and it’s very difficult to guarantee independence
between the hash values

Stochastic averaging

The standard error of Z := φ · 2R, despite constant, is too
large: SE [Z] > 1
Second key idea: “repeat” several times to reduce variance and
improve precision
Problem: using m hash functions to generate m streams is
too costly and it’s very difficult to guarantee independence
between the hash values

Stochastic averaging

Use the first log2m bits of each hash value to “redirect” it
(the remaining bits) to one of the m substreams → stochastic
averaging
Obtain m observables R1, R2, . . . , Rm, one from each
substream
Each Ri can give us an estimation for the cardinality of the
i-th substream, namely, Ri can be used to estimate n/m; the
mean value R = 1/m

∑
Ri can also be used to estimate n/m

Stochastic averaging

Use the first log2m bits of each hash value to “redirect” it
(the remaining bits) to one of the m substreams → stochastic
averaging
Obtain m observables R1, R2, . . . , Rm, one from each
substream
Each Ri can give us an estimation for the cardinality of the
i-th substream, namely, Ri can be used to estimate n/m; the
mean value R = 1/m

∑
Ri can also be used to estimate n/m

Stochastic averaging

Use the first log2m bits of each hash value to “redirect” it
(the remaining bits) to one of the m substreams → stochastic
averaging
Obtain m observables R1, R2, . . . , Rm, one from each
substream
Each Ri can give us an estimation for the cardinality of the
i-th substream, namely, Ri can be used to estimate n/m; the
mean value R = 1/m

∑
Ri can also be used to estimate n/m

Stochastic averaging

There are many different options to compute an estimator from the
m observables

Sum of estimators:

Z1 := φ1(2R1 + . . .+ 2Rm)

Arithmetic mean of observables (as proposed by Flajolet &
Martin):

Z2 := m · φ2 · 2
1
m

∑
16i6m Ri

Stochastic averaging

Harmonic mean (keep tuned):

Z3 := φ3 ·
m2

2−R1 + 2−R2 + . . .+ 2−Rm

Since 2−Ri ≈ m/n, the second factor gives ≈ m2/(m2/n) = n

Stochastic averaging

All the strategies above yield a standard error of the form

c√
m

+ l.o.t.

Larger memory ⇒ improved precision!
In probabilistic counting the authors used the arithmetic mean
of observables

SE [ZProbCount] ≈
0.78√
m

Stochastic averaging

All the strategies above yield a standard error of the form

c√
m

+ l.o.t.

Larger memory ⇒ improved precision!
In probabilistic counting the authors used the arithmetic mean
of observables

SE [ZProbCount] ≈
0.78√
m

LogLog & HyperLogLog

M. Durand

Durand & Flajolet (2003) realized that the bitmaps (Θ(logn)
bits) used by Probabilistic Counting can be avoided and
propose as observable the largest R such that the pattern
0.0R−11 appears
The new observable is similar to that of Probabilistic Counting
but not equal: R(LogLog) > R(ProbCount)

Observed patterns: 0.1101. . . , 0.010. . . , 0.0011 . . . ,
0.00001. . .
R(LogLog) = 5, R(ProbCount) = 3

Example

LogLog & HyperLogLog

M. Durand

Durand & Flajolet (2003) realized that the bitmaps (Θ(logn)
bits) used by Probabilistic Counting can be avoided and
propose as observable the largest R such that the pattern
0.0R−11 appears
The new observable is similar to that of Probabilistic Counting
but not equal: R(LogLog) > R(ProbCount)

Observed patterns: 0.1101. . . , 0.010. . . , 0.0011 . . . ,
0.00001. . .
R(LogLog) = 5, R(ProbCount) = 3

Example

LogLog & HyperLogLog

M. Durand

Durand & Flajolet (2003) realized that the bitmaps (Θ(logn)
bits) used by Probabilistic Counting can be avoided and
propose as observable the largest R such that the pattern
0.0R−11 appears
The new observable is similar to that of Probabilistic Counting
but not equal: R(LogLog) > R(ProbCount)

Observed patterns: 0.1101. . . , 0.010. . . , 0.0011 . . . ,
0.00001. . .
R(LogLog) = 5, R(ProbCount) = 3

Example

LogLog & HyperLogLog

The new observable is simpler to obtain: keep updated the
largest R seen so far: R := max{R,p} ⇒ only Θ(log logn) bits
needed, since E [R] = Θ(logn)!
We have E [R] ∼ log2 n, but E

[
2R
]
= +∞, stochastic

averaging comes to rescue!
For LogLog, Durand & Flajolet propose

ZLogLog := αm ·m · 2
1
m

∑
16i6m Ri

LogLog & HyperLogLog

The new observable is simpler to obtain: keep updated the
largest R seen so far: R := max{R,p} ⇒ only Θ(log logn) bits
needed, since E [R] = Θ(logn)!
We have E [R] ∼ log2 n, but E

[
2R
]
= +∞, stochastic

averaging comes to rescue!
For LogLog, Durand & Flajolet propose

ZLogLog := αm ·m · 2
1
m

∑
16i6m Ri

LogLog & HyperLogLog

The new observable is simpler to obtain: keep updated the
largest R seen so far: R := max{R,p} ⇒ only Θ(log logn) bits
needed, since E [R] = Θ(logn)!
We have E [R] ∼ log2 n, but E

[
2R
]
= +∞, stochastic

averaging comes to rescue!
For LogLog, Durand & Flajolet propose

ZLogLog := αm ·m · 2
1
m

∑
16i6m Ri

LogLog & HyperLogLog

The mathematical analysis gives for the correcting factor

αm =

(
Γ(−1/m)

1− 21/m

ln 2

)−m

that guarantees that E [Z] = n+ l.o.t. (asymptotically
unbiased) and the standard error is

SE
[
ZLogLog

]
≈ 1.30√

m

Only m counters of size log2 log2(n/m) bits needed:
Ex.: m = 2048 = 211 counters, 5 bits each (1.25 Kbyte in
total), are enough to give precise cardinality estimations for n
up to 227 ≈ 108, with an standard error less than 4%

LogLog & HyperLogLog

The mathematical analysis gives for the correcting factor

αm =

(
Γ(−1/m)

1− 21/m

ln 2

)−m

that guarantees that E [Z] = n+ l.o.t. (asymptotically
unbiased) and the standard error is

SE
[
ZLogLog

]
≈ 1.30√

m

Only m counters of size log2 log2(n/m) bits needed:
Ex.: m = 2048 = 211 counters, 5 bits each (1.25 Kbyte in
total), are enough to give precise cardinality estimations for n
up to 227 ≈ 108, with an standard error less than 4%

LogLog & HyperLogLog

É. Fusy O. Gandouet F. Meunier

Flajolet, Fusy, Gandouet & Meunier conceived in 2007 the best
algorithm known (cif. Flajolet’s keynote speech in ITC Paris
2009)
Briefly: HyperLogLog combines the LogLog observables Ri
using the harmonic mean instead of the arithmetic mean

SE
[
ZHyperLogLog

]
≈ 1.03√

m

LogLog & HyperLogLog

É. Fusy O. Gandouet F. Meunier

Flajolet, Fusy, Gandouet & Meunier conceived in 2007 the best
algorithm known (cif. Flajolet’s keynote speech in ITC Paris
2009)
Briefly: HyperLogLog combines the LogLog observables Ri
using the harmonic mean instead of the arithmetic mean

SE
[
ZHyperLogLog

]
≈ 1.03√

m

LogLog & HyperLogLog

P. Chassaing L. Gerin

The idea of HyperLogLog stems from the analytical study of
Chassaing & Gerin (2006) to show the optimal way to combine
observables, but in their study the observables were the k-th
order statistics of each substream (next!)
They proved that the optimal way to combine them is to use
the harmonic mean

LogLog & HyperLogLog

P. Chassaing L. Gerin

The idea of HyperLogLog stems from the analytical study of
Chassaing & Gerin (2006) to show the optimal way to combine
observables, but in their study the observables were the k-th
order statistics of each substream (next!)
They proved that the optimal way to combine them is to use
the harmonic mean

Order Statistics

Bar-Yossef, Kumar & Sivakumar (2002); Bar-Yossef, Jayram,
Kumar, Sivakumar & Trevisan (2002) have proposed to use
the k-th order statistic Y(k) to estimate cardinality (KMV
algorithm); for a set of n random numbers, independent and
uniformly distributed in (0, 1)

E
[
Y(k)

]
=

k

n+ 1
⇒ E

[
k− 1
Y(k)

]
= n

Giroire (2005, 2009) also proposes several estimators
combining order statistics via stochastic averaging

Order Statistics

Bar-Yossef, Kumar & Sivakumar (2002); Bar-Yossef, Jayram,
Kumar, Sivakumar & Trevisan (2002) have proposed to use
the k-th order statistic Y(k) to estimate cardinality (KMV
algorithm); for a set of n random numbers, independent and
uniformly distributed in (0, 1)

E
[
Y(k)

]
=

k

n+ 1
⇒ E

[
k− 1
Y(k)

]
= n

Giroire (2005, 2009) also proposes several estimators
combining order statistics via stochastic averaging

Order Statistics

J. Lumbroso

The minimum of the set (k = 1) does not allow a feasible
estimator, but again stochastic averaging comes to rescue
Lumbroso uses the mean of m minima, one for each substream

ZMinCount :=
m(m− 1)

M1 + . . .+Mm
,

where Mi is the minimum hash value of the i-th substream

Order Statistics

J. Lumbroso

The minimum of the set (k = 1) does not allow a feasible
estimator, but again stochastic averaging comes to rescue
Lumbroso uses the mean of m minima, one for each substream

ZMinCount :=
m(m− 1)

M1 + . . .+Mm
,

where Mi is the minimum hash value of the i-th substream

Order Statistics

MinCount is an unbiased estimator with standard error
1/
√
m− 2

Lumbroso also succeeds to compute the probability distribution
of ZMinCount and the small corrections needed to estimate
small cardinalities (too few elements hashing to one particular
substream)

Order Statistics

MinCount is an unbiased estimator with standard error
1/
√
m− 2

Lumbroso also succeeds to compute the probability distribution
of ZMinCount and the small corrections needed to estimate
small cardinalities (too few elements hashing to one particular
substream)

Recordinality

A. Helmi A. Viola

Recordinality (Helmi, Lumbroso, M., Viola, 2012) is loosely
related to order statistics, but based in completely different
principles and it exhibits several unique features
Some of the ideas where very useful to develop Affirmative
Sampling, stay tuned!

Recordinality

A. Helmi A. Viola

Recordinality (Helmi, Lumbroso, M., Viola, 2012) is loosely
related to order statistics, but based in completely different
principles and it exhibits several unique features
Some of the ideas where very useful to develop Affirmative
Sampling, stay tuned!

Recordinality

Recordinality counts the number of records (more generally,
k-records) in the sequence of hash values
It depends in the underlying permutation of the first
occurrences of distinct values, very different from the other
estimators
If we assume that the first occurrences of distinct values form
a random permutation then there’s no need for hash values!

Recordinality

Recordinality counts the number of records (more generally,
k-records) in the sequence of hash values
It depends in the underlying permutation of the first
occurrences of distinct values, very different from the other
estimators
If we assume that the first occurrences of distinct values form
a random permutation then there’s no need for hash values!

Recordinality

Recordinality counts the number of records (more generally,
k-records) in the sequence of hash values
It depends in the underlying permutation of the first
occurrences of distinct values, very different from the other
estimators
If we assume that the first occurrences of distinct values form
a random permutation then there’s no need for hash values!

Recordinality

σ(i) is a record of the permutation σ if σ(i) > σ(j) for all j < i
This notion is generalized to k-records: σ(i) is a k-record if
there are at most k− 1 elements σ(j) larger than σ(i) for
j < i; in other words, σ(i) is among the k largest elements in
σ(1), . . . ,σ(i)

This example permutation contains six 2-records

P = 3, 6, 1, 12, 8, 10, 4, 13, 7, 5, 9, 11, 2

Example

Recordinality

σ(i) is a record of the permutation σ if σ(i) > σ(j) for all j < i
This notion is generalized to k-records: σ(i) is a k-record if
there are at most k− 1 elements σ(j) larger than σ(i) for
j < i; in other words, σ(i) is among the k largest elements in
σ(1), . . . ,σ(i)

This example permutation contains six 2-records

P = 3, 6, 1, 12, 8, 10, 4, 13, 7, 5, 9, 11, 2

Example

Recordinality

σ(i) is a record of the permutation σ if σ(i) > σ(j) for all j < i
This notion is generalized to k-records: σ(i) is a k-record if
there are at most k− 1 elements σ(j) larger than σ(i) for
j < i; in other words, σ(i) is among the k largest elements in
σ(1), . . . ,σ(i)

This example permutation contains six 2-records

P = 3, 6, 1, 12, 8, 10, 4, 13, 7, 5, 9, 11, 2

Example

Recordinality

procedure Recordinality(Z, k)
fill S with the first k distinct elements (hash values)
of the stream Z

R← k
for all z ∈ Z do
y← h(z)
if y > min{h(x) | x ∈ S} ∧ z 6∈ S then
z∗ ← the element in S with min. hash value
R← R+ 1; S← S ∪ {z} \ z∗

end if
end for
return Z = k

(
1+ 1

k

)R−k+1
− 1

end procedure

Memory: k hash values (k logn bits) + 1 counter (log logn bits)

Analysis of k-Records

The behavior of R = Rn, the number of k-records in a random
permutation of size n, is very well understood1

E [R] = k(Hn −Hk + 1) = k ln(n/k) +O(1)

Likewise

Var [R] = k(Hn −Hk) − k
2(H

(2)
n −H

(2)
k) = k ln(n/k) +O(1)

and we also know exact and asymptotic estimates for Prob {R = j}.

1Hn = 1 + 1/2 + 1/3 + · · ·+ 1/n ∼ lnn+ O(1) denotes the n-th harmonic
number, and H(2)

n = 1 + 1/4 + 1/9 + · · ·+ 1/n2 6 π2/6.

The Estimator for Recordinality

Let us assume for the moment that k 6 R 6 n. If R < k then we
are sure that n = R. Otherwise, since E [R] = k ln(n/k) +O(1) we
can take

Z = exp(φ · R)

for some correcting factor φ to be determined and such that E [Z]

is (asymptotically?) n. Our knowledge of the probability
distribution of R furnishes the exact form for Z.

The Estimator for Recordinality

Let R be the number of k-records seen while processing the
data stream Z. Then

Z := k

(
1+

1
k

)R−k+1

− 1

is an unbiased estimator of the cardinality (number of distinct
elements) of Z, that is,

E [Z] = n

Theorem

Part IV

Distinct Sampling and Applications

5 Adaptive Sampling

6 Affirmative Sampling

7 Sampling and Similarity Estimation

Drawing Random Samples

In a random sample from the data stream (e.g., using the
reservoir method) each distinct element xj appears with
relative frequency in the sample equal to its relative frequency
fj/N in the data stream ⇒ needle-on-a-haystack
Elements of low frequency will seldom be sampled, and we
cannot keep exact counts as we don’t know if the sampled
elements have been “monitorized” from the beginning

Drawing Random Samples

In a random sample from the data stream (e.g., using the
reservoir method) each distinct element xj appears with
relative frequency in the sample equal to its relative frequency
fj/N in the data stream ⇒ needle-on-a-haystack
Elements of low frequency will seldom be sampled, and we
cannot keep exact counts as we don’t know if the sampled
elements have been “monitorized” from the beginning

Drawing Random Samples

The distinct sampling problem is to draw a random sample of
distinct elements and it has many applications in data stream
analysis
For example, to estimate the number of k-elephants or k-mice
in the stream we can draw a random sample of S distinct
elements, together with their frequency counts
Let SP be the number of mice (or elephants) in the sample,
and nP the number of mice (or elephants) in the data stream.
Then

E
[
SP
S

]
=
nP
n

Drawing Random Samples

The distinct sampling problem is to draw a random sample of
distinct elements and it has many applications in data stream
analysis
For example, to estimate the number of k-elephants or k-mice
in the stream we can draw a random sample of S distinct
elements, together with their frequency counts
Let SP be the number of mice (or elephants) in the sample,
and nP the number of mice (or elephants) in the data stream.
Then

E
[
SP
S

]
=
nP
n

Drawing Random Samples

The distinct sampling problem is to draw a random sample of
distinct elements and it has many applications in data stream
analysis
For example, to estimate the number of k-elephants or k-mice
in the stream we can draw a random sample of S distinct
elements, together with their frequency counts
Let SP be the number of mice (or elephants) in the sample,
and nP the number of mice (or elephants) in the data stream.
Then

E
[
SP
S

]
=
nP
n

Drawing Random Samples

Let P some property.
n = # of distinct elements in Z

nP = # of distinct elements in Z that satisfy P
S = size of the sample ⇐ in general, a r.v., assume 2 6 S 6 n

SP = # of elements in the sample that satisfy P

1 E
[
SP
S

]
= nP

n

2 Var
[
SP
S

]
∼
np
n ·

(
1− np

n

)
· E
[1
S

]
Theorem

Drawing Random Samples

Let P some property.
n = # of distinct elements in Z

nP = # of distinct elements in Z that satisfy P
S = size of the sample ⇐ in general, a r.v., assume 2 6 S 6 n

SP = # of elements in the sample that satisfy P

1 E
[
SP
S

]
= nP

n

2 Var
[
SP
S

]
∼
np
n ·

(
1− np

n

)
· E
[1
S

]
Theorem

Adaptive Sampling

M. Wegman G. Louchard

Adaptive sampling (Wegman, 1980; Flajolet, 1990; Louchard
et al, 1997) is the first algorithm proposed specifically for
distinct sampling
It also gives an estimation of the cardinality, as the size S of
the returned sample is itself a random variable, but it is always
bounded by a fixed constant maxS

Adaptive Sampling

procedure AdaptiveSampling(Z, maxS)
S← ∅; p← 0
for z ∈ Z do

if hash(z) = 0p . . .∧ z 6∈ S then
S← S ∪ {z}
if |S| > maxS then
p← p+ 1
S← S \ {z ∈ S |h(z) = 0p−11 . . .} // Filter S

end if
end if

end for
return S

end procedure

The set S is a random sample (because we can assume hash values
behave as random uniform numbers) of S = |S| distinct elements; if
n is large enough, maxS/2 6 E [S] 6 maxS

Adaptive Sampling

At the end of the algorithm, S is the number of distinct elemnts
with hash value starting .0p ≡ the number of strings in the subtree
rooted at 0p in a binary trie for n random binary strings.
There are 2p subtrees rooted at depth p

S = |S| ≈ n/2p ⇒ E [2p · S] ≈ n

Distinct Sampling in Recordinality and Order Statistics

Recordinality and KMV collect the elements with the k largest
(smallest) hash values
Such k elements constitute a random sample of k distinct
elements, because hash values behave as random numbers; but
the value k is fixed in advance and might be too small for the
sample to be representative
Recordinality can be easily adapted to collect random samples
of expected size Θ(logn) or Θ(nα), with 0 < α < 1 and
without prior knowledge of n! ⇒ Affirmative Sampling ⇒
variable-size samples, growing with n, better precision in
inferences about the full data stream

Distinct Sampling in Recordinality and Order Statistics

Recordinality and KMV collect the elements with the k largest
(smallest) hash values
Such k elements constitute a random sample of k distinct
elements, because hash values behave as random numbers; but
the value k is fixed in advance and might be too small for the
sample to be representative
Recordinality can be easily adapted to collect random samples
of expected size Θ(logn) or Θ(nα), with 0 < α < 1 and
without prior knowledge of n! ⇒ Affirmative Sampling ⇒
variable-size samples, growing with n, better precision in
inferences about the full data stream

Distinct Sampling in Recordinality and Order Statistics

Recordinality and KMV collect the elements with the k largest
(smallest) hash values
Such k elements constitute a random sample of k distinct
elements, because hash values behave as random numbers; but
the value k is fixed in advance and might be too small for the
sample to be representative
Recordinality can be easily adapted to collect random samples
of expected size Θ(logn) or Θ(nα), with 0 < α < 1 and
without prior knowledge of n! ⇒ Affirmative Sampling ⇒
variable-size samples, growing with n, better precision in
inferences about the full data stream

Affirmative Sampling

Early ideas date back to the original paper on Recordinality
(2012); developed and analyzed in detail in (Lumbroso, M.,
2019, 2022)
The larger the cardinality (n) the larger the samples ⇒
samples better represent the population
All distinct elements have the same opportunity to be sampled,
and if sampled they can be “monitorized” from their first
appearance

Affirmative Sampling

procedure AffirmativeSampling(k,Z)
fill S with the first k distinct elements (and hash values)
of the stream Z

for all y ∈ Z do
z← hash(y)
if z < z∗ then // z∗ = min hash in S = hash(y∗)

Discard y
else if y ∈ S then

Update y stats
else if z > z(k) then // z(k) = k-th largest hash in S

S← S ∪ {y} // Add y to the sample
else
S← S \ {y∗} ∪ {y} // Replace y∗ by y in the sample

end if
end for
return S

end procedure

Affirmative Sampling

Affirmative Sampling

The size S of the sample S is a random variable = the number
of k-records in a random permutation of size n ⇒
E [S] = k ln(n/k) + O(1)
The sample does not contain the k-records, but the S
elements with the largest hash values seen so far ⇒ S is a
random sample
If x ∈ S then x has been added to S in its very first occurrence
and it has remained in S ever since ⇒ can collect exact stats
(e.g. frequency counts) for x

Affirmative Sampling

We also understand fairly well F = number of times an
element substitutes another in the sample (not a k-record, but
larger than some k-record):

E [F] = k ln2(n/k) + l.o.t.

Expected cost CN,n of Affirmative Sampling

E [CN,n] = Θ
(
N+ k log2(n/k) log log(n/k)

)
using appropriate data structures for the sample S

Similarity Estimation

Consider two data streams ZA and ZB. Let A and B denote their
respective sets of distinct elements. Similarity between the two sets
is often measured by their Jaccard index

J(A,B) =
|A ∩ B|
|A ∪ B|

The containment index measures how much “A ⊆ B” and it is
given by

c(A,B) =
|A ∩ B|
|A|

Similarity Estimation

We can estimate similarity and containment from random samples
SA and SB of the two streams. If the samples are drawn using
Affirmative Sampling then

1 E
[
J(S ′A,S

′
B)
]
= J(A,B) = |A∩B|

|A∪B|

2 Var
[
J(S ′A,S

′
B)
]
∼
J(A,B)·(1−J(A,B))
k ln(|A∪B|/k)

Theorem

Similarity Estimation

Estimating the size of the intersection

We can estimate the size of the intersection with:

Z1 =
|SA ∩ SB|

|SA|
·

(
k

(
1+

1
k

)|SA|−k+1

− 1

)

Z2 =
|SA ∩ SB|

|SA|
· |SA|− 1
1−MSA

, MSA = min{h(z) | z ∈ SA}

E [Z1] = E [Z2] = |A ∩ B|

N.B. No need to “filter” the samples

Other similarity measures

Jaccard’s index |A∩B|
|A∪B|

Otsuka-Ochiai (a.k.a. Cosine) |A∩B|√
|A|·|B|

Sørensen-Dice 2 |A∩B|
|A|+|B|

Kulczynski 1 |A∩B|
|A4B|

Kulczynski 2 1
2

(
|A∩B|
|A|

+
|A∩B|
|B|

)
Simpson |A∩B|

min(|A|,|B|)

Braun-Blanquet |A∩B|
max(|A|,|B|)

Correlation cos2(A,B) = |A∩B|2
|A|·|B|

.

Other similarity measures

The same proof that works for Jaccard’s similarity also works for
containment and many other similarity measures:

1 E [c(SA,SB)] = c(A,B) = |A ∩ B|/|A|
2 If σ is any of Jaccard, Simpson, Braun-Blanquet, Kulczynski 2,

correlation or Sørensen-Dice:

E
[
σ(S ′A,S

′
B)
]
= σ(A,B)

3 It also works for cosine and Kulczynski 1 similarities and many
others because these distances can be expressed as f(J(A,B));
while E [f(X)] 6= f(E [X]) one can show that E [f(X)] ∼ f(E [X])
when we use samples of variable size to estimate J(A,B), since
the variance and all central moments of the estimator → 0 as
min(A,B)→∞

Conclusions

Neeeded: easy and practical algorithms, often randomized,
precise mathematical analysis is a must
We have the right arsenal of tools, there is plenty of open
problems in data streaming for which we might have a say
Many elegant and challenging mathematical problems
Real-life applications, right motivations and incentives =⇒
practical relevant algorithms used by thousands of practitioners
on a daily basis (e.g., HyperLogLog is part of the
“infrastructure” of all major data analytics companies)
Not by chance:

Flajolet pioneered some of the most important techniques and
results (and his most cited works are those he did in this area)
Two Flajolet Lecturer awardees, Sedgewick and Janson, join
forces for HyperBit, the ultimate(?) cardinality estimator

Thanks a lot
for your attention!

To Know More

[1] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and
Luca Trevisan.
Counting Distinct Elements in a Data Stream.
Randomization and Approximation Techniques (RANDOM),
pages 1–10. 2002.

[2] Andrei Broder.
On the resemblance and containment of documents.
Proc. Compression and Complexity of Sequences
(SEQUENCES), pages 21–29. 1997.

[3] Marianne Durand and Philippe Flajolet.
LogLog Counting of Large Cardinalities.
Proc. European Symposium on Algorithms (ESA), volume
2832 of Lecture Notes in Computer Science, pages 605–617,
2003.

To Know More

[4] Philippe Chassaing and Lucas Gerin.
Efficient Estimation of the Cardinality of Large Data Sets.
Proc. Int. Col. Mathematics and Computer Science
(MathInfo), pages 419–422, 2007.

[5] Philippe Flajolet.
On adaptive sampling.
Computing, 34:391–400, 1990.

[6] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric
Meunier.
HyperLoglog: the analysis of a near-optimal cardinality
estimation algorithm.
Proceedings of Int. Conf. Analysis of Algorithms (AofA), pages
127–146, 2007.

To Know More

[7] Philippe Flajolet and G. Nigel Martin.
Probabilistic Counting Algorithms for Data Base Applications.
Journal of Computer and System Sciences, 31(2):182–209,
1985.

[8] A. Helmi, J. Lumbroso, C. Martínez, and A. Viola.
Counting distinct elements in data streams: the random
permutation viewpoint.
Proc. of Int. Conf. Analysis of Algorithms (AofA), pages
323–338, 2012.

[9] Jérémie Lumbroso.
An optimal cardinality estimation algorithm based on order
statistics and its full analysis.
In Proc. Analysis of Algorithms (AofA), pages 489–504, 2010.

To Know More

[10] Jérémie Lumbroso.
How Flajolet Processed Stream with Coin Flips.
arXiv:1805.00612v1 [cs.DS] 2 May 2018. December
2013.

[11] Jérémie Lumbroso and Conrado Martínez.
Affirmative Sampling: Theory and Applications.
In Proc. 33rd Analysis of Algorithms (AofA), LIPIcs vol. 225,
pages 12:1–12:17, 2022.

To Know More

[12] M. Monenizadeh and D. Woodruff.
1-Pass Relative-Error Lp-Sampling with Applications.
In Proc. Symp. Discrete Algorithms (SODA), pages
1143–1160, 2010.

[13] S. Muthu Muthukrishnan.
Data streams: Algorithms and applications.
Foundations and Trends in Theoretical Computer Science,
1(2):117–236, 2005.

	Random Musings
	Introduction
	Cardinality Estimation
	Probabilistic Counting
	LogLog & HyperLogLog
	Order Statistics
	Recordinality

	Distinct Sampling and Applications
	Adaptive Sampling
	Affirmative Sampling
	Sampling and Similarity Estimation

