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k-trees
The family of labelled k-trees can be obtained via an iterative process:
▸ start with Kk+1,

▸ add a vertex incident to all vertices of a k-clique of Kk+1,
▸ repeat: add a vertex to one of the k-cliques of the resulting graph.

Example (k = 3):

Remarks:

▸ 1-trees are trees,
▸ 2-trees are maximal series-parallel graphs.
▸ 3-trees with n vertices have 3n − 6 edges, 3n − 8 triangles and n − 3 K4’s.

2 / 14



k-trees
The family of labelled k-trees can be obtained via an iterative process:
▸ start with Kk+1,
▸ add a vertex incident to all vertices of a k-clique of Kk+1,

▸ repeat: add a vertex to one of the k-cliques of the resulting graph.

Example (k = 3):

Remarks:

▸ 1-trees are trees,
▸ 2-trees are maximal series-parallel graphs.
▸ 3-trees with n vertices have 3n − 6 edges, 3n − 8 triangles and n − 3 K4’s.

2 / 14



k-trees
The family of labelled k-trees can be obtained via an iterative process:
▸ start with Kk+1,
▸ add a vertex incident to all vertices of a k-clique of Kk+1,

▸ repeat: add a vertex to one of the k-cliques of the resulting graph.

Example (k = 3):

Remarks:

▸ 1-trees are trees,
▸ 2-trees are maximal series-parallel graphs.
▸ 3-trees with n vertices have 3n − 6 edges, 3n − 8 triangles and n − 3 K4’s.

2 / 14



k-trees
The family of labelled k-trees can be obtained via an iterative process:
▸ start with Kk+1,
▸ add a vertex incident to all vertices of a k-clique of Kk+1,
▸ repeat: add a vertex to one of the k-cliques of the resulting graph.

Example (k = 3):

Remarks:

▸ 1-trees are trees,
▸ 2-trees are maximal series-parallel graphs.
▸ 3-trees with n vertices have 3n − 6 edges, 3n − 8 triangles and n − 3 K4’s.

2 / 14



k-trees
The family of labelled k-trees can be obtained via an iterative process:
▸ start with Kk+1,
▸ add a vertex incident to all vertices of a k-clique of Kk+1,
▸ repeat: add a vertex to one of the k-cliques of the resulting graph.

Example (k = 3):

Remarks:

▸ 1-trees are trees,
▸ 2-trees are maximal series-parallel graphs.
▸ 3-trees with n vertices have 3n − 6 edges, 3n − 8 triangles and n − 3 K4’s.

2 / 14



k-trees
The family of labelled k-trees can be obtained via an iterative process:
▸ start with Kk+1,
▸ add a vertex incident to all vertices of a k-clique of Kk+1,
▸ repeat: add a vertex to one of the k-cliques of the resulting graph.

Example (k = 3):

Remarks:

▸ 1-trees are trees,
▸ 2-trees are maximal series-parallel graphs.
▸ 3-trees with n vertices have 3n − 6 edges, 3n − 8 triangles and n − 3 K4’s.

2 / 14



k-trees
The family of labelled k-trees can be obtained via an iterative process:
▸ start with Kk+1,
▸ add a vertex incident to all vertices of a k-clique of Kk+1,
▸ repeat: add a vertex to one of the k-cliques of the resulting graph.

Example (k = 3):

Remarks:
▸ 1-trees are trees,

▸ 2-trees are maximal series-parallel graphs.
▸ 3-trees with n vertices have 3n − 6 edges, 3n − 8 triangles and n − 3 K4’s.

2 / 14



k-trees
The family of labelled k-trees can be obtained via an iterative process:
▸ start with Kk+1,
▸ add a vertex incident to all vertices of a k-clique of Kk+1,
▸ repeat: add a vertex to one of the k-cliques of the resulting graph.

Example (k = 3):

Remarks:
▸ 1-trees are trees,
▸ 2-trees are maximal series-parallel graphs.

▸ 3-trees with n vertices have 3n − 6 edges, 3n − 8 triangles and n − 3 K4’s.

2 / 14



k-trees
The family of labelled k-trees can be obtained via an iterative process:
▸ start with Kk+1,
▸ add a vertex incident to all vertices of a k-clique of Kk+1,
▸ repeat: add a vertex to one of the k-cliques of the resulting graph.

Example (k = 3):

Remarks:
▸ 1-trees are trees,
▸ 2-trees are maximal series-parallel graphs.
▸ 3-trees with n vertices have 3n − 6 edges, 3n − 8 triangles and n − 3 K4’s.

2 / 14



Graphs with bounded tree-width
Graphs with tree-width at most k are exactly the subgraphs of k-trees
▸ thus called partial k-trees,
▸ Tree-width of A: smallest k s.t. that graph A is a partial k-tree.

What about the enumeration?
▸ let gn = # of labelled graphs with n vertices and tree-width ≤ k

[Norine, Seymour, Thomas & Wollan (2006)]: classes of (labelled) graphs stable
under taking minors are small Ô⇒ gn ≤ cnn!, for some c = c(k) > 0.

[Beineke & Pippert (1969)]: the number of k-trees with n vertices is

(n
k
)(k(n − k) + 1)n−k−2 ∼ 1√

2π k! kk+2
n−5/2 (ek)n n!

[Baste, Noy & Sau (2018)]: lower bound (using pathwidth).

3 / 14



Graphs with bounded tree-width
Graphs with tree-width at most k are exactly the subgraphs of k-trees
▸ thus called partial k-trees,
▸ Tree-width of A: smallest k s.t. that graph A is a partial k-tree.

What about the enumeration?
▸ let gn = # of labelled graphs with n vertices and tree-width ≤ k

[Norine, Seymour, Thomas & Wollan (2006)]: classes of (labelled) graphs stable
under taking minors are small Ô⇒ gn ≤ cnn!, for some c = c(k) > 0.

[Beineke & Pippert (1969)]: the number of k-trees with n vertices is

(n
k
)(k(n − k) + 1)n−k−2 ∼ 1√

2π k! kk+2
n−5/2 (ek)n n!

[Baste, Noy & Sau (2018)]: lower bound (using pathwidth).

3 / 14



Graphs with bounded tree-width
Graphs with tree-width at most k are exactly the subgraphs of k-trees
▸ thus called partial k-trees,
▸ Tree-width of A: smallest k s.t. that graph A is a partial k-tree.

What about the enumeration?
▸ let gn = # of labelled graphs with n vertices and tree-width ≤ k

[Norine, Seymour, Thomas & Wollan (2006)]: classes of (labelled) graphs stable
under taking minors are small Ô⇒ gn ≤ cnn!, for some c = c(k) > 0.

[Beineke & Pippert (1969)]: the number of k-trees with n vertices is

(n
k
)(k(n − k) + 1)n−k−2 ∼ 1√

2π k! kk+2
n−5/2 (ek)n n!

[Baste, Noy & Sau (2018)]: lower bound (using pathwidth).

3 / 14



Graphs with bounded tree-width
Graphs with tree-width at most k are exactly the subgraphs of k-trees
▸ thus called partial k-trees,
▸ Tree-width of A: smallest k s.t. that graph A is a partial k-tree.

What about the enumeration?
▸ let gn = # of labelled graphs with n vertices and tree-width ≤ k

[Norine, Seymour, Thomas & Wollan (2006)]: classes of (labelled) graphs stable
under taking minors are small Ô⇒ gn ≤ cnn!, for some c = c(k) > 0.

[Beineke & Pippert (1969)]: the number of k-trees with n vertices is

(n
k
)(k(n − k) + 1)n−k−2 ∼ 1√

2π k! kk+2
n−5/2 (ek)n n!

[Baste, Noy & Sau (2018)]: lower bound (using pathwidth).

3 / 14



Graphs with bounded tree-width
Graphs with tree-width at most k are exactly the subgraphs of k-trees
▸ thus called partial k-trees,
▸ Tree-width of A: smallest k s.t. that graph A is a partial k-tree.

What about the enumeration?
▸ let gn = # of labelled graphs with n vertices and tree-width ≤ k

[Norine, Seymour, Thomas & Wollan (2006)]: classes of (labelled) graphs stable
under taking minors are small Ô⇒ gn ≤ cnn!, for some c = c(k) > 0.

[Beineke & Pippert (1969)]: the number of k-trees with n vertices is

(n
k
)(k(n − k) + 1)n−k−2 ∼ 1√

2π k! kk+2
n−5/2 (ek)n n!

( ek

log k
)

n

2nkn! ≤gn ≤ (ek)n2nkn!

[Baste, Noy & Sau (2018)]: lower bound (using pathwidth).

3 / 14



Graphs with bounded tree-width
Graphs with tree-width at most k are exactly the subgraphs of k-trees
▸ thus called partial k-trees,
▸ Tree-width of A: smallest k s.t. that graph A is a partial k-tree.

What about the enumeration?
▸ let gn = # of labelled graphs with n vertices and tree-width ≤ k

[Norine, Seymour, Thomas & Wollan (2006)]: classes of (labelled) graphs stable
under taking minors are small Ô⇒ gn ≤ cnn!, for some c = c(k) > 0.

[Beineke & Pippert (1969)]: the number of k-trees with n vertices is

(n
k
)(k(n − k) + 1)n−k−2 ∼ 1√

2π k! kk+2
n−5/2 (ek)n n!

( ek

log k
)

n

2nkn! ≤ gn ≤ (ek)n2nkn!

[Baste, Noy & Sau (2018)]: lower bound (using pathwidth).
3 / 14



Clique-sums
The class of graphs with tree-width at most k is stable by taking clique-sums:

▸ the edge removal makes this operation seem non-tractable from the point of
view of recursive enumeration.
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Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4.
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Alternative definitions:
▸ [Dirac (1961)]: a graph is chordal iff every separator is a clique.

⇒ when taking the clique-sum of two chordal graphs → no edge removal!

▸ [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.
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Chordal graphs with bounded tree-width

Fix n, k ≥ 1 and 0 ≤ q ≤ k.

Let Gk,q,n be the family of q-connected chordal graphs with n labelled vertices
and tree-width at most k.

[Castellví, Drmota, Noy & R. (2023+)]: ∃ ck,q > 0 and γk,q > 1 s.t.

∣Gk,q,n∣ ∼ ck,q ⋅ n−5/2 ⋅ γn
k,q ⋅ n! as n→∞.

Starting point: k-trees are chordal!
▸ In fact, they are exactly the k-connected chordal graphs of tree-width ≤ k.

[Beineke & Pippert (1969)]: the number of k-trees with n vertices is

∣Gk,k,n∣ = (
n

k
)(k(n − k) + 1)n−k−2 ∼ 1√

2π k! kk+2
n−5/2 (ek)n n!
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(k − 1)-connected graphs
Taking the complete k-clique-sum of two k-trees gives a (k − 1)-connected
chordal graphs with tree-width ≤ k:

▸ enumeration of k-trees allows for the enumeration of (k − 1)-connected
chordal graphs with tree-width ≤ k.
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Rooted k-trees

A (labelled) k-tree is rooted when one k-clique is distinguished:
▸ fix a k-clique and fix an ordering of its vertices then remove their labels

Recursive definition of the exponential generating function of rooted k-trees
(variable x marks # k-cliques):

Tk(x) = exp (xTk(x)k)
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Analytic combinatorics: first principle
Exponential growth of the coefficients is determined by the radius of convergence.

[xn]Tk(x)∝ ρ−n, if ρ > 0.

Proposition: the radius of convergence of Tk(x) is a positive branch-point
singularity of its implicit equation Tk(x) = exp (xTk(x)k)

Branch-point singularity:
a common root of

Tk(x) = exp (xTk(x)k) , 1 = xkTk(x)k.

Solution:

x = 1
kTk(x)k

Ô⇒ Tk(x) = exp(1/k)

exp(1/k) = exp(xe) Ô⇒ x = 1
ke

Radius of convergence of Tk(z) is at x = (ke)−1 → ((3e)−1 ≈ 0.1226).
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Analytic combinatorics: second principle
Sub-exponential growth of the coefficients is determined by the behaviour locally
around the singularity (the singular expansion).

Square-root singular expansion lemma
[Bender (1974)]: Provided “nice” properties of the

implicit function Tk(x) = exp (xTk(x)k),
then as z ∼ (ke)−1

Tk(x) = T0(k) − T1(k)(1 −
x

(ke)−1 )
1/2

+O (1 − x

(ke)−1 )

Transfer theorem [Flajolet & Odlyzko (1982)]: as n→∞

[xn]Tk(x) ∼
T1(k)
−Γ(−1/2)n

−3/2 (ke)n where − Γ(−1/2) =
√

2π,

▸ asymptotic for unrooted k-trees → subexp. term in n−5/2.
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From (q + 1)-connected to q-connected graphs
Multivariate GF of Gk,q the q-connected graphs (for q ∈ [k]):

Gq(x1, . . . , xk) = ∑
A∈Gk,q

1
n1(A)!

∏
i∈[k]

x
ni(A)
i (ni(A) = # i-cliques in A).

Implict equation for the GF of q-connected graphs rooted at a q-clique

G(q)q (x1, . . . , xk) = exp (G(q)q+1 (x1, . . . , xq−1, xqG(q)q (x1, . . . , xk), xq+1, . . . , xk))

Kk

G
(k)
k+1

Kk

Kk

Kk

Kk

Kk

Kk

G
(k)
k+1

G
(k)
k+1

G
(k)
k

G
(k)
k

G
(k)
k
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Implict equation for the GF of q-connected graphs rooted at a q-clique

G(q)q (x1, . . . , xk) = exp (G(q)q+1 (x1, . . . , xq−1, xqG(q)q (x1, . . . , xk), xq+1, . . . , xk))

Kk

G
(k)
k+1

Kk

Kk

Kk

Kk

Kk

Kk

G
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G
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Down the stairs: q = k → q = 1
Implict equation for the GF of q-connected graphs rooted at a q-clique

G(q)q (x1, . . . , xk) = exp (G(q)q+1 (x1, . . . , xq−1, xqG(q)q (x1, . . . , xk), xq+1, . . . , xk))

G
(k)
k → Gk → G

(k−1)
k

↓
G
(k−1)
k−1 → Gk−1 → G

(k−2)
k−1
↓
⋮
↓
G
(2)
2 → G2 → G

(1)
2

↓
G
(1)
1 → G1 Ð→ G0 = exp(G1)

Nick Wormald already did it (in 1985)!
▸ algorithm to compute the first numbers of chordal graphs

with bounded clique number.
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Chordal graphs with small tree-width
k q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7

1 0.36788 - - - - - -
2 0.14665 0.18394 - - - - -
3 0.07703 0.08421 0.12263 - - - -
4 0.04444 0.04662 0.05664 0.09197 - - -
5 0.02657 0.02732 0.03092 0.04152 0.07358 - -
6 0.01608 0.01635 0.01773 0.02184 0.03214 0.06131 -
7 0.00974 0.00984 0.01038 0.01204 0.01614 0.02583 0.05255

[Bender, Richmond & Wormald (1985)]:
almost all chordal graphs are split.

⇒ the number of chordal graphs with n
labelled vertices is

∼ ( n

n/2)2n2/4
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Conclusion
For i ∈ {2, . . . , k}, let Xi = # i-cliques in a uniform random graph in Gk,q,n.

[Castellví, Drmota, Noy & R. (2023+)]: ∃ α, σ ∈ (0, 1) s.t. as n→∞

Xi −EXi√
VXi

d→ N(0, 1), with EXi ∼ αn and VXi ∼ βn.

▸ multivariate CLT for (X1, . . . , Xk).

Open questions:

▸ can one control the rate of decay of the radius of convergence ρk as k →∞?
▸ does the same enumerative result hold when k = o(log n)?

(maybe k = O(log n)), but fails for k = ω(log n).

       !開飯    !謝謝
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