joint work with Jordi Castellví, Michael Drmota and Marc Noy

Clément Requilé



Analysis of Algorithms (AofA2023@Taipei)

Academia Sinica - 29/06/2023

The family of labelled k-trees can be obtained via an iterative process:

• start with  $K_{k+1}$ ,



The family of labelled k-trees can be obtained via an iterative process:

- ▶ start with K<sub>k+1</sub>,
- add a vertex incident to all vertices of a k-clique of  $K_{k+1}$ ,



The family of labelled k-trees can be obtained via an iterative process:

- ▶ start with K<sub>k+1</sub>,
- add a vertex incident to all vertices of a k-clique of  $K_{k+1}$ ,



The family of labelled k-trees can be obtained via an iterative process:

- ▶ start with *K*<sub>k+1</sub>,
- add a vertex incident to all vertices of a k-clique of  $K_{k+1}$ ,
- ▶ repeat: add a vertex to one of the *k*-cliques of the resulting graph.



The family of labelled k-trees can be obtained via an iterative process:

- ▶ start with *K*<sub>k+1</sub>,
- add a vertex incident to all vertices of a k-clique of  $K_{k+1}$ ,
- ▶ repeat: add a vertex to one of the *k*-cliques of the resulting graph.



The family of labelled k-trees can be obtained via an iterative process:

- ▶ start with *K*<sub>k+1</sub>,
- add a vertex incident to all vertices of a k-clique of  $K_{k+1}$ ,
- ▶ repeat: add a vertex to one of the *k*-cliques of the resulting graph.



The family of labelled *k*-trees can be obtained via an iterative process:

- ▶ start with *K*<sub>*k*+1</sub>,
- add a vertex incident to all vertices of a k-clique of  $K_{k+1}$ ,
- ▶ repeat: add a vertex to one of the *k*-cliques of the resulting graph.

**Example** (k = 3):



### Remarks:

▶ 1-trees are trees,

The family of labelled k-trees can be obtained via an iterative process:

- ▶ start with *K*<sub>k+1</sub>,
- add a vertex incident to all vertices of a k-clique of  $K_{k+1}$ ,
- ▶ repeat: add a vertex to one of the *k*-cliques of the resulting graph.

**Example** (k = 3):



### Remarks:

- 1-trees are trees,
- > 2-trees are maximal series-parallel graphs.

The family of labelled k-trees can be obtained via an iterative process:

- ▶ start with K<sub>k+1</sub>,
- add a vertex incident to all vertices of a k-clique of  $K_{k+1}$ ,
- ▶ repeat: add a vertex to one of the *k*-cliques of the resulting graph.

**Example** (k = 3):



### Remarks:

- 1-trees are trees,
- > 2-trees are maximal series-parallel graphs.
- ▶ 3-trees with n vertices have 3n 6 edges, 3n 8 triangles and n 3 K<sub>4</sub>'s.

Graphs with tree-width at most k are exactly the subgraphs of k-trees

- thus called partial k-trees,
- Tree-width of A: smallest k s.t. that graph A is a partial k-tree.

Graphs with tree-width at most k are exactly the subgraphs of k-trees

- thus called partial k-trees,
- Tree-width of A: smallest k s.t. that graph A is a partial k-tree.

### What about the enumeration?

 $\blacktriangleright$  let  $g_n$  = # of labelled graphs with n vertices and tree-width  $\leq k$ 

Graphs with tree-width at most k are exactly the subgraphs of k-trees

- thus called partial k-trees,
- Tree-width of A: smallest k s.t. that graph A is a partial k-tree.

### What about the enumeration?

▶ let  $g_n$  = # of labelled graphs with n vertices and tree-width  $\leq k$ 

[Norine, Seymour, Thomas & Wollan (2006)]: classes of (labelled) graphs stable under taking minors are small  $\implies g_n \leq c^n n!$ , for some c = c(k) > 0.

Graphs with tree-width at most k are exactly the subgraphs of k-trees

- thus called partial k-trees,
- Tree-width of A: smallest k s.t. that graph A is a partial k-tree.

### What about the enumeration?

 $\blacktriangleright$  let  $g_n$  = # of labelled graphs with n vertices and tree-width  $\leq k$ 

[Norine, Seymour, Thomas & Wollan (2006)]: classes of (labelled) graphs stable under taking minors are small  $\implies g_n \leq c^n n!$ , for some c = c(k) > 0.

[Beineke & Pippert (1969)]: the number of k-trees with n vertices is

$$\binom{n}{k} (k(n-k)+1)^{n-k-2} \sim \frac{1}{\sqrt{2\pi} \, k! \, k^{k+2}} \, n^{-5/2} \, (ek)^n \, n!$$

Graphs with tree-width at most k are exactly the subgraphs of k-trees

- thus called partial k-trees,
- Tree-width of A: smallest k s.t. that graph A is a partial k-tree.

#### What about the enumeration?

 $\blacktriangleright$  let  $g_n$  = # of labelled graphs with n vertices and tree-width  $\leq k$ 

[Norine, Seymour, Thomas & Wollan (2006)]: classes of (labelled) graphs stable under taking minors are small  $\implies g_n \leq c^n n!$ , for some c = c(k) > 0.

[Beineke & Pippert (1969)]: the number of k-trees with n vertices is

$$\binom{n}{k} (k(n-k)+1)^{n-k-2} \sim \frac{1}{\sqrt{2\pi} \, k! \, k^{k+2}} \, n^{-5/2} \, (ek)^n \, n!$$

$$g_n \le (ek)^n 2^{nk} n!$$

Graphs with tree-width at most k are exactly the subgraphs of k-trees

- thus called partial k-trees,
- Tree-width of A: smallest k s.t. that graph A is a partial k-tree.

#### What about the enumeration?

 $\blacktriangleright$  let  $g_n$  = # of labelled graphs with n vertices and tree-width  $\leq k$ 

[Norine, Seymour, Thomas & Wollan (2006)]: classes of (labelled) graphs stable under taking minors are small  $\implies g_n \leq c^n n!$ , for some c = c(k) > 0.

[Beineke & Pippert (1969)]: the number of k-trees with n vertices is

$$\binom{n}{k} (k(n-k)+1)^{n-k-2} \sim \frac{1}{\sqrt{2\pi} \, k! \, k^{k+2}} \, n^{-5/2} \, (ek)^n \, n!$$

$$\left(\frac{ek}{\log k}\right)^n 2^{nk} n! \le g_n \le (ek)^n 2^{nk} n!$$

[Baste, Noy & Sau (2018)]: lower bound (using pathwidth).













The class of graphs with tree-width at most k is stable by taking clique-sums:



the edge removal makes this operation seem non-tractable from the point of view of recursive enumeration.

**Definition**: a graph is chordal if it admits no induced cycle of length  $\ge 4$ .





**Definition**: a graph is chordal if it admits no induced cycle of length  $\geq 4$ .





Alternative definitions:

• [Dirac (1961)]: a graph is chordal iff every separator is a clique.

**Definition**: a graph is chordal if it admits no induced cycle of length  $\geq 4$ .



Alternative definitions:

• [Dirac (1961)]: a graph is chordal iff every separator is a clique.

**Definition**: a graph is chordal if it admits no induced cycle of length  $\geq 4$ .



- ▶ [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- $\Rightarrow$  when taking the clique-sum of two chordal graphs  $\rightarrow$  no edge removal!

**Definition**: a graph is chordal if it admits no induced cycle of length  $\geq 4$ .



- ▶ [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- $\Rightarrow$  when taking the clique-sum of two chordal graphs  $\rightarrow$  no edge removal!
  - ▶ [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

**Definition**: a graph is chordal if it admits no induced cycle of length  $\geq 4$ .



- ▶ [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- $\Rightarrow$  when taking the clique-sum of two chordal graphs  $\rightarrow$  no edge removal!
  - ▶ [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

**Definition**: a graph is chordal if it admits no induced cycle of length  $\geq 4$ .



- ▶ [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- $\Rightarrow$  when taking the clique-sum of two chordal graphs  $\rightarrow$  no edge removal!
  - ▶ [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

**Definition**: a graph is chordal if it admits no induced cycle of length  $\geq 4$ .



- ▶ [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- $\Rightarrow$  when taking the clique-sum of two chordal graphs  $\rightarrow$  no edge removal!
  - ▶ [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

**Definition**: a graph is chordal if it admits no induced cycle of length  $\geq 4$ .



- [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- $\Rightarrow$  when taking the clique-sum of two chordal graphs  $\rightarrow$  no edge removal!
  - ▶ [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

**Definition**: a graph is chordal if it admits no induced cycle of length  $\geq 4$ .



- ▶ [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- $\Rightarrow$  when taking the clique-sum of two chordal graphs  $\rightarrow$  no edge removal!
  - ▶ [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

**Definition**: a graph is chordal if it admits no induced cycle of length  $\geq 4$ .



- ▶ [Dirac (1961)]: a graph is chordal iff every separator is a clique.
- $\Rightarrow$  when taking the clique-sum of two chordal graphs  $\rightarrow$  no edge removal!
  - ▶ [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Fix  $n, k \ge 1$  and  $0 \le q \le k$ .

Let  $\mathcal{G}_{k,q,n}$  be the family of *q*-connected chordal graphs with *n* labelled vertices and tree-width at most *k*.

[Castellví, Drmota, Noy & R. (2023+)]:  $\exists c_{k,q} > 0 \text{ and } \gamma_{k,q} > 1 \text{ s.t.}$ 

$$|\mathcal{G}_{k,q,n}| \sim c_{k,q} \cdot n^{-5/2} \cdot \gamma_{k,q}^n \cdot n!$$
 as  $n \to \infty$ .

Fix  $n, k \ge 1$  and  $0 \le q \le k$ .

Let  $\mathcal{G}_{k,q,n}$  be the family of *q*-connected chordal graphs with *n* labelled vertices and tree-width at most *k*.

[Castellví, Drmota, Noy & R. (2023+)]:  $\exists c_{k,q} > 0$  and  $\gamma_{k,q} > 1$  s.t.

$$|\mathcal{G}_{k,q,n}| \sim c_{k,q} \cdot n^{-5/2} \cdot \gamma_{k,q}^n \cdot n!$$
 as  $n \to \infty$ .

#### **Starting point**: *k*-trees are chordal!

▶ In fact, they are exactly the *k*-connected chordal graphs of tree-width  $\leq k$ .

Fix  $n, k \ge 1$  and  $0 \le q \le k$ .

Let  $\mathcal{G}_{k,q,n}$  be the family of *q*-connected chordal graphs with *n* labelled vertices and tree-width at most *k*.

[Castellví, Drmota, Noy & R. (2023+)]:  $\exists c_{k,q} > 0$  and  $\gamma_{k,q} > 1$  s.t.

$$|\mathcal{G}_{k,q,n}| \sim c_{k,q} \cdot n^{-5/2} \cdot \gamma_{k,q}^n \cdot n!$$
 as  $n \to \infty$ .

#### **Starting point**: *k*-trees are chordal!

▶ In fact, they are exactly the *k*-connected chordal graphs of tree-width  $\leq k$ .

[Beineke & Pippert (1969)]: the number of k-trees with n vertices is

$$|\mathcal{G}_{k,k,n}| = \binom{n}{k} (k(n-k)+1)^{n-k-2} \sim \frac{1}{\sqrt{2\pi} \, k! \, k^{k+2}} \, n^{-5/2} \, (ek)^n \, n!$$

# (k-1)-connected graphs

Taking the complete k-clique-sum of two k-trees gives a (k-1)-connected chordal graphs with tree-width  $\leq k$ :



# (k-1)-connected graphs

Taking the complete k-clique-sum of two k-trees gives a (k-1)-connected chordal graphs with tree-width  $\leq k$ :



• enumeration of k-trees allows for the enumeration of (k-1)-connected chordal graphs with tree-width  $\leq k$ .

# **Rooted** *k*-trees

- A (labelled) *k*-tree is rooted when one *k*-clique is distinguished:
  - $\blacktriangleright$  fix a k-clique and fix an ordering of its vertices then remove their labels



# **Rooted** *k*-trees

- A (labelled) *k*-tree is rooted when one *k*-clique is distinguished:
  - fix a k-clique and fix an ordering of its vertices then remove their labels



Recursive definition of the exponential generating function of rooted k-trees (variable x marks # k-cliques):

$$T_k(x) = \exp\left(xT_k(x)^k\right)$$

Exponential growth of the coefficients is determined by the radius of convergence.

 $[x^n]T_k(x) \propto \rho^{-n}, \quad \text{if } \rho > 0.$ 

Exponential growth of the coefficients is determined by the radius of convergence.

$$[x^n]T_k(x) \propto \rho^{-n}, \quad \text{if } \rho > 0.$$

**Proposition**: the radius of convergence of  $T_k(x)$  is a positive branch-point singularity of its implicit equation  $T_k(x) = \exp(xT_k(x)^k)$ 



Exponential growth of the coefficients is determined by the radius of convergence.

$$[x^n]T_k(x) \propto \rho^{-n}, \quad \text{if } \rho > 0.$$

**Proposition**: the radius of convergence of  $T_k(x)$  is a positive branch-point singularity of its implicit equation  $T_k(x) = \exp(xT_k(x)^k)$ 



Exponential growth of the coefficients is determined by the radius of convergence.

$$[x^n]T_k(x) \propto \rho^{-n}, \quad \text{if } \rho > 0.$$

**Proposition**: the radius of convergence of  $T_k(x)$  is a positive branch-point singularity of its implicit equation  $T_k(x) = \exp(xT_k(x)^k)$ 



Exponential growth of the coefficients is determined by the radius of convergence.

$$[x^n]T_k(x) \propto \rho^{-n}, \quad \text{if } \rho > 0.$$

**Proposition**: the radius of convergence of  $T_k(x)$  is a positive branch-point singularity of its implicit equation  $T_k(x) = \exp(xT_k(x)^k)$ 



**Radius of convergence** of  $T_k(z)$  is at  $x = (ke)^{-1} \rightarrow ((3e)^{-1} \approx 0.1226)$ .

# Analytic combinatorics: second principle

Sub-exponential growth of the coefficients is determined by the behaviour locally around the singularity (the singular expansion).



# Analytic combinatorics: second principle

Sub-exponential growth of the coefficients is determined by the behaviour locally around the singularity (the singular expansion).



## Analytic combinatorics: second principle

Sub-exponential growth of the coefficients is determined by the behaviour locally around the singularity (the singular expansion).



**Transfer theorem** [Flajolet & Odlyzko (1982)]: as  $n \to \infty$ 

$$[x^{n}]T_{k}(x) \sim \frac{T_{1}(k)}{-\Gamma(-1/2)} n^{-3/2} (ke)^{n}$$
 where  $-\Gamma(-1/2) = \sqrt{2\pi}$ ,

▶ asymptotic for unrooted k-trees → subexp. term in  $n^{-5/2}$ .

# From (q+1)-connected to q-connected graphs

Multivariate GF of  $\mathcal{G}_{k,q}$  the *q*-connected graphs (for  $q \in [k]$ ):

$$G_q(x_1,...,x_k) = \sum_{A \in \mathcal{G}_{k,q}} \frac{1}{n_1(A)!} \prod_{i \in [k]} x_i^{n_i(A)} \qquad (n_i(A) = \# i \text{-cliques in } A).$$

# From (q+1)-connected to q-connected graphs

Multivariate GF of  $\mathcal{G}_{k,q}$  the *q*-connected graphs (for  $q \in [k]$ ):

$$G_q(x_1,\ldots,x_k) = \sum_{A \in \mathcal{G}_{k,q}} \frac{1}{n_1(A)!} \prod_{i \in [k]} x_i^{n_i(A)} \qquad (n_i(A) = \# i \text{-cliques in } A).$$

Implict equation for the GF of q-connected graphs rooted at a q-clique

$$G_q^{(q)}(x_1,\ldots,x_k) = \exp\left(G_{q+1}^{(q)}(x_1,\ldots,x_{q-1},x_q G_q^{(q)}(x_1,\ldots,x_k),x_{q+1},\ldots,x_k)\right)$$



# **Down the stairs:** $q = k \rightarrow q = 1$

Implict equation for the GF of q-connected graphs rooted at a q-clique

$$G_q^{(q)}(x_1,\ldots,x_k) = \exp\left(G_{q+1}^{(q)}(x_1,\ldots,x_{q-1},x_q G_q^{(q)}(x_1,\ldots,x_k),x_{q+1},\ldots,x_k)\right)$$

$$\begin{array}{cccc} G_k^{(k)} \rightarrow G_k \rightarrow G_k^{(k-1)} & \downarrow & \\ & \downarrow & \\ & G_{k-1}^{(k-1)} \rightarrow G_{k-1} \rightarrow & G_{k-1}^{(k-2)} & \\ & \downarrow & \\ & & \downarrow & \\ & & \vdots & \\ & \downarrow & \\ & & G_2^{(2)} \rightarrow G_2 \rightarrow G_2^{(1)} & \\ & & \downarrow & \\ & & & G_1^{(1)} \rightarrow G_1 \longrightarrow G_0 = \exp(G_1) \end{array}$$

# **Down the stairs:** $q = k \rightarrow q = 1$

Implict equation for the GF of q-connected graphs rooted at a q-clique

$$G_q^{(q)}(x_1,\ldots,x_k) = \exp\left(G_{q+1}^{(q)}(x_1,\ldots,x_{q-1},x_q G_q^{(q)}(x_1,\ldots,x_k),x_{q+1},\ldots,x_k)\right)$$

### Nick Wormald already did it (in 1985)!

 algorithm to compute the first numbers of chordal graphs with bounded clique number.



# Chordal graphs with small tree-width

| k | q = 1   | q = 2   | q = 3   | q = 4   | q = 5   | q = 6   | q = 7   |
|---|---------|---------|---------|---------|---------|---------|---------|
| 1 | 0.36788 | -       | -       | -       | -       | -       | -       |
| 2 | 0.14665 | 0.18394 | -       | -       | -       | -       | -       |
| 3 | 0.07703 | 0.08421 | 0.12263 | -       | -       | -       | -       |
| 4 | 0.04444 | 0.04662 | 0.05664 | 0.09197 | -       | -       | -       |
| 5 | 0.02657 | 0.02732 | 0.03092 | 0.04152 | 0.07358 | -       | -       |
| 6 | 0.01608 | 0.01635 | 0.01773 | 0.02184 | 0.03214 | 0.06131 | -       |
| 7 | 0.00974 | 0.00984 | 0.01038 | 0.01204 | 0.01614 | 0.02583 | 0.05255 |

# Chordal graphs with small tree-width

| k | q = 1   | q = 2   | q = 3   | q = 4   | q = 5   | q = 6   | q = 7   |
|---|---------|---------|---------|---------|---------|---------|---------|
| 1 | 0.36788 | -       | -       | -       | -       | -       | -       |
| 2 | 0.14665 | 0.18394 | -       | -       | -       | -       | -       |
| 3 | 0.07703 | 0.08421 | 0.12263 | -       | -       | -       | -       |
| 4 | 0.04444 | 0.04662 | 0.05664 | 0.09197 | -       | -       | -       |
| 5 | 0.02657 | 0.02732 | 0.03092 | 0.04152 | 0.07358 | -       | -       |
| 6 | 0.01608 | 0.01635 | 0.01773 | 0.02184 | 0.03214 | 0.06131 | -       |
| 7 | 0.00974 | 0.00984 | 0.01038 | 0.01204 | 0.01614 | 0.02583 | 0.05255 |



# Chordal graphs with small tree-width

| k | <i>q</i> = 1 | q = 2   | q = 3   | q = 4   | q = 5   | q = 6   | q = 7   |
|---|--------------|---------|---------|---------|---------|---------|---------|
| 1 | 0.36788      | -       | -       | -       | -       | -       | -       |
| 2 | 0.14665      | 0.18394 | -       | -       | -       | -       | -       |
| 3 | 0.07703      | 0.08421 | 0.12263 | -       | -       | -       | -       |
| 4 | 0.04444      | 0.04662 | 0.05664 | 0.09197 | -       | -       | -       |
| 5 | 0.02657      | 0.02732 | 0.03092 | 0.04152 | 0.07358 | -       | -       |
| 6 | 0.01608      | 0.01635 | 0.01773 | 0.02184 | 0.03214 | 0.06131 | -       |
| 7 | 0.00974      | 0.00984 | 0.01038 | 0.01204 | 0.01614 | 0.02583 | 0.05255 |



[Bender, Richmond & Wormald (1985)]: almost all chordal graphs are split.

 $\Rightarrow \mbox{ the number of chordal graphs with } n \\ \mbox{ labelled vertices is } \end{cases}$ 

$$\sim \binom{n}{n/2} 2^{n^2/4}$$

For  $i \in \{2, ..., k\}$ , let  $X_i = \#$  *i*-cliques in a uniform random graph in  $\mathcal{G}_{k,q,n}$ .

[Castellví, Drmota, Noy & R. (2023+)]: 
$$\exists \alpha, \sigma \in (0,1)$$
 s.t. as  $n \to \infty$ 

$$\frac{X_i - \mathbb{E}X_i}{\sqrt{\mathbb{V}X_i}} \stackrel{d}{\to} N(0, 1), \quad \text{with} \quad \mathbb{E}X_i \sim \alpha n \quad \text{and} \quad \mathbb{V}X_i \sim \beta n.$$

• multivariate CLT for  $(X_1, \ldots, X_k)$ .

For  $i \in \{2, ..., k\}$ , let  $X_i = \#$  *i*-cliques in a uniform random graph in  $\mathcal{G}_{k,q,n}$ .

[Castellví, Drmota, Noy & R. (2023+)]: 
$$\exists \alpha, \sigma \in (0,1)$$
 s.t. as  $n \to \infty$ 

 $\frac{X_i - \mathbb{E}X_i}{\sqrt{\mathbb{V}X_i}} \xrightarrow{d} N(0, 1), \quad \text{with} \quad \mathbb{E}X_i \sim \alpha n \quad \text{and} \quad \mathbb{V}X_i \sim \beta n.$ 

• multivariate CLT for  $(X_1, \ldots, X_k)$ .

### **Open questions:**

▶ can one control the rate of decay of the radius of convergence  $\rho_k$  as  $k \to \infty$ ?

For  $i \in \{2, ..., k\}$ , let  $X_i = \#$  *i*-cliques in a uniform random graph in  $\mathcal{G}_{k,q,n}$ .

[Castellví, Drmota, Noy & R. (2023+)]: 
$$\exists \alpha, \sigma \in (0,1)$$
 s.t. as  $n \to \infty$ 

 $\frac{X_i - \mathbb{E}X_i}{\sqrt{\mathbb{V}X_i}} \xrightarrow{d} N(0, 1), \quad \text{with} \quad \mathbb{E}X_i \sim \alpha n \quad \text{and} \quad \mathbb{V}X_i \sim \beta n.$ 

• multivariate CLT for  $(X_1, \ldots, X_k)$ .

### Open questions:

- ▶ can one control the rate of decay of the radius of convergence  $\rho_k$  as  $k \to \infty$ ?
- b does the same enumerative result hold when k = o(log n)? (maybe k = O(log n)), but fails for k = ω(log n).

For  $i \in \{2, ..., k\}$ , let  $X_i = \#$  *i*-cliques in a uniform random graph in  $\mathcal{G}_{k,q,n}$ .

[Castellví, Drmota, Noy & R. (2023+)]: 
$$\exists \alpha, \sigma \in (0,1)$$
 s.t. as  $n \to \infty$ 

 $\frac{X_i - \mathbb{E}X_i}{\sqrt{\mathbb{V}X_i}} \xrightarrow{d} N(0, 1), \quad \text{with} \quad \mathbb{E}X_i \sim \alpha n \quad \text{and} \quad \mathbb{V}X_i \sim \beta n.$ 

• multivariate CLT for  $(X_1, \ldots, X_k)$ .

### Open questions:

- ▶ can one control the rate of decay of the radius of convergence  $\rho_k$  as  $k \to \infty$ ?
- b does the same enumerative result hold when k = o(log n)? (maybe k = O(log n)), but fails for k = ω(log n).

