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Prelude 1: Merge Sort

Partition into two sets of (almost) equal size;

Sort both parts individually & recursively;

Merge results.

Number M(n) of comparisons when sorting n elements:

M(n) = M(dn/2e) + M(bn/2c) + n − 1.

In other words:

M(2n) = 2M(n) + 2n − 1,

M(2n + 1) = M(n) + M(n + 1) + 2n.
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Prelude 2: Binary Sum of Digits

Binary expansion n =
∑

j≥0 εj2
j

Sum of digits s(n) =
∑

j≥0 εj

s(n) = s(bn/2c) + [n is odd].

In other words:

s(2n) = s(n),

s(2n + 1) = s(n) + 1.

Clemens Heuberger University of Klagenfurt 3



Prelude 2: Binary Sum of Digits

Binary expansion n =
∑

j≥0 εj2
j

Sum of digits s(n) =
∑

j≥0 εj

s(n) = s(bn/2c) + [n is odd].

In other words:

s(2n) = s(n),

s(2n + 1) = s(n) + 1.

Clemens Heuberger University of Klagenfurt 3



Prelude 2: Binary Sum of Digits

Binary expansion n =
∑

j≥0 εj2
j

Sum of digits s(n) =
∑

j≥0 εj

s(n) = s(bn/2c) + [n is odd].

In other words:

s(2n) = s(n),

s(2n + 1) = s(n) + 1.

Clemens Heuberger University of Klagenfurt 3



Common Pattern

Recall:

M(2n) = 2M(n) + 2n − 1, s(2n) = s(n),

M(2n + 1) = M(n) + M(n + 1) + 2n, s(2n + 1) = s(n) + 1.

Common Pattern:

Sequence x

Recursively given: Express x(2n) and x(2n + 1) . . .

. . . in terms of x(n), possibly x(n + 1), known sequences
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Matrix–Vector Form: Sum of Digits

Recall:

s(2n) = s(n),

s(2n + 1) = s(n) + 1.

Consider

v(n) :=

(
s(n)

1

)
.

Then

v(2n) =

(
s(2n)

1

)
=

(
s(n)

1

)
=

(
1 0
0 1

)
v(n),

v(2n + 1) =

(
s(2n + 1)

1

)
=

(
s(n) + 1

1

)
=

(
1 1
0 1

)
v(n)

.
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Matrix–Vector Form: Merge Sort
Recall:

M(2n) = 2M(n) + 2n − 1,

M(2n + 1) = M(n) + M(n + 1) + 2n.

Consider
v(n) :=

(
M(n) M(n + 1) n 1

)>
.

Then

v(2n) =


M(2n)

M(2n + 1)
2n
1

 =


2 0 2 −1
1 1 2 0
0 0 2 0
0 0 0 1

 v(n),

v(2n + 1) =


M(2n + 1)
M(2n + 2)

2n + 1
1

 =


1 1 2 0
0 2 2 1
0 0 2 1
0 0 0 1

 v(n)

.
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q-Regular Sequences

Vector-valued sequence v : N0 → CD with

v(qn + r) = Arv(n)

for all 0 ≤ r < q and n ≥ 0.

Constants:

q ≥ 2, D ≥ 1: integers;

A0, . . . , Aq−1: D × D-matrices.

First component of v : q-regular sequence (Allouche–Shallit 1992).
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Example: Esthetic Numbers

Fixed base q

A number n is q-esthetic, if adjacent digits in q-ary expansion
differ by exactly one, cf. De Koninck and Doyon

Examples

(20190227)10

is not 10-esthetic.
(21012323232)10 is 10-esthetic.
(21011233222)10 is not 10-esthetic.

Set x(n) := [n is esthetic].

For N →∞, determine number
∑

0≤n<N x(n) of esthetic
numbers up to N.
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Linear Representation

I0

1

2

3

q − 2

q − 1
0

1

2

3

q − 2

q − 1

1

0
2

1

3

2

q −
1

q −
2

Let n := (n`−1 . . . n0)q and xI(n) := [n is esthetic] =
[∃ path with label n0n1 . . . n`−1 from I to some final state].

xj(n) :=
[∃ path with label n0n1 . . . n`−1 from j to some final state].

E.g., x2(n) =

[n0 = 1]x1
(
n−n0
q

)
+ [n0 = 3]x3

(
n−n0
q

)
.
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Linear Representation (ctd.)

x2(n) = [n0 = 1]x1
(
n−n0
q

)
+ [n0 = 3]x3

(
n−n0
q

)
.

x2(qn + r) = [r = 1]x1(n) + [r = 3]x3(n).

xj(qn + r) =
∑

k arjkxk(n) for suitable constants arjk .

Set v(n) := (x0(n), . . . , xq−1(n), xI(n))>.

Then v(qn + r) = Arv(n) for suitable matrices A0, . . . , Aq−1.

Linear representation of a q-regular sequence.

Example for q = 4:

A0 =


0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

, A1 =


0 1 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 1 0 0 0

, A2 =


0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 1 0 0
0 0 1 0 0

, A3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 1 0

.
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Regular Sequences and Matrix Products
Vector-valued sequence v : N0 → CD with

v(qn + r) = Arv(n)

for all 0 ≤ r < q and n ≥ 0;

let x be the first component of v ; i.e. x(n) = uv(n) for
suitable row vector u.

Let n = (n`−1 . . . n0)q (q-ary representation).

Then

v(n) =

(`−1∏
j=0

Anj

)
v(0).

With w := v(0), we get

x(n) = u

(`−1∏
j=0

Anj

)
w .

Related to recognisable series (see Berstel and Reutenauer).
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Analysis of Regular Sequences

Theorem (Dumas 2013; H–Krenn 2020)

x(n): q-regular sequence, first component of v(n)

C := A0 + · · ·+ Aq−1

σ(C ): spectrum of C

R := limk→∞ sup{‖Ar1 . . .Ark‖1/k | 0 ≤ r1, . . . , rk < q}: Joint
spectral radius of A0, . . . , Aq−1

mC (λ): size of the largest Jordan block of C associated with λ

∑
0≤n<N

x(n) =
∑

λ∈σ(C)
|λ|>R

N logq λ
∑

0≤k<mC (λ)

(logN)k

k!
Φλk({logq N})

+ O
(
N logq R(logN)max{mC (λ) : |λ|=R})

as N →∞, where Φλk are suitable 1-periodic functions.
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Analysis of Regular Sequences: Fluctuations

For |λ| > R and 0 ≤ k < mC (λ):

Φλk is Hölder continuous

Pointwise convergence of the Fourier series

Φλk(u) =
∑
µ∈Z

ϕλkµ exp(2µπiu)

Fourier coefficients can be computed numerically (using a
functional equation for the corresponding Dirichlet series)
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Φλk is Hölder continuous

Pointwise convergence of the Fourier series

Φλk(u) =
∑
µ∈Z

ϕλkµ exp(2µπiu)

Fourier coefficients can be computed numerically (using a
functional equation for the corresponding Dirichlet series)

Clemens Heuberger University of Klagenfurt 13



Analysis of Regular Sequences: Fluctuations

For |λ| > R and 0 ≤ k < mC (λ):
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Analysis of Regular Sequences: Ingredients for the Proof

Ingredients for the proof:

Mellin–Perron summation: convergence issues

Existence of fluctuations and Hölder continuity (using linear
algebra and direct arguments); extending ideas by
Grabner–Thuswaldner

pseudo-Tauberian argument (extending ideas by
Flajolet–Grabner–Kirschenhofer–Prodinger–Tichy)

Computing Fourier coefficients extending ideas by
Grabner–Hwang. Implemented in SageMath.
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Mellin–Perron Summation Formula of Order 0

Dirichlet series

sequence (v(n))n≥1

V(s) =
∑

n≥1 n
−sv(n)

Mellin–Perron Summation Formula of Order 0

N−1∑
n=1

v(n) +
1

2
v(N) =

1

2πi

∫
<s=ϑ

V(s)Ns ds

s

Next steps:

find poles and calculate residues of V(s)
transform contour of integration

. . . seems to give asymptotic behaviour

. . . and possibly Fourier coefficients

. . . but convergence issues
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Functional Equation
v(qn + r) = Arv(n); Vn0(s) :=

∑
n≥n0

v(n)
ns .

Vqn0(s) =
∑
n≥qn0

v(n)

ns
=
∑

0≤r<q

∑
n≥n0

v(qn + r)

(qn + r)s

= q−s
∑

0≤r<q

Ar

∑
n≥n0

v(n)

ns
(
1 + r

qn

)s
= q−s

∑
0≤r<q

Ar

∑
n≥n0

v(n)

ns

∑
k≥0

(−s
k

)
rk

qknk

= q−s
∑
k≥0

(−s
k

) ∑
0≤r<q

rk

qk
ArVn0(s + k).

With C :=
∑

r Ar :

(I−q−sC )Vn0(s) =
∑

n0≤n<qn0

v(n)

ns
+
∑
k≥1

(−s
k

) ∑
0≤r<q

rk

qk
ArVn0(s+k)

Clemens Heuberger University of Klagenfurt 16



Functional Equation
v(qn + r) = Arv(n); Vn0(s) :=

∑
n≥n0

v(n)
ns .

Vqn0(s) =
∑
n≥qn0

v(n)

ns

=
∑

0≤r<q

∑
n≥n0

v(qn + r)

(qn + r)s

= q−s
∑

0≤r<q

Ar

∑
n≥n0

v(n)

ns
(
1 + r

qn

)s
= q−s

∑
0≤r<q

Ar

∑
n≥n0

v(n)

ns

∑
k≥0

(−s
k

)
rk

qknk

= q−s
∑
k≥0

(−s
k

) ∑
0≤r<q

rk

qk
ArVn0(s + k).

With C :=
∑

r Ar :

(I−q−sC )Vn0(s) =
∑

n0≤n<qn0

v(n)

ns
+
∑
k≥1

(−s
k

) ∑
0≤r<q

rk

qk
ArVn0(s+k)

Clemens Heuberger University of Klagenfurt 16



Functional Equation
v(qn + r) = Arv(n); Vn0(s) :=

∑
n≥n0

v(n)
ns .

Vqn0(s) =
∑
n≥qn0

v(n)

ns
=
∑

0≤r<q

∑
n≥n0

v(qn + r)

(qn + r)s

= q−s
∑

0≤r<q

Ar

∑
n≥n0

v(n)

ns
(
1 + r

qn

)s
= q−s

∑
0≤r<q

Ar

∑
n≥n0

v(n)

ns

∑
k≥0

(−s
k

)
rk

qknk

= q−s
∑
k≥0

(−s
k

) ∑
0≤r<q

rk

qk
ArVn0(s + k).

With C :=
∑

r Ar :

(I−q−sC )Vn0(s) =
∑

n0≤n<qn0

v(n)

ns
+
∑
k≥1

(−s
k

) ∑
0≤r<q

rk

qk
ArVn0(s+k)

Clemens Heuberger University of Klagenfurt 16



Functional Equation
v(qn + r) = Arv(n); Vn0(s) :=

∑
n≥n0

v(n)
ns .

Vqn0(s) =
∑
n≥qn0

v(n)

ns
=
∑

0≤r<q

∑
n≥n0

v(qn + r)

(qn + r)s

= q−s
∑

0≤r<q

Ar

∑
n≥n0

v(n)

ns
(
1 + r

qn

)s

= q−s
∑

0≤r<q

Ar

∑
n≥n0

v(n)

ns

∑
k≥0

(−s
k

)
rk

qknk

= q−s
∑
k≥0

(−s
k

) ∑
0≤r<q

rk

qk
ArVn0(s + k).

With C :=
∑

r Ar :

(I−q−sC )Vn0(s) =
∑

n0≤n<qn0

v(n)

ns
+
∑
k≥1

(−s
k

) ∑
0≤r<q

rk

qk
ArVn0(s+k)

Clemens Heuberger University of Klagenfurt 16



Functional Equation
v(qn + r) = Arv(n); Vn0(s) :=

∑
n≥n0

v(n)
ns .

Vqn0(s) =
∑
n≥qn0

v(n)

ns
=
∑

0≤r<q

∑
n≥n0

v(qn + r)

(qn + r)s

= q−s
∑

0≤r<q

Ar

∑
n≥n0

v(n)

ns
(
1 + r

qn

)s
= q−s

∑
0≤r<q

Ar

∑
n≥n0

v(n)

ns

∑
k≥0

(−s
k

)
rk

qknk

= q−s
∑
k≥0

(−s
k

) ∑
0≤r<q

rk

qk
ArVn0(s + k).

With C :=
∑

r Ar :

(I−q−sC )Vn0(s) =
∑

n0≤n<qn0

v(n)

ns
+
∑
k≥1

(−s
k

) ∑
0≤r<q

rk

qk
ArVn0(s+k)

Clemens Heuberger University of Klagenfurt 16



Functional Equation
v(qn + r) = Arv(n); Vn0(s) :=

∑
n≥n0

v(n)
ns .

Vqn0(s) =
∑
n≥qn0

v(n)

ns
=
∑

0≤r<q

∑
n≥n0

v(qn + r)

(qn + r)s

= q−s
∑

0≤r<q

Ar

∑
n≥n0

v(n)

ns
(
1 + r

qn

)s
= q−s

∑
0≤r<q

Ar

∑
n≥n0

v(n)

ns

∑
k≥0

(−s
k

)
rk

qknk

= q−s
∑
k≥0

(−s
k

) ∑
0≤r<q

rk

qk
ArVn0(s + k).

With C :=
∑

r Ar :

(I−q−sC )Vn0(s) =
∑

n0≤n<qn0

v(n)

ns
+
∑
k≥1

(−s
k

) ∑
0≤r<q

rk

qk
ArVn0(s+k)

Clemens Heuberger University of Klagenfurt 16



Functional Equation
v(qn + r) = Arv(n); Vn0(s) :=

∑
n≥n0

v(n)
ns .

Vqn0(s) =
∑
n≥qn0

v(n)

ns
=
∑

0≤r<q

∑
n≥n0

v(qn + r)

(qn + r)s

= q−s
∑

0≤r<q

Ar

∑
n≥n0

v(n)

ns
(
1 + r

qn

)s
= q−s

∑
0≤r<q

Ar

∑
n≥n0

v(n)

ns

∑
k≥0

(−s
k

)
rk

qknk

= q−s
∑
k≥0

(−s
k

) ∑
0≤r<q

rk

qk
ArVn0(s + k).

With C :=
∑

r Ar :

(I−q−sC )Vn0(s) =
∑

n0≤n<qn0

v(n)

ns
+
∑
k≥1

(−s
k

) ∑
0≤r<q

rk

qk
ArVn0(s+k)

Clemens Heuberger University of Klagenfurt 16



Functional Equation
v(qn + r) = Arv(n); Vn0(s) :=

∑
n≥n0

v(n)
ns .

Vqn0(s) =
∑
n≥qn0

v(n)

ns
=
∑

0≤r<q

∑
n≥n0

v(qn + r)

(qn + r)s

= q−s
∑

0≤r<q

Ar

∑
n≥n0

v(n)

ns
(
1 + r

qn

)s
= q−s

∑
0≤r<q

Ar

∑
n≥n0

v(n)

ns

∑
k≥0

(−s
k

)
rk

qknk

= q−s
∑
k≥0

(−s
k

) ∑
0≤r<q

rk

qk
ArVn0(s + k).

With C :=
∑

r Ar :

(I−q−sC )Vn0(s) =
∑

n0≤n<qn0

v(n)

ns
+
∑
k≥1

(−s
k

) ∑
0≤r<q

rk

qk
ArVn0(s+k)

Clemens Heuberger University of Klagenfurt 16



Mellin–Perron Summation Formula of Order 1
Dirichlet series

sequence (v(n))n≥1

V(s) =
∑

n≥1 n
−sv(n)

Mellin–Perron Summation Formula of Order 1

1

N

∑
1≤n<n′≤N

v(n) =
1

2πi

∫
<s=ϑ

V(s)
Ns

s(s + 1)
ds

= Nκ
∑
`∈Z

δ`
χ`(χ` + 1)

exp(2πi` logq N)

+
1

2πi

∫
<s=ϑ−1

V(s)
Ns

s(s + 1)
ds

Fourier coefficients

δ` = Residue
(
V(s), s = χ`

)
with χ` = κ+ 2πi`/ log q,
κ singularity of V corresponding to abscissa of convergence
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Pseudo-Tauberian Theorem

Theorem (H.–Krenn 2020)

Let

κ ∈ C, q > 1, m ∈ Z+, 0 < β < α;

Φ0, . . . , Φm−1 Hölder continuous 1-periodic functions with
exponent α

Then

∃ continuously differentiable 1-periodic functions Ψ−1, Ψ0,
. . . , Ψm−1 and a constant c such that

∑
1≤n<N

nκ
∑

j+k=m−1
0≤j<m

(log n)k

k!
Φj(logq n)

=

c + Nκ+1
∑

k+j=m−1
−1≤j<m

(logN)k

k!
Ψj(logq N) + O(N<κ+1−β)

for integers N →∞.
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Pseudo-Tauberian Theorem (ctd.)

Theorem (H.–Krenn 2020, ctd.)

Let

ϕj` :=
∫ 1
0 Φj(u) exp(−2`πiu) du: Fourier coefficients of Φj

ψj` :=
∫ 1
0 Ψj(u) exp(−2`πiu) du: Fourier coefficients of Ψj

Then the corresponding generating functions fulfil∑
0≤j<m

ϕj`Z
j =

(
κ+ 1 +

2`πi

log q
+ Z

) ∑
−1≤j<m

ψj`Z
j + O(Zm)

for ` ∈ Z and Z → 0.
If qκ+1 6= 1, then Ψ−1 vanishes.
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Esthetic Numbers—Result

Theorem (H–Krenn 2020)∑
0≤n<N

x(n) =
∑

j∈{1,2,...,d q−2
3
e}

N logq(2 cos(jπ/(q+1)))Φqj(2 logq2 N)

+ O
(
(logN)[q≡−1 (mod 3)]

)
with 2-periodic continuous functions Φqj .
If q is even, then the functions Φqj are actually 1-periodic.

4.75

5.00

9 10 11 12
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Transducer

Write labels from right to left (least significant to most significant
digit). Empty word: ε

0 1 2

0 | 0

1 | ε
0 | 01

1 | 01

0 | ε

1 | 0

27 = (0011011)2 = (

01001̄01̄

)2
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Transducer: Central Limit Theorem

Theorem (H–Kropf–Prodinger 2015)

Let T be complete, deterministic transducer with input alphabet
{0, 1, . . . , q − 1} and final period p. For fixed N, use
equidistribution on {0, 1, . . . ,N − 1}.

Then T (n) has the expected value

E(T (n)) = eT logq N + Ψ1(logq N) + o(1)

with eT ∈ R and a p-periodic, continuous function Ψ1.
If T is finally connected, then the variance is

Var(T (n)) = vT logq N + Ψ2(logq N) + o(1)

with vT ∈ R and a p-periodic, continuous function Ψ2.
If vT 6= 0, then T (n) is asymptotically normally distributed.

Also possible for higher dimensional input.
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Connectivity Properties of the Transducer

complete and deterministic

final component

finally connected

period = greatest common divisor
of all lengths of cycles

final period p = least common
multiple of the periods

finally aperiodic if p = 1

0 |? 1 |?

for q = 2
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Connectivity Properties of the Transducer

complete and deterministic

final component

finally connected

period = greatest common divisor
of all lengths of cycles

final period p = least common
multiple of the periods

finally aperiodic if p = 1
period: 1
period: 2
final period: p = 2
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Bounded Variance

Var(T (n)) = vT logq N + Ψ2(logq N) + o(1)

When is vT = 0?

Theorem (H–Kropf–Wagner 2015)

Let T be finally connected. Then the following assertions are
equivalent:

1 The constant vT of the variance is 0.

2 There is a constant k such that the average output of every
cycle in the final component is k.

3 Length and output sum are linearly dependent (up to O(1)).

Also possible for higher dimensional output (Kropf 2016).
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