Chordal graphs with bounded tree-width

joint work with Jordi Castellví, Michael Drmota and Marc Noy

Clément Requilé

Analysis of Algorithms (AofA2023@Taipei)

Academia Sinica - 29/06/2023

The family of labelled k-trees can be obtained via an iterative process:

- start with K_{k+1},

Example $(k=3)$:

The family of labelled k-trees can be obtained via an iterative process:

- start with K_{k+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1},

Example $(k=3)$:

The family of labelled k-trees can be obtained via an iterative process:

- start with K_{k+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1},

Example $(k=3)$:

The family of labelled k-trees can be obtained via an iterative process:

- start with K_{k+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1},
- repeat: add a vertex to one of the k-cliques of the resulting graph.

Example ($k=3$):

k-trees

The family of labelled k-trees can be obtained via an iterative process:

- start with K_{k+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1},
- repeat: add a vertex to one of the k-cliques of the resulting graph.

Example $(k=3)$:

k-trees

The family of labelled k-trees can be obtained via an iterative process:

- start with K_{k+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1},
- repeat: add a vertex to one of the k-cliques of the resulting graph.

Example $(k=3)$:

k-trees

The family of labelled k-trees can be obtained via an iterative process:

- start with K_{k+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1},
- repeat: add a vertex to one of the k-cliques of the resulting graph.

Example $(k=3)$:

Remarks:

- 1-trees are trees,

k-trees

The family of labelled k-trees can be obtained via an iterative process:

- start with K_{k+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1},
- repeat: add a vertex to one of the k-cliques of the resulting graph.

Example $(k=3)$:

Remarks:

- 1-trees are trees,
- 2-trees are maximal series-parallel graphs.

k-trees

The family of labelled k-trees can be obtained via an iterative process:

- start with K_{k+1},
- add a vertex incident to all vertices of a k-clique of K_{k+1},
- repeat: add a vertex to one of the k-cliques of the resulting graph.

Example $(k=3)$:

Remarks:

- 1-trees are trees,
- 2-trees are maximal series-parallel graphs.
- 3 -trees with n vertices have $3 n-6$ edges, $3 n-8$ triangles and $n-3 K_{4}$'s.

Graphs with bounded tree-width

Graphs with tree-width at most k are exactly the subgraphs of k-trees

- thus called partial k-trees,
- Tree-width of A : smallest k s.t. that graph A is a partial k-tree.

Graphs with bounded tree-width

Graphs with tree-width at most k are exactly the subgraphs of k-trees

- thus called partial k-trees,
- Tree-width of A : smallest k s.t. that graph A is a partial k-tree.

What about the enumeration?

- let $g_{n}=\#$ of labelled graphs with n vertices and tree-width $\leq k$

Graphs with bounded tree-width

Graphs with tree-width at most k are exactly the subgraphs of k-trees

- thus called partial k-trees,
- Tree-width of A : smallest k s.t. that graph A is a partial k-tree.

What about the enumeration?

- let $g_{n}=\#$ of labelled graphs with n vertices and tree-width $\leq k$
[Norine, Seymour, Thomas \& Wollan (2006)]: classes of (labelled) graphs stable under taking minors are small $\Longrightarrow g_{n} \leq c^{n} n$!, for some $c=c(k)>0$.

Graphs with bounded tree-width

Graphs with tree-width at most k are exactly the subgraphs of k-trees

- thus called partial k-trees,
- Tree-width of A : smallest k s.t. that graph A is a partial k-tree.

What about the enumeration?

- let $g_{n}=\#$ of labelled graphs with n vertices and tree-width $\leq k$
[Norine, Seymour, Thomas \& Wollan (2006)]: classes of (labelled) graphs stable under taking minors are small $\Longrightarrow g_{n} \leq c^{n} n$!, for some $c=c(k)>0$.
[Beineke \& Pippert (1969)]: the number of k-trees with n vertices is

$$
\binom{n}{k}(k(n-k)+1)^{n-k-2} \sim \frac{1}{\sqrt{2 \pi} k!k^{k+2}} n^{-5 / 2}(e k)^{n} n!
$$

Graphs with bounded tree-width

Graphs with tree-width at most k are exactly the subgraphs of k-trees

- thus called partial k-trees,
- Tree-width of A : smallest k s.t. that graph A is a partial k-tree.

What about the enumeration?

- let $g_{n}=\#$ of labelled graphs with n vertices and tree-width $\leq k$
[Norine, Seymour, Thomas \& Wollan (2006)]: classes of (labelled) graphs stable under taking minors are small $\Longrightarrow g_{n} \leq c^{n} n$!, for some $c=c(k)>0$.
[Beineke \& Pippert (1969)]: the number of k-trees with n vertices is

$$
\begin{gathered}
\binom{n}{k}(k(n-k)+1)^{n-k-2} \sim \frac{1}{\sqrt{2 \pi} k!k^{k+2}} n^{-5 / 2}(e k)^{n} n! \\
g_{n} \leq(e k)^{n} 2^{n k} n!
\end{gathered}
$$

Graphs with bounded tree-width

Graphs with tree-width at most k are exactly the subgraphs of k-trees

- thus called partial k-trees,
- Tree-width of A : smallest k s.t. that graph A is a partial k-tree.

What about the enumeration?

- let $g_{n}=\#$ of labelled graphs with n vertices and tree-width $\leq k$
[Norine, Seymour, Thomas \& Wollan (2006)]: classes of (labelled) graphs stable under taking minors are small $\Longrightarrow g_{n} \leq c^{n} n$!, for some $c=c(k)>0$.
[Beineke \& Pippert (1969)]: the number of k-trees with n vertices is

$$
\begin{gathered}
\binom{n}{k}(k(n-k)+1)^{n-k-2} \sim \frac{1}{\sqrt{2 \pi} k!k^{k+2}} n^{-5 / 2}(e k)^{n} n! \\
\left(\frac{e k}{\log k}\right)^{n} 2^{n k} n!\leq g_{n} \leq(e k)^{n} 2^{n k} n!
\end{gathered}
$$

[Baste, Noy \& Sau (2018)]: lower bound (using pathwidth).

Clique-sums

The class of graphs with tree-width at most k is stable by taking clique-sums:

Clique-sums

The class of graphs with tree-width at most k is stable by taking clique-sums:

Clique-sums

The class of graphs with tree-width at most k is stable by taking clique-sums:

Clique-sums

The class of graphs with tree-width at most k is stable by taking clique-sums:

Clique-sums

The class of graphs with tree-width at most k is stable by taking clique-sums:

- the edge removal makes this operation seem non-tractable from the point of view of recursive enumeration.

Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4.

Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4.

Alternative definitions:

- [Dirac (1961)]: a graph is chordal iff every separator is a clique.

Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4.

Alternative definitions:

- [Dirac (1961)]: a graph is chordal iff every separator is a clique.

Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4.

Alternative definitions:

- [Dirac (1961)]: a graph is chordal iff every separator is a clique.
\Rightarrow when taking the clique-sum of two chordal graphs \rightarrow no edge removal!

Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4.

Alternative definitions:

- [Dirac (1961)]: a graph is chordal iff every separator is a clique.
\Rightarrow when taking the clique-sum of two chordal graphs \rightarrow no edge removal!
- [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4.

Alternative definitions:

- [Dirac (1961)]: a graph is chordal iff every separator is a clique.
\Rightarrow when taking the clique-sum of two chordal graphs \rightarrow no edge removal!
- [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4.

Alternative definitions:

- [Dirac (1961)]: a graph is chordal iff every separator is a clique.
\Rightarrow when taking the clique-sum of two chordal graphs \rightarrow no edge removal!
- [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4.

Alternative definitions:

- [Dirac (1961)]: a graph is chordal iff every separator is a clique.
\Rightarrow when taking the clique-sum of two chordal graphs \rightarrow no edge removal!
- [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4.

Alternative definitions:

- [Dirac (1961)]: a graph is chordal iff every separator is a clique.
\Rightarrow when taking the clique-sum of two chordal graphs \rightarrow no edge removal!
- [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4.

Alternative definitions:

- [Dirac (1961)]: a graph is chordal iff every separator is a clique.
\Rightarrow when taking the clique-sum of two chordal graphs \rightarrow no edge removal!
- [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Chordal graphs

Definition: a graph is chordal if it admits no induced cycle of length ≥ 4.

Alternative definitions:

- [Dirac (1961)]: a graph is chordal iff every separator is a clique.
\Rightarrow when taking the clique-sum of two chordal graphs \rightarrow no edge removal!
- [Folklore]: a graph is chordal iff it admits a perfect elimination ordering.

Chordal graphs with bounded tree-width

Fix $n, k \geq 1$ and $0 \leq q \leq k$.

Let $\mathcal{G}_{k, q, n}$ be the family of q-connected chordal graphs with n labelled vertices and tree-width at most k.
[Castellví, Drmota, Noy \& R. (2023+)]: $\exists c_{k, q}>0$ and $\gamma_{k, q}>1$ s.t.

$$
\left|\mathcal{G}_{k, q, n}\right| \sim c_{k, q} \cdot n^{-5 / 2} \cdot \gamma_{k, q}^{n} \cdot n!\quad \text { as } n \rightarrow \infty
$$

Chordal graphs with bounded tree-width

Fix $n, k \geq 1$ and $0 \leq q \leq k$.

Let $\mathcal{G}_{k, q, n}$ be the family of q-connected chordal graphs with n labelled vertices and tree-width at most k.
[Castellví, Drmota, Noy \& R. (2023+)]: $\exists c_{k, q}>0$ and $\gamma_{k, q}>1$ s.t.

$$
\left|\mathcal{G}_{k, q, n}\right| \sim c_{k, q} \cdot n^{-5 / 2} \cdot \gamma_{k, q}^{n} \cdot n!\quad \text { as } n \rightarrow \infty .
$$

Starting point: k-trees are chordal!

- In fact, they are exactly the k-connected chordal graphs of tree-width $\leq k$.

Chordal graphs with bounded tree-width

Fix $n, k \geq 1$ and $0 \leq q \leq k$.

Let $\mathcal{G}_{k, q, n}$ be the family of q-connected chordal graphs with n labelled vertices and tree-width at most k.
[Castellví, Drmota, Noy \& R. (2023+)]: $\exists c_{k, q}>0$ and $\gamma_{k, q}>1$ s.t.

$$
\left|\mathcal{G}_{k, q, n}\right| \sim c_{k, q} \cdot n^{-5 / 2} \cdot \gamma_{k, q}^{n} \cdot n!\quad \text { as } n \rightarrow \infty .
$$

Starting point: k-trees are chordal!

- In fact, they are exactly the k-connected chordal graphs of tree-width $\leq k$.
[Beineke \& Pippert (1969)]: the number of k-trees with n vertices is

$$
\left|\mathcal{G}_{k, k, n}\right|=\binom{n}{k}(k(n-k)+1)^{n-k-2} \sim \frac{1}{\sqrt{2 \pi} k!k^{k+2}} n^{-5 / 2}(e k)^{n} n!
$$

($k-1$)-connected graphs

Taking the complete k-clique-sum of two k-trees gives a $(k-1)$-connected chordal graphs with tree-width $\leq k$:

($k-1$)-connected graphs

Taking the complete k-clique-sum of two k-trees gives a $(k-1)$-connected chordal graphs with tree-width $\leq k$:

- enumeration of k-trees allows for the enumeration of $(k-1)$-connected chordal graphs with tree-width $\leq k$.

Rooted k-trees

A (labelled) k-tree is rooted when one k-clique is distinguished:

- fix a k-clique and fix an ordering of its vertices then remove their labels

Rooted k-trees

A (labelled) k-tree is rooted when one k-clique is distinguished:

- fix a k-clique and fix an ordering of its vertices then remove their labels

Recursive definition of the exponential generating function of rooted k-trees (variable x marks \# k-cliques):

$$
T_{k}(x)=\exp \left(x T_{k}(x)^{k}\right)
$$

Analytic combinatorics: first principle

Exponential growth of the coefficients is determined by the radius of convergence.

$$
\left[x^{n}\right] T_{k}(x) \propto \rho^{-n}, \quad \text { if } \rho>0
$$

Analytic combinatorics: first principle

Exponential growth of the coefficients is determined by the radius of convergence.

$$
\left[x^{n}\right] T_{k}(x) \propto \rho^{-n}, \quad \text { if } \rho>0
$$

Proposition: the radius of convergence of $T_{k}(x)$ is a positive branch-point singularity of its implicit equation $T_{k}(x)=\exp \left(x T_{k}(x)^{k}\right)$

Analytic combinatorics: first principle

Exponential growth of the coefficients is determined by the radius of convergence.

$$
\left[x^{n}\right] T_{k}(x) \propto \rho^{-n}, \quad \text { if } \rho>0
$$

Proposition: the radius of convergence of $T_{k}(x)$ is a positive branch-point singularity of its implicit equation $T_{k}(x)=\exp \left(x T_{k}(x)^{k}\right)$

Branch-point singularity:

 a common root of$$
T_{k}(x)=\exp \left(x T_{k}(x)^{k}\right), \quad 1=x k T_{k}(x)^{k} .
$$

Analytic combinatorics: first principle

Exponential growth of the coefficients is determined by the radius of convergence.

$$
\left[x^{n}\right] T_{k}(x) \propto \rho^{-n}, \quad \text { if } \rho>0
$$

Proposition: the radius of convergence of $T_{k}(x)$ is a positive branch-point singularity of its implicit equation $T_{k}(x)=\exp \left(x T_{k}(x)^{k}\right)$

Branch-point singularity:

 a common root of$$
T_{k}(x)=\exp \left(x T_{k}(x)^{k}\right), \quad 1=x k T_{k}(x)^{k}
$$

Solution:

$$
\begin{aligned}
& x=\frac{1}{k T_{k}(x)^{k}} \Longrightarrow T_{k}(x)=\exp (1 / k) \\
& \exp (1 / k)=\exp (x e) \Longrightarrow x=\frac{1}{k e}
\end{aligned}
$$

Analytic combinatorics: first principle

Exponential growth of the coefficients is determined by the radius of convergence.

$$
\left[x^{n}\right] T_{k}(x) \propto \rho^{-n}, \quad \text { if } \rho>0
$$

Proposition: the radius of convergence of $T_{k}(x)$ is a positive branch-point singularity of its implicit equation $T_{k}(x)=\exp \left(x T_{k}(x)^{k}\right)$

Branch-point singularity:

 a common root of$$
T_{k}(x)=\exp \left(x T_{k}(x)^{k}\right), \quad 1=x k T_{k}(x)^{k}
$$

Solution:

$$
\begin{aligned}
& x=\frac{1}{k T_{k}(x)^{k}} \Longrightarrow T_{k}(x)=\exp (1 / k) \\
& \exp (1 / k)=\exp (x e) \Longrightarrow x=\frac{1}{k e}
\end{aligned}
$$

Radius of convergence of $T_{k}(z)$ is at $x=(k e)^{-1} \quad \rightarrow \quad\left((3 e)^{-1} \approx 0.1226\right)$.

Analytic combinatorics: second principle

Sub-exponential growth of the coefficients is determined by the behaviour locally around the singularity (the singular expansion).

Analytic combinatorics: second principle

Sub-exponential growth of the coefficients is determined by the behaviour locally around the singularity (the singular expansion).

Analytic combinatorics: second principle

Sub-exponential growth of the coefficients is determined by the behaviour locally around the singularity (the singular expansion).

Transfer theorem [Flajolet \& Odlyzko (1982)]: as $n \rightarrow \infty$

$$
\left[x^{n}\right] T_{k}(x) \sim \frac{T_{1}(k)}{-\Gamma(-1 / 2)} n^{-3 / 2}(k e)^{n} \quad \text { where }-\Gamma(-1 / 2)=\sqrt{2 \pi}
$$

- asymptotic for unrooted k-trees \rightarrow subexp. term in $n^{-5 / 2}$.

From $(q+1)$-connected to q-connected graphs

Multivariate GF of $\mathcal{G}_{k, q}$ the q-connected graphs (for $q \in[k]$):

$$
G_{q}\left(x_{1}, \ldots, x_{k}\right)=\sum_{A \in \mathcal{G}_{k, q}} \frac{1}{n_{1}(A)!} \prod_{i \in[k]} x_{i}^{n_{i}(A)} \quad\left(n_{i}(A)=\# i \text {-cliques in } A\right) .
$$

From $(q+1)$-connected to q-connected graphs

Multivariate GF of $\mathcal{G}_{k, q}$ the q-connected graphs (for $q \in[k]$):

$$
G_{q}\left(x_{1}, \ldots, x_{k}\right)=\sum_{A \in \mathcal{G}_{k, q}} \frac{1}{n_{1}(A)!} \prod_{i \in[k]} x_{i}^{n_{i}(A)} \quad\left(n_{i}(A)=\# i \text {-cliques in } A\right) .
$$

Implict equation for the GF of q-connected graphs rooted at a q-clique

$$
G_{q}^{(q)}\left(x_{1}, \ldots, x_{k}\right)=\exp \left(G_{q+1}^{(q)}\left(x_{1}, \ldots, x_{q-1}, x_{q} G_{q}^{(q)}\left(x_{1}, \ldots, x_{k}\right), x_{q+1}, \ldots, x_{k}\right)\right)
$$

Down the stairs: $q=k \rightarrow q=1$

Implict equation for the GF of q-connected graphs rooted at a q-clique

$$
\begin{aligned}
& G_{q}^{(q)}\left(x_{1}, \ldots, x_{k}\right)=\exp \left(G_{q+1}^{(q)}\left(x_{1}, \ldots, x_{q-1}, x_{q} G_{q}^{(q)}\left(x_{1}, \ldots, x_{k}\right), x_{q+1}, \ldots, x_{k}\right)\right) \\
& G_{k}^{(k)} \rightarrow G_{k} \rightarrow G_{k}^{(k-1)} \\
& \downarrow \\
& G_{k-1}^{(k-1)} \rightarrow G_{k-1} \rightarrow G_{k-1}^{(k-2)} \\
& \downarrow \\
& \vdots \\
& \downarrow \\
& G_{2}^{(2)} \rightarrow G_{2} \rightarrow G_{2}^{(1)} \\
& \downarrow \\
& \\
& \\
& \\
& \quad G_{1}^{(1)} \rightarrow G_{1} \longrightarrow G_{0}=\exp \left(G_{1}\right)
\end{aligned}
$$

Down the stairs: $q=k \rightarrow q=1$

Implict equation for the GF of q-connected graphs rooted at a q-clique

$$
\begin{aligned}
& G_{q}^{(q)}\left(x_{1}, \ldots, x_{k}\right)=\exp \left(G_{q+1}^{(q)}\left(x_{1}, \ldots, x_{q-1}, x_{q} G_{q}^{(q)}\left(x_{1}, \ldots, x_{k}\right), x_{q+1}, \ldots, x_{k}\right)\right) \\
& G_{k}^{(k)} \rightarrow G_{k} \rightarrow G_{k}^{(k-1)} \\
& \downarrow \\
& G_{k-1}^{(k-1)} \rightarrow G_{k-1} \rightarrow G_{k-1}^{(k-2)} \\
& \downarrow \\
& \vdots \\
& \downarrow \\
& G_{2}^{(2)} \rightarrow G_{2} \rightarrow G_{2}^{(1)} \\
& \downarrow \\
& \\
& \\
& \quad G_{1}^{(1)} \rightarrow G_{1} \longrightarrow G_{0}=\exp \left(G_{1}\right)
\end{aligned}
$$

Nick Wormald already did it (in 1985)!

- algorithm to compute the first numbers of chordal graphs with bounded clique number.

Chordal graphs with small tree-width

k	$q=1$	$q=2$	$q=3$	$q=4$	$q=5$	$q=6$	$q=7$
1	0.36788	-	-	-	-	-	-
2	0.14665	0.18394	-	-	-	-	-
3	0.07703	0.08421	0.12263	-	-	-	-
4	0.04444	0.04662	0.05664	0.09197	-	-	-
5	0.02657	0.02732	0.03092	0.04152	0.07358	-	-
6	0.01608	0.01635	0.01773	0.02184	0.03214	0.06131	-
7	0.00974	0.00984	0.01038	0.01204	0.01614	0.02583	0.05255

Chordal graphs with small tree-width

k	$q=1$	$q=2$	$q=3$	$q=4$	$q=5$	$q=6$	$q=7$
1	0.36788	-	-	-	-	-	-
2	0.14665	0.18394	-	-	-	-	-
3	0.07703	0.08421	0.12263	-	-	-	-
4	0.04444	0.04662	0.05664	0.09197	-	-	-
5	0.02657	0.02732	0.03092	0.04152	0.07358	-	-
6	0.01608	0.01635	0.01773	0.02184	0.03214	0.06131	-
7	0.00974	0.00984	0.01038	0.01204	0.01614	0.02583	0.05255

Chordal graphs with small tree-width

k	$q=1$	$q=2$	$q=3$	$q=4$	$q=5$	$q=6$	$q=7$
1	0.36788	-	-	-	-	-	-
2	0.14665	0.18394	-	-	-	-	-
3	0.07703	0.08421	0.12263	-	-	-	-
4	0.04444	0.04662	0.05664	0.09197	-	-	-
5	0.02657	0.02732	0.03092	0.04152	0.07358	-	-
6	0.01608	0.01635	0.01773	0.02184	0.03214	0.06131	-
7	0.00974	0.00984	0.01038	0.01204	0.01614	0.02583	0.05255

[Bender, Richmond \& Wormald (1985)]: almost all chordal graphs are split.
\Rightarrow the number of chordal graphs with n labelled vertices is

$$
\sim\binom{n}{n / 2} 2^{n^{2} / 4}
$$

Conclusion

For $i \in\{2, \ldots, k\}$, let $X_{i}=\# i$-cliques in a uniform random graph in $\mathcal{G}_{k, q, n}$.
[Castellví, Drmota, Noy \& R. (2023+)]: $\exists \alpha, \sigma \in(0,1)$ s.t. as $n \rightarrow \infty$

$$
\frac{X_{i}-\mathbb{E} X_{i}}{\sqrt{\mathbb{V} X_{i}}} \xrightarrow{d} N(0,1), \quad \text { with } \quad \mathbb{E} X_{i} \sim \alpha n \quad \text { and } \quad \mathbb{V} X_{i} \sim \beta n .
$$

- multivariate CLT for $\left(X_{1}, \ldots, X_{k}\right)$.

Conclusion

For $i \in\{2, \ldots, k\}$, let $X_{i}=\# i$-cliques in a uniform random graph in $\mathcal{G}_{k, q, n}$.
[Castellví, Drmota, Noy \& R. (2023+)]: $\exists \alpha, \sigma \in(0,1)$ s.t. as $n \rightarrow \infty$

$$
\frac{X_{i}-\mathbb{E} X_{i}}{\sqrt{\mathbb{V} X_{i}}} \xrightarrow{d} N(0,1), \quad \text { with } \quad \mathbb{E} X_{i} \sim \alpha n \quad \text { and } \quad \mathbb{V} X_{i} \sim \beta n .
$$

- multivariate CLT for $\left(X_{1}, \ldots, X_{k}\right)$.

Open questions:

- can one control the rate of decay of the radius of convergence ρ_{k} as $k \rightarrow \infty$?

Conclusion

For $i \in\{2, \ldots, k\}$, let $X_{i}=\# i$-cliques in a uniform random graph in $\mathcal{G}_{k, q, n}$.
[Castellví, Drmota, Noy \& R. (2023+)]: $\exists \alpha, \sigma \in(0,1)$ s.t. as $n \rightarrow \infty$

$$
\frac{X_{i}-\mathbb{E} X_{i}}{\sqrt{\mathbb{V} X_{i}}} \xrightarrow{d} N(0,1), \quad \text { with } \quad \mathbb{E} X_{i} \sim \alpha n \quad \text { and } \quad \mathbb{V} X_{i} \sim \beta n .
$$

- multivariate CLT for $\left(X_{1}, \ldots, X_{k}\right)$.

Open questions:

- can one control the rate of decay of the radius of convergence ρ_{k} as $k \rightarrow \infty$?
- does the same enumerative result hold when $k=o(\log n)$? (maybe $k=O(\log n)$), but fails for $k=\omega(\log n)$.

Conclusion

For $i \in\{2, \ldots, k\}$ ，let $X_{i}=\# i$－cliques in a uniform random graph in $\mathcal{G}_{k, q, n}$ ．
［Castellví，Drmota，Noy \＆R．（2023＋）］：$\exists \alpha, \sigma \in(0,1)$ s．t．as $n \rightarrow \infty$

$$
\frac{X_{i}-\mathbb{E} X_{i}}{\sqrt{\mathbb{V} X_{i}}} \xrightarrow{d} N(0,1), \quad \text { with } \quad \mathbb{E} X_{i} \sim \alpha n \quad \text { and } \quad \mathbb{V} X_{i} \sim \beta n .
$$

－multivariate CLT for $\left(X_{1}, \ldots, X_{k}\right)$ ．

Open questions：

－can one control the rate of decay of the radius of convergence ρ_{k} as $k \rightarrow \infty$ ？
－does the same enumerative result hold when $k=o(\log n)$ ？ （maybe $k=O(\log n)$ ），but fails for $k=\omega(\log n)$ ．

