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The family of labelled k-trees can be obtained via an iterative process:
» start with Kp,1,
» add a vertex incident to all vertices of a k-clique of Kj,1,
» repeat: add a vertex to one of the k-cliques of the resulting graph.

Example (k = 3):

Remarks:
» 1-trees are trees,
» 2-trees are maximal series-parallel graphs.
» 3-trees with n vertices have 3n — 6 edges, 3n — 8 triangles and n -3 Ky's.
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Graphs with bounded tree-width

Graphs with tree-width at most k are exactly the subgraphs of k-trees
» thus called partial k-trees,
» Tree-width of A: smallest k s.t. that graph A is a partial k-tree.
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Graphs with bounded tree-width

Graphs with tree-width at most k are exactly the subgraphs of k-trees
» thus called partial k-trees,

» Tree-width of A: smallest k s.t. that graph A is a partial k-tree.

What about the enumeration?

» let g, = # of labelled graphs with n vertices and tree-width < k

[Norine, Seymour, Thomas & Wollan (2006)]: classes of (labelled) graphs stable
under taking minors are small = g,, < ¢"nl, for some ¢ = ¢(k) > 0.

[Beineke & Pippert (1969)]: the number of k-trees with n vertices is

1
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[Baste, Noy & Sau (2018)]: lower bound (using pathwidth).
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Cligue-sums

The class of graphs with tree-width at most k is stable by taking clique-sums:
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Cligue-sums

The class of graphs with tree-width at most k is stable by taking clique-sums:

» the edge removal makes this operation seem non-tractable from the point of
view of recursive enumeration.
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Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length > 4.
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Alternative definitions:

» [Dirac (1961)]: a graph is chordal iff every separator is a clique.
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Chordal graphs with bounded tree-width

Fix n,k>1and 0<g<k.

Let Gy q,n be the family of g-connected chordal graphs with n labelled vertices
and tree-width at most k.

[Castellvi, Drmota, Noy & R. (2023+)]: 3 cx,q >0 and v, 4 > 1 s.t.
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Starting point: k-trees are chordal!
» In fact, they are exactly the k-connected chordal graphs of tree-width < k.

[Beineke & Pippert (1969)]: the number of k-trees with n vertices is
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(k - 1)-connected graphs

Taking the complete k-clique-sum of two k-trees gives a (k — 1)-connected
chordal graphs with tree-width < k:
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(k - 1)-connected graphs

Taking the complete k-clique-sum of two k-trees gives a (k — 1)-connected
chordal graphs with tree-width < k:

» enumeration of k-trees allows for the enumeration of (k — 1)-connected
chordal graphs with tree-width < k.
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Rooted k-trees

A (labelled) k-tree is rooted when one k-clique is distinguished:

» fix a k-clique and fix an ordering of its vertices then remove their labels
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Rooted k-trees

A (labelled) k-tree is rooted when one k-clique is distinguished:

» fix a k-clique and fix an ordering of its vertices then remove their labels

AN g

Recursive definition of the exponential generating function of rooted k-trees
(variable 2 marks # k-cliques):

Tr(x) = exp (ach(m)k)
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Analytic combinatorics: first principle

Exponential growth of the coefficients is determined by the radius of convergence.
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C Solution:
1
15 x = W = Ti(z) =exp(1/k)
exp(1/k) = exp(ze) = x = ki
1 (&

002 004 006 008 010 012
x

Radius of convergence of Tj(z) is at = = (ke) ™! - ((3e)™! ~0.1226).
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Analytic combinatorics: second principle

Sub-exponential growth of the coefficients is determined by the behaviour locally
around the singularity (the singular expansion).

3

2.5
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2.5

1/2
Ty.(z) = To(k) = T1(k) (1 - (k:ﬁ)
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Transfer theorem [Flajolet & Odlyzko (1982)]: as n — oo

Ty (k)

—1“(—1/2)"_3/2 (ke)" where —T'(-1/2) = /27,

("] Ty () ~

» asymptotic for unrooted k-trees — subexp. term in n~/2.
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From (¢ + 1)-connected to ¢-connected graphs

Multivariate GF of G , the g-connected graphs (for ¢ € [k]):
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From (¢ + 1)-connected to ¢-connected graphs

Multivariate GF of G , the g-connected graphs (for ¢ € [k]):

I1 P (ni(A) = # i-cliques in A).

K2

1
Gy(z1,...,xp) =
! Ae%;:c,q (A ety

Implict equation for the GF of g-connected graphs rooted at a ¢-clique

Ggq) (1,...,2%) = exp (Gg‘i)l (ml, el ,xq_l,qugQ)(xl, ey TR, Ty - - - ,a:k))

gih)

k+1
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Down the stairs: ¢g=k —>¢g=1

Implict equation for the GF of g-connected graphs rooted at a ¢-clique
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Down the stairs: ¢g=k —>¢g=1

Implict equation for the GF of g-connected graphs rooted at a ¢-clique

Ggq)(acl, c X)) = exp (G((;i)l (xl, el ,mq_l,qugQ)(xl, ey TR, Ty - - - ,xk))

M - G- G

¥
G = G~ G
I
¥
G - Gy > GV

}
Ggl) - G — Gy =exp(Gh)

Nick Wormald already did it (in 1985)!

» algorithm to compute the first numbers of chordal graphs
with bounded clique number.
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Chordal graphs with small tree-width

g=1 q=2 q=3 qg=4 q=5 q=6 q="7

0.36788 -
0.14665 0.18394 -
0.07703 0.08421 0.12263 -
0.04444 0.04662 0.05664 0.09197 -
0.02657 0.02732 0.03092 0.04152 0.07358 - -
0.01608 0.01635 0.01773 0.02184 0.03214 0.06131 -
0.00974 0.00984 0.01038 0.01204 0.01614 0.02583 0.05255

~NOoO O~ WN -
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0.254
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Chordal graphs with small tree-width

k| g=1 q=2 q=3 qg=4 q=5 q=06 q="17
1| 0.36788 - - - - - -
2 | 0.14665 0.18394 - - - - -
3 | 0.07703 0.08421 0.12263 - - - -
4 | 0.04444 0.04662 0.05664 0.09197 - - -
5 | 0.02657 0.02732 0.03092 0.04152 0.07358 - -
6 | 0.01608 0.01635 0.01773 0.02184 0.03214 0.06131 -
7 | 0.00974 0.00984 0.01038 0.01204 0.01614 0.02583 0.05255
0.351
0.304
[Bender, Richmond & Wormald (1985)]:
025 almost all chordal graphs are split.
0.20 = the number of chordal graphs with n
labelled vertices is
0.15] .
n \ .n2
0.10] ~ (n/2) on/4
0.054 N
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Conclusion

Forie{2,...,k}, let X; = # i-cliques in a uniform random graph in G 4 1.

[Castellvi, Drmota, Noy & R. (2023+)]: 3 a,0 € (0,1) s.t. as n — oo

X, -EX, :
= 4 N(0,1), with EX; ~an and VX;~ fn.

» multivariate CLT for (X71,...,X}%).
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