

Prelude 1: Merge Sort

- Partition into two sets of (almost) equal size;
- Sort both parts individually \& recursively;
- Merge results.

Prelude 1: Merge Sort

- Partition into two sets of (almost) equal size;
- Sort both parts individually \& recursively;
- Merge results.

Number $M(n)$ of comparisons when sorting n elements:

$$
M(n)=M(\lceil n / 2\rceil)+M(\lfloor n / 2\rfloor)+n-1 .
$$

Prelude 1: Merge Sort

- Partition into two sets of (almost) equal size;
- Sort both parts individually \& recursively;
- Merge results.

Number $M(n)$ of comparisons when sorting n elements:

$$
M(n)=M(\lceil n / 2\rceil)+M(\lfloor n / 2\rfloor)+n-1 .
$$

In other words:

$$
\begin{aligned}
M(2 n) & =2 M(n)+2 n-1 \\
M(2 n+1) & =M(n)+M(n+1)+2 n .
\end{aligned}
$$

Prelude 2: Binary Sum of Digits

- Binary expansion $n=\sum_{j \geq 0} \varepsilon_{j} 2^{j}$
- Sum of digits $s(n)=\sum_{j \geq 0} \varepsilon_{j}$

Prelude 2: Binary Sum of Digits

- Binary expansion $n=\sum_{j \geq 0} \varepsilon_{j} 2^{j}$
- Sum of digits $s(n)=\sum_{j \geq 0} \varepsilon_{j}$

$$
s(n)=s(\lfloor n / 2\rfloor)+[n \text { is odd }] .
$$

Prelude 2: Binary Sum of Digits

- Binary expansion $n=\sum_{j \geq 0} \varepsilon_{j} 2^{j}$
- Sum of digits $s(n)=\sum_{j \geq 0} \varepsilon_{j}$

$$
s(n)=s(\lfloor n / 2\rfloor)+[n \text { is odd }] .
$$

In other words:

$$
\begin{aligned}
s(2 n) & =s(n), \\
s(2 n+1) & =s(n)+1
\end{aligned}
$$

Common Pattern

Recall:

$$
\begin{aligned}
M(2 n) & =2 M(n)+2 n-1, & s(2 n) & =s(n), \\
M(2 n+1) & =M(n)+M(n+1)+2 n, & s(2 n+1) & =s(n)+1 .
\end{aligned}
$$

Common Pattern:

Common Pattern

Recall:

$$
\begin{aligned}
M(2 n) & =2 M(n)+2 n-1, & s(2 n) & =s(n), \\
M(2 n+1) & =M(n)+M(n+1)+2 n, & s(2 n+1) & =s(n)+1 .
\end{aligned}
$$

Common Pattern:

- Sequence x

Common Pattern

Recall:

$$
\begin{aligned}
M(2 n) & =2 M(n)+2 n-1, & s(2 n) & =s(n), \\
M(2 n+1) & =M(n)+M(n+1)+2 n, & s(2 n+1) & =s(n)+1 .
\end{aligned}
$$

Common Pattern:

- Sequence x
- Recursively given: Express $x(2 n)$ and $x(2 n+1) \ldots$
- ... in terms of $x(n)$, possibly $x(n+1)$, known sequences

Matrix-Vector Form: Sum of Digits

Recall:

$$
\begin{aligned}
s(2 n) & =s(n), \\
s(2 n+1) & =s(n)+1
\end{aligned}
$$

Matrix-Vector Form: Sum of Digits

Recall:

$$
\begin{aligned}
s(2 n) & =s(n) \\
s(2 n+1) & =s(n)+1
\end{aligned}
$$

Consider

$$
v(n):=\binom{s(n)}{1}
$$

Matrix-Vector Form: Sum of Digits

Recall:

$$
\begin{aligned}
s(2 n) & =s(n), \\
s(2 n+1) & =s(n)+1
\end{aligned}
$$

Consider

$$
v(n):=\binom{s(n)}{1}
$$

Then

$$
v(2 n)=\binom{s(2 n)}{1}
$$

Matrix-Vector Form: Sum of Digits

Recall:

$$
\begin{aligned}
s(2 n) & =s(n) \\
s(2 n+1) & =s(n)+1
\end{aligned}
$$

Consider

$$
v(n):=\binom{s(n)}{1}
$$

Then

$$
v(2 n)=\binom{s(2 n)}{1}=\binom{s(n)}{1}
$$

Matrix-Vector Form: Sum of Digits

Recall:

$$
\begin{aligned}
s(2 n) & =s(n) \\
s(2 n+1) & =s(n)+1
\end{aligned}
$$

Consider

$$
v(n):=\binom{s(n)}{1}
$$

Then

$$
v(2 n)=\binom{s(2 n)}{1}=\binom{s(n)}{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) v(n)
$$

Matrix-Vector Form: Sum of Digits

Recall:

$$
\begin{aligned}
s(2 n) & =s(n) \\
s(2 n+1) & =s(n)+1
\end{aligned}
$$

Consider

$$
v(n):=\binom{s(n)}{1}
$$

Then

$$
\begin{gathered}
v(2 n)=\binom{s(2 n)}{1}=\binom{s(n)}{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) v(n), \\
v(2 n+1)=\binom{s(2 n+1)}{1}
\end{gathered}
$$

Matrix-Vector Form: Sum of Digits

Recall:

$$
\begin{aligned}
s(2 n) & =s(n) \\
s(2 n+1) & =s(n)+1
\end{aligned}
$$

Consider

$$
v(n):=\binom{s(n)}{1}
$$

Then

$$
\begin{gathered}
v(2 n)=\binom{s(2 n)}{1}=\binom{s(n)}{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) v(n), \\
v(2 n+1)=\binom{s(2 n+1)}{1}=\binom{s(n)+1}{1}
\end{gathered}
$$

Matrix-Vector Form: Sum of Digits

Recall:

$$
\begin{aligned}
s(2 n) & =s(n) \\
s(2 n+1) & =s(n)+1
\end{aligned}
$$

Consider

$$
v(n):=\binom{s(n)}{1}
$$

Then

$$
\begin{aligned}
v(2 n)=\binom{s(2 n)}{1}=\binom{s(n)}{1} & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) v(n), \\
v(2 n+1)=\left(\begin{array}{c}
s(2 n+1
\end{array}\right)=\binom{s(n)+1}{1} & =\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) v(n) .
\end{aligned}
$$

Matrix-Vector Form: Merge Sort

Recall:

$$
\begin{aligned}
M(2 n) & =2 M(n)+2 n-1 \\
M(2 n+1) & =M(n)+M(n+1)+2 n .
\end{aligned}
$$

Matrix-Vector Form: Merge Sort

Recall:

$$
\begin{aligned}
M(2 n) & =2 M(n)+2 n-1 \\
M(2 n+1) & =M(n)+M(n+1)+2 n .
\end{aligned}
$$

Consider

$$
v(n):=\left(\begin{array}{llll}
M(n) & M(n+1) & n & 1
\end{array}\right)^{\top} .
$$

Matrix-Vector Form: Merge Sort

Recall:

$$
\begin{aligned}
M(2 n) & =2 M(n)+2 n-1 \\
M(2 n+1) & =M(n)+M(n+1)+2 n
\end{aligned}
$$

Consider

$$
v(n):=\left(\begin{array}{llll}
M(n) & M(n+1) & n & 1
\end{array}\right)^{\top} .
$$

Then

$$
v(2 n)=\left(\begin{array}{c}
M(2 n) \\
M(2 n+1) \\
2 n \\
1
\end{array}\right)=\left(\begin{array}{cccc}
2 & 0 & 2 & -1 \\
1 & 1 & 2 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) v(n)
$$

Matrix-Vector Form: Merge Sort

Recall:

$$
\begin{aligned}
M(2 n) & =2 M(n)+2 n-1 \\
M(2 n+1) & =M(n)+M(n+1)+2 n
\end{aligned}
$$

Consider

$$
v(n):=\left(\begin{array}{llll}
M(n) & M(n+1) & n & 1
\end{array}\right)^{\top} .
$$

Then

$$
\begin{aligned}
& v(2 n)=\left(\begin{array}{c}
M(2 n) \\
M(2 n+1) \\
2 n \\
1
\end{array}\right)=\left(\begin{array}{cccc}
2 & 0 & 2 & -1 \\
1 & 1 & 2 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) v(n), \\
& v(2 n+1)=\left(\begin{array}{c}
M(2 n+1) \\
M(2 n+2) \\
2 n+1 \\
1
\end{array}\right)=\left(\begin{array}{llll}
1 & 1 & 2 & 0 \\
0 & 2 & 2 & 1 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) v(n) .
\end{aligned}
$$

q-Regular Sequences

Vector-valued sequence $v: \mathbb{N}_{0} \rightarrow \mathbb{C}^{D}$ with

$$
v(q n+r)=A_{r} v(n)
$$

for all $0 \leq r<q$ and $n \geq 0$.

q-Regular Sequences

Vector-valued sequence $v: \mathbb{N}_{0} \rightarrow \mathbb{C}^{D}$ with

$$
v(q n+r)=A_{r} v(n)
$$

for all $0 \leq r<q$ and $n \geq 0$.
Constants:

- $q \geq 2, D \geq 1$: integers;
- $A_{0}, \ldots, A_{q-1}: D \times D$-matrices.

q-Regular Sequences

Vector-valued sequence $v: \mathbb{N}_{0} \rightarrow \mathbb{C}^{D}$ with

$$
v(q n+r)=A_{r} v(n)
$$

for all $0 \leq r<q$ and $n \geq 0$.
Constants:

- $q \geq 2, D \geq 1$: integers;
- $A_{0}, \ldots, A_{q-1}: D \times D$-matrices.

First component of v : q-regular sequence (Allouche-Shallit 1992).

Example: Esthetic Numbers

- Fixed base q

Example: Esthetic Numbers

- Fixed base q
- A number n is q-esthetic, if adjacent digits in q-ary expansion differ by exactly one, cf. De Koninck and Doyon

Example: Esthetic Numbers

- Fixed base q
- A number n is q-esthetic, if adjacent digits in q-ary expansion differ by exactly one, cf. De Koninck and Doyon
- Examples

Example: Esthetic Numbers

- Fixed base q
- A number n is q-esthetic, if adjacent digits in q-ary expansion differ by exactly one, cf. De Koninck and Doyon
- Examples
- $(20190227)_{10}$

Example: Esthetic Numbers

- Fixed base q
- A number n is q-esthetic, if adjacent digits in q-ary expansion differ by exactly one, cf. De Koninck and Doyon
- Examples
- $(20190227)_{10}$ is not 10 -esthetic.

Example: Esthetic Numbers

- Fixed base q
- A number n is q-esthetic, if adjacent digits in q-ary expansion differ by exactly one, cf. De Koninck and Doyon
- Examples
- $(20190227)_{10}$ is not 10 -esthetic.
- $(21012323232)_{10}$

Example: Esthetic Numbers

- Fixed base q
- A number n is q-esthetic, if adjacent digits in q-ary expansion differ by exactly one, cf. De Koninck and Doyon
- Examples
- $(20190227)_{10}$ is not 10 -esthetic.
- (21012323232) ${ }_{10}$

Example: Esthetic Numbers

- Fixed base q
- A number n is q-esthetic, if adjacent digits in q-ary expansion differ by exactly one, cf. De Koninck and Doyon
- Examples
- $(20190227)_{10}$ is not 10 -esthetic.
- $(21012323232)_{10}$

Example: Esthetic Numbers

- Fixed base q
- A number n is q-esthetic, if adjacent digits in q-ary expansion differ by exactly one, cf. De Koninck and Doyon
- Examples
- $(20190227)_{10}$ is not 10 -esthetic.
- $(21012323232)_{10}$

Example: Esthetic Numbers

- Fixed base q
- A number n is q-esthetic, if adjacent digits in q-ary expansion differ by exactly one, cf. De Koninck and Doyon
- Examples
- $(20190227)_{10}$ is not 10 -esthetic.
- $(21012323232)_{10}$

Example: Esthetic Numbers

- Fixed base q
- A number n is q-esthetic, if adjacent digits in q-ary expansion differ by exactly one, cf. De Koninck and Doyon
- Examples
- $(20190227)_{10}$ is not 10 -esthetic.
- $(21012323232)_{10}$

Example: Esthetic Numbers

- Fixed base q
- A number n is q-esthetic, if adjacent digits in q-ary expansion differ by exactly one, cf. De Koninck and Doyon
- Examples
- $(20190227)_{10}$ is not 10 -esthetic.
- (21012323232) ${ }_{10}$

Example: Esthetic Numbers

- Fixed base q
- A number n is q-esthetic, if adjacent digits in q-ary expansion differ by exactly one, cf. De Koninck and Doyon
- Examples
- $(20190227)_{10}$ is not 10 -esthetic.
- $(21012323232)_{10}$

Example: Esthetic Numbers

- Fixed base q
- A number n is q-esthetic, if adjacent digits in q-ary expansion differ by exactly one, cf. De Koninck and Doyon
- Examples
- $(20190227)_{10}$ is not 10 -esthetic.
- $(21012323232)_{10}$

Example: Esthetic Numbers

- Fixed base q
- A number n is q-esthetic, if adjacent digits in q-ary expansion differ by exactly one, cf. De Koninck and Doyon
- Examples
- $(20190227)_{10}$ is not 10 -esthetic.
- $(21012323232)_{10}$

Example: Esthetic Numbers

- Fixed base q
- A number n is q-esthetic, if adjacent digits in q-ary expansion differ by exactly one, cf. De Koninck and Doyon
- Examples
- $(20190227)_{10}$ is not 10 -esthetic.
- $(21012323232)_{10}$ is 10 -esthetic.

Example: Esthetic Numbers

- Fixed base q
- A number n is q-esthetic, if adjacent digits in q-ary expansion differ by exactly one, cf. De Koninck and Doyon
- Examples
- $(20190227)_{10}$ is not 10 -esthetic.
- $(21012323232)_{10}$ is 10 -esthetic.
- $(21011233222)_{10}$

Example: Esthetic Numbers

- Fixed base q
- A number n is q-esthetic, if adjacent digits in q-ary expansion differ by exactly one, cf. De Koninck and Doyon
- Examples
- $(20190227)_{10}$ is not 10 -esthetic.
- $(21012323232)_{10}$ is 10 -esthetic.
- (21011233222) ${ }_{10}$ is not 10 -esthetic.

Example: Esthetic Numbers

- Fixed base q
- A number n is q-esthetic, if adjacent digits in q-ary expansion differ by exactly one, cf. De Koninck and Doyon
- Examples
- $(20190227)_{10}$ is not 10 -esthetic.
- $(21012323232)_{10}$ is 10 -esthetic.
- $(21011233222)_{10}$ is not 10-esthetic.
- Set $x(n):=[n$ is esthetic $]$.

Example: Esthetic Numbers

- Fixed base q
- A number n is q-esthetic, if adjacent digits in q-ary expansion differ by exactly one, cf. De Koninck and Doyon
- Examples
- $(20190227)_{10}$ is not 10 -esthetic.
- $(21012323232)_{10}$ is 10 -esthetic.
- $(21011233222)_{10}$ is not 10 -esthetic.
- Set $x(n):=[n$ is esthetic $]$.
- For $N \rightarrow \infty$, determine number $\sum_{0 \leq n<N} x(n)$ of esthetic numbers up to N.

Linear Representation

Linear Representation

- Let $n:=\left(n_{\ell-1} \ldots n_{0}\right)_{q}$ and $x_{\mathcal{I}}(n):=[n$ is esthetic $]=$ [\exists path with label $n_{0} n_{1} \ldots n_{\ell-1}$ from \mathcal{I} to some final state].

Linear Representation

- Let $n:=\left(n_{\ell-1} \ldots n_{0}\right)_{q}$ and $x_{\mathcal{I}}(n):=[n$ is esthetic $]=$ [\exists path with label $n_{0} n_{1} \ldots n_{\ell-1}$ from \mathcal{I} to some final state].
- $x_{j}(n):=$ [\exists path with label $n_{0} n_{1} \ldots n_{\ell-1}$ from j to some final state].
- E.g., $x_{2}(n)=$

Linear Representation

- Let $n:=\left(n_{\ell-1} \ldots n_{0}\right)_{q}$ and $x_{\mathcal{I}}(n):=[n$ is esthetic $]=$ [\exists path with label $n_{0} n_{1} \ldots n_{\ell-1}$ from \mathcal{I} to some final state].
- $x_{j}(n):=$ [\exists path with label $n_{0} n_{1} \ldots n_{\ell-1}$ from j to some final state].
- E.g., $x_{2}(n)=\left[n_{0}=1\right] x_{1}\left(\frac{n-n_{0}}{q}\right)+\left[n_{0}=3\right] x_{3}\left(\frac{n-n_{0}}{q}\right)$.

Linear Representation

- Let $n:=\left(n_{\ell-1} \ldots n_{0}\right)_{q}$ and $x_{\mathcal{I}}(n):=[n$ is esthetic $]=$ [\exists path with label $n_{0} n_{1} \ldots n_{\ell-1}$ from \mathcal{I} to some final state].
- $x_{j}(n):=$ [\exists path with label $n_{0} n_{1} \ldots n_{\ell-1}$ from j to some final state].
- E.g., $x_{2}(n)=\left[n_{0}=1\right] x_{1}\left(\frac{n-n_{0}}{q}\right)+\left[n_{0}=3\right] x_{3}\left(\frac{n-n_{0}}{q}\right)$.

Linear Representation (ctd.)

$$
\text { - } x_{2}(n)=\left[n_{0}=1\right] x_{1}\left(\frac{n-n_{0}}{q}\right)+\left[n_{0}=3\right] \times_{3}\left(\frac{n-n_{0}}{q}\right) \text {. }
$$

Linear Representation (ctd.)

$$
\begin{aligned}
& \text { - } x_{2}(n)=\left[n_{0}=1\right] x_{1}\left(\frac{n-n_{0}}{q}\right)+\left[n_{0}=3\right] x_{3}\left(\frac{n-n_{0}}{q}\right) . \\
& \text { - } x_{2}(q n+r)=[r=1] x_{1}(n)+[r=3] x_{3}(n) .
\end{aligned}
$$

Linear Representation (ctd.)

- $x_{2}(n)=\left[n_{0}=1\right] x_{1}\left(\frac{n-n_{0}}{q}\right)+\left[n_{0}=3\right] x_{3}\left(\frac{n-n_{0}}{q}\right)$.
- $x_{2}(q n+r)=[r=1] x_{1}(n)+[r=3] x_{3}(n)$.
- $x_{j}(q n+r)=\sum_{k} a_{r j k} x_{k}(n)$ for suitable constants $a_{r j k}$.

Linear Representation (ctd.)

- $x_{2}(n)=\left[n_{0}=1\right] x_{1}\left(\frac{n-n_{0}}{q}\right)+\left[n_{0}=3\right] x_{3}\left(\frac{n-n_{0}}{q}\right)$.
- $x_{2}(q n+r)=[r=1] x_{1}(n)+[r=3] x_{3}(n)$.
- $x_{j}(q n+r)=\sum_{k} a_{r j k} x_{k}(n)$ for suitable constants $a_{r j k}$.
- Set $v(n):=\left(x_{0}(n), \ldots, x_{q-1}(n), x_{\mathcal{I}}(n)\right)^{\top}$.

Linear Representation (ctd.)

- $x_{2}(n)=\left[n_{0}=1\right] x_{1}\left(\frac{n-n_{0}}{q}\right)+\left[n_{0}=3\right] x_{3}\left(\frac{n-n_{0}}{q}\right)$.
- $x_{2}(q n+r)=[r=1] x_{1}(n)+[r=3] x_{3}(n)$.
- $x_{j}(q n+r)=\sum_{k} a_{r j k} x_{k}(n)$ for suitable constants $a_{r j k}$.
- Set $v(n):=\left(x_{0}(n), \ldots, x_{q-1}(n), x_{\mathcal{I}}(n)\right)^{\top}$.
- Then $v(q n+r)=A_{r} v(n)$ for suitable matrices A_{0}, \ldots, A_{q-1}.

Linear Representation (ctd.)

- $x_{2}(n)=\left[n_{0}=1\right] x_{1}\left(\frac{n-n_{0}}{q}\right)+\left[n_{0}=3\right] x_{3}\left(\frac{n-n_{0}}{q}\right)$.
- $x_{2}(q n+r)=[r=1] x_{1}(n)+[r=3] x_{3}(n)$.
- $x_{j}(q n+r)=\sum_{k} a_{r j k} x_{k}(n)$ for suitable constants $a_{r j k}$.
- Set $v(n):=\left(x_{0}(n), \ldots, x_{q-1}(n), x_{\mathcal{I}}(n)\right)^{\top}$.
- Then $v(q n+r)=A_{r} v(n)$ for suitable matrices A_{0}, \ldots, A_{q-1}.
- Linear representation of a q-regular sequence.

Linear Representation (ctd.)

- $x_{2}(n)=\left[n_{0}=1\right] x_{1}\left(\frac{n-n_{0}}{q}\right)+\left[n_{0}=3\right] x_{3}\left(\frac{n-n_{0}}{q}\right)$.
- $x_{2}(q n+r)=[r=1] x_{1}(n)+[r=3] x_{3}(n)$.
- $x_{j}(q n+r)=\sum_{k} a_{r j k} x_{k}(n)$ for suitable constants $a_{r j k}$.
- Set $v(n):=\left(x_{0}(n), \ldots, x_{q-1}(n), x_{\mathcal{I}}(n)\right)^{\top}$.
- Then $v(q n+r)=A_{r} v(n)$ for suitable matrices A_{0}, \ldots, A_{q-1}.
- Linear representation of a q-regular sequence.
- Example for $q=4$:

$$
\boldsymbol{A}_{0}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right), A_{1}=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right), A_{2}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right), A_{3}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \cdot
$$

Regular Sequences and Matrix Products

- Vector-valued sequence $v: \mathbb{N}_{0} \rightarrow \mathbb{C}^{D}$ with

$$
v(q n+r)=A_{r} v(n)
$$

for all $0 \leq r<q$ and $n \geq 0$;

- let x be the first component of v; i.e. $x(n)=u v(n)$ for suitable row vector u.

Regular Sequences and Matrix Products

- Vector-valued sequence $v: \mathbb{N}_{0} \rightarrow \mathbb{C}^{D}$ with

$$
v(q n+r)=A_{r} v(n)
$$

for all $0 \leq r<q$ and $n \geq 0$;

- let x be the first component of v; i.e. $x(n)=u v(n)$ for suitable row vector u.
- Let $n=\left(n_{\ell-1} \ldots n_{0}\right)_{q}$ (q-ary representation).
- Then

$$
v(n)=\left(\prod_{j=0}^{\ell-1} A_{n_{j}}\right) v(0)
$$

Regular Sequences and Matrix Products

- Vector-valued sequence $v: \mathbb{N}_{0} \rightarrow \mathbb{C}^{D}$ with

$$
v(q n+r)=A_{r} v(n)
$$

for all $0 \leq r<q$ and $n \geq 0$;

- let x be the first component of v; i.e. $x(n)=u v(n)$ for suitable row vector u.
- Let $n=\left(n_{\ell-1} \ldots n_{0}\right)_{q}$ (q-ary representation).
- Then

$$
v(n)=\left(\prod_{j=0}^{\ell-1} A_{n_{j}}\right) v(0)
$$

- With $w:=v(0)$, we get

$$
x(n)=u\left(\prod_{j=0}^{\ell-1} A_{n_{j}}\right) w
$$

Regular Sequences and Matrix Products

- Vector-valued sequence $v: \mathbb{N}_{0} \rightarrow \mathbb{C}^{D}$ with

$$
v(q n+r)=A_{r} v(n)
$$

for all $0 \leq r<q$ and $n \geq 0$;

- let x be the first component of v; i.e. $x(n)=u v(n)$ for suitable row vector u.
- Let $n=\left(n_{\ell-1} \ldots n_{0}\right)_{q}$ (q-ary representation).
- Then

$$
v(n)=\left(\prod_{j=0}^{\ell-1} A_{n_{j}}\right) v(0)
$$

- With $w:=v(0)$, we get

$$
x(n)=u\left(\prod_{j=0}^{\ell-1} A_{n_{j}}\right) w
$$

- Related to recognisable series (see Berstel and Reutenauer).

Analysis of Regular Sequences

Theorem (Dumas 2013; H-Krenn 2020)

- $x(n)$: q-regular sequence, first component of $v(n)$

$$
\begin{aligned}
& \sum_{0 \leq n<N} x(n)=\sum_{\substack{\lambda \in \sigma(C) \\
|\lambda|>R}} N^{\log _{q} \lambda} \sum_{0 \leq k<m_{C}(\lambda)} \frac{(\log N)^{k}}{k!} \Phi_{\lambda k}\left(\left\{\log _{q} N\right\}\right) \\
&+O\left(N^{\log _{q} R}(\log N)^{\max \left\{m_{C}(\lambda):|\lambda|=R\right\}}\right)
\end{aligned}
$$

as $N \rightarrow \infty$, where $\Phi_{\lambda k}$ are suitable 1-periodic functions.

Analysis of Regular Sequences

Theorem (Dumas 2013; H-Krenn 2020)

- $x(n)$: q-regular sequence, first component of $v(n)$
- $C:=A_{0}+\cdots+A_{q-1}$
- $\sigma(C)$: spectrum of C

$$
\begin{aligned}
& \sum_{0 \leq n<N} x(n)=\sum_{\substack{\lambda \in \sigma(C) \\
|\lambda|>R}} N^{\log _{q} \lambda} \sum_{0 \leq k<m_{C}(\lambda)} \frac{(\log N)^{k}}{k!} \Phi_{\lambda k}\left(\left\{\log _{q} N\right\}\right) \\
&+O\left(N^{\log _{q} R}(\log N)^{\max \left\{m_{C}(\lambda):|\lambda|=R\right\}}\right)
\end{aligned}
$$

as $N \rightarrow \infty$, where $\Phi_{\lambda k}$ are suitable 1-periodic functions.

Analysis of Regular Sequences

Theorem (Dumas 2013; H-Krenn 2020)

- $x(n)$: q-regular sequence, first component of $v(n)$
- $C:=A_{0}+\cdots+A_{q-1}$
- $\sigma(C)$: spectrum of C
- $R:=\lim _{k \rightarrow \infty} \sup \left\{\left\|A_{r_{1}} \ldots A_{r_{k}}\right\|^{1 / k} \mid 0 \leq r_{1}, \ldots, r_{k}<q\right\}$: Joint spectral radius of A_{0}, \ldots, A_{q-1}

$$
\begin{aligned}
& \sum_{0 \leq n<N} x(n)=\sum_{\substack{\lambda \in \sigma(C) \\
|\lambda|>R}} N^{\log _{q} \lambda} \sum_{0 \leq k<m_{C}(\lambda)} \frac{(\log N)^{k}}{k!} \Phi_{\lambda k}\left(\left\{\log _{q} N\right\}\right) \\
&+O\left(N^{\log _{q} R}(\log N)^{\max \left\{m_{C}(\lambda):|\lambda|=R\right\}}\right)
\end{aligned}
$$

as $N \rightarrow \infty$, where $\Phi_{\lambda k}$ are suitable 1-periodic functions.

Analysis of Regular Sequences

Theorem (Dumas 2013; H-Krenn 2020)

- $x(n)$: q-regular sequence, first component of $v(n)$
- $C:=A_{0}+\cdots+A_{q-1}$
- $\sigma(C)$: spectrum of C
- $R:=\lim _{k \rightarrow \infty} \sup \left\{\left\|A_{r_{1}} \ldots A_{r_{k}}\right\|^{1 / k} \mid 0 \leq r_{1}, \ldots, r_{k}<q\right\}$: Joint spectral radius of A_{0}, \ldots, A_{q-1}
- $m_{C}(\lambda)$: size of the largest Jordan block of C associated with λ

$$
\begin{aligned}
& \sum_{0 \leq n<N} x(n)=\sum_{\substack{\lambda \in \sigma(C) \\
|\lambda|>R}} N^{\log _{q} \lambda} \sum_{0 \leq k<m_{C}(\lambda)} \frac{(\log N)^{k}}{k!} \Phi_{\lambda k}\left(\left\{\log _{q} N\right\}\right) \\
&+O\left(N^{\log _{q} R}(\log N)^{\max \left\{m_{C}(\lambda):|\lambda|=R\right\}}\right)
\end{aligned}
$$

as $N \rightarrow \infty$, where $\Phi_{\lambda k}$ are suitable 1-periodic functions.

Analysis of Regular Sequences: Fluctuations

For $|\lambda|>R$ and $0 \leq k<m_{C}(\lambda)$:

Analysis of Regular Sequences: Fluctuations

For $|\lambda|>R$ and $0 \leq k<m_{C}(\lambda)$:

- $\Phi_{\lambda k}$ is Hölder continuous

Analysis of Regular Sequences: Fluctuations

For $|\lambda|>R$ and $0 \leq k<m_{C}(\lambda)$:

- $\Phi_{\lambda k}$ is Hölder continuous
- Pointwise convergence of the Fourier series

$$
\Phi_{\lambda k}(u)=\sum_{\mu \in \mathbb{Z}} \varphi_{\lambda k \mu} \exp (2 \mu \pi i u)
$$

Analysis of Regular Sequences: Fluctuations

For $|\lambda|>R$ and $0 \leq k<m_{C}(\lambda)$:

- $\Phi_{\lambda k}$ is Hölder continuous
- Pointwise convergence of the Fourier series

$$
\Phi_{\lambda k}(u)=\sum_{\mu \in \mathbb{Z}} \varphi_{\lambda k \mu} \exp (2 \mu \pi i u)
$$

- Fourier coefficients can be computed numerically (using a functional equation for the corresponding Dirichlet series)

Analysis of Regular Sequences: Ingredients for the Proof

Ingredients for the proof:

Analysis of Regular Sequences: Ingredients for the Proof

Ingredients for the proof:

- Mellin-Perron summation: convergence issues

Analysis of Regular Sequences: Ingredients for the Proof

Ingredients for the proof:

- Mellin-Perron summation: convergence issues
- Existence of fluctuations and Hölder continuity (using linear algebra and direct arguments); extending ideas by Grabner-Thuswaldner

Analysis of Regular Sequences: Ingredients for the Proof

Ingredients for the proof:

- Mellin-Perron summation: convergence issues
- Existence of fluctuations and Hölder continuity (using linear algebra and direct arguments); extending ideas by Grabner-Thuswaldner
- pseudo-Tauberian argument (extending ideas by Flajolet-Grabner-Kirschenhofer-Prodinger-Tichy)

Analysis of Regular Sequences: Ingredients for the Proof

Ingredients for the proof:

- Mellin-Perron summation: convergence issues
- Existence of fluctuations and Hölder continuity (using linear algebra and direct arguments); extending ideas by Grabner-Thuswaldner
- pseudo-Tauberian argument (extending ideas by Flajolet-Grabner-Kirschenhofer-Prodinger-Tichy)
- Computing Fourier coefficients extending ideas by Grabner-Hwang. Implemented in SageMath.

Mellin-Perron Summation Formula of Order 0

- Dirichlet series
- sequence $(v(n))_{n \geq 1}$
- $\mathcal{V}(s)=\sum_{n \geq 1} n^{-\bar{s}} v(n)$

Mellin-Perron Summation Formula of Order 0

- Dirichlet series
- sequence $(v(n))_{n \geq 1}$
- $\mathcal{V}(s)=\sum_{n \geq 1} n^{-s} v(n)$

Mellin-Perron Summation Formula of Order 0

$$
\sum_{n=1}^{N-1} v(n)+\frac{1}{2} v(N)=\frac{1}{2 \pi i} \int_{\Re s=\vartheta} \mathcal{V}(s) N^{s} \frac{d s}{s}
$$

Mellin-Perron Summation Formula of Order 0

- Dirichlet series
- sequence $(v(n))_{n \geq 1}$
- $\mathcal{V}(s)=\sum_{n \geq 1} n^{-s} v(n)$

Mellin-Perron Summation Formula of Order 0

$$
\sum_{n=1}^{N-1} v(n)+\frac{1}{2} v(N)=\frac{1}{2 \pi i} \int_{\Re s=\vartheta} \mathcal{V}(s) N^{s} \frac{d s}{s}
$$

- Next steps:
- find poles and calculate residues of $\mathcal{V}(s)$
- transform contour of integration

Mellin-Perron Summation Formula of Order 0

- Dirichlet series
- sequence $(v(n))_{n \geq 1}$
- $\mathcal{V}(s)=\sum_{n \geq 1} n^{-s} v(n)$

Mellin-Perron Summation Formula of Order 0

$$
\sum_{n=1}^{N-1} v(n)+\frac{1}{2} v(N)=\frac{1}{2 \pi i} \int_{\Re s=\vartheta} \mathcal{V}(s) N^{s} \frac{\mathrm{~d} s}{s}
$$

- Next steps:
- find poles and calculate residues of $\mathcal{V}(s)$
- transform contour of integration
- ...seems to give asymptotic behaviour
... and possibly Fourier coefficients

Mellin-Perron Summation Formula of Order 0

- Dirichlet series
- sequence $(v(n))_{n \geq 1}$
- $\mathcal{V}(s)=\sum_{n \geq 1} n^{-s} v(n)$

Mellin-Perron Summation Formula of Order 0

$$
\sum_{n=1}^{N-1} v(n)+\frac{1}{2} v(N)=\frac{1}{2 \pi i} \int_{\Re s=\vartheta} \mathcal{V}(s) N^{s} \frac{\mathrm{~d} s}{s}
$$

- Next steps:
- find poles and calculate residues of $\mathcal{V}(s)$
- transform contour of integration
- ... seems to give asymptotic behaviour
... and possibly Fourier coefficients
- ... but convergence issues

Functional Equation

- $v(q n+r)=A_{r} v(n) ; \mathcal{V}_{n_{0}}(s):=\sum_{n \geq n_{0}} \frac{v(n)}{n^{s}}$.

Functional Equation

- $v(q n+r)=A_{r} v(n) ; \mathcal{V}_{n_{0}}(s):=\sum_{n \geq n_{0}} \frac{v(n)}{n^{s}}$.

$$
\mathcal{V}_{q n_{0}}(s)=\sum_{n \geq q n_{0}} \frac{v(n)}{n^{s}}
$$

Functional Equation

- $v(q n+r)=A_{r} v(n) ; \mathcal{V}_{n_{0}}(s):=\sum_{n \geq n_{0}} \frac{v(n)}{n^{s}}$.

$$
\mathcal{V}_{q n_{0}}(s)=\sum_{n \geq q n_{0}} \frac{v(n)}{n^{s}}=\sum_{0 \leq r<q} \sum_{n \geq n_{0}} \frac{v(q n+r)}{(q n+r)^{s}}
$$

Functional Equation

- $v(q n+r)=A_{r} v(n) ; \mathcal{V}_{n_{0}}(s):=\sum_{n \geq n_{0}} \frac{v(n)}{n^{s}}$.

$$
\begin{aligned}
\mathcal{V}_{q n_{0}}(s) & =\sum_{n \geq q n_{0}} \frac{v(n)}{n^{s}}=\sum_{0 \leq r<q} \sum_{n \geq n_{0}} \frac{v(q n+r)}{(q n+r)^{s}} \\
& =q^{-s} \sum_{0 \leq r<q} A_{r} \sum_{n \geq n_{0}} \frac{v(n)}{n^{s}\left(1+\frac{r}{q n}\right)^{s}}
\end{aligned}
$$

Functional Equation

- $v(q n+r)=A_{r} v(n) ; \mathcal{V}_{n_{0}}(s):=\sum_{n \geq n_{0}} \frac{v(n)}{n^{s}}$.

$$
\begin{aligned}
\mathcal{V}_{q n_{0}}(s) & =\sum_{n \geq q n_{0}} \frac{v(n)}{n^{s}}=\sum_{0 \leq r<q} \sum_{n \geq n_{0}} \frac{v(q n+r)}{(q n+r)^{s}} \\
& =q^{-s} \sum_{0 \leq r<q} A_{r} \sum_{n \geq n_{0}} \frac{v(n)}{n^{s}\left(1+\frac{r}{q n}\right)^{s}} \\
& =q^{-s} \sum_{0 \leq r<q} A_{r} \sum_{n \geq n_{0}} \frac{v(n)}{n^{s}} \sum_{k \geq 0}\binom{-s}{k} \frac{r^{k}}{q^{k} n^{k}}
\end{aligned}
$$

Functional Equation

- $v(q n+r)=A_{r} v(n) ; \mathcal{V}_{n_{0}}(s):=\sum_{n \geq n_{0}} \frac{v(n)}{n^{s}}$.

$$
\begin{aligned}
\mathcal{V}_{q n_{0}}(s) & =\sum_{n \geq q n_{0}} \frac{v(n)}{n^{s}}=\sum_{0 \leq r<q} \sum_{n \geq n_{0}} \frac{v(q n+r)}{(q n+r)^{s}} \\
& =q^{-s} \sum_{0 \leq r<q} A_{r} \sum_{n \geq n_{0}} \frac{v(n)}{n^{s}\left(1+\frac{r}{q n}\right)^{s}} \\
& =q^{-s} \sum_{0 \leq r<q} A_{r} \sum_{n \geq n_{0}} \frac{v(n)}{n^{s}} \sum_{k \geq 0}\binom{-s}{k} \frac{r^{k}}{q^{k} n^{k}} \\
& =q^{-s} \sum_{k \geq 0}\binom{-s}{k} \sum_{0 \leq r<q} \frac{r^{k}}{q^{k}} A_{r} \mathcal{V}_{n_{0}}(s+k)
\end{aligned}
$$

Functional Equation

- $v(q n+r)=A_{r} v(n) ; \mathcal{V}_{n_{0}}(s):=\sum_{n \geq n_{0}} \frac{v(n)}{n^{s}}$.

$$
\begin{aligned}
\mathcal{V}_{q n_{0}}(s) & =\sum_{n \geq q n_{0}} \frac{v(n)}{n^{s}}=\sum_{0 \leq r<q} \sum_{n \geq n_{0}} \frac{v(q n+r)}{(q n+r)^{s}} \\
& =q^{-s} \sum_{0 \leq r<q} A_{r} \sum_{n \geq n_{0}} \frac{v(n)}{n^{s}\left(1+\frac{r}{q n}\right)^{s}} \\
& =q^{-s} \sum_{0 \leq r<q} A_{r} \sum_{n \geq n_{0}} \frac{v(n)}{n^{s}} \sum_{k \geq 0}\binom{-s}{k} \frac{r^{k}}{q^{k} n^{k}} \\
& =q^{-s} \sum_{k \geq 0}\binom{-s}{k} \sum_{0 \leq r<q} \frac{r^{k}}{q^{k}} A_{r} \mathcal{V}_{n_{0}}(s+k)
\end{aligned}
$$

- With $C:=\sum_{r} A_{r}$:

Functional Equation

- $v(q n+r)=A_{r} v(n) ; \mathcal{V}_{n_{0}}(s):=\sum_{n \geq n_{0}} \frac{v(n)}{n^{s}}$.
-

$$
\begin{aligned}
\mathcal{V}_{q n_{0}}(s) & =\sum_{n \geq q n_{0}} \frac{v(n)}{n^{s}}=\sum_{0 \leq r<q} \sum_{n \geq n_{0}} \frac{v(q n+r)}{(q n+r)^{s}} \\
& =q^{-s} \sum_{0 \leq r<q} A_{r} \sum_{n \geq n_{0}} \frac{v(n)}{n^{s}\left(1+\frac{r}{q n}\right)^{s}} \\
& =q^{-s} \sum_{0 \leq r<q} A_{r} \sum_{n \geq n_{0}} \frac{v(n)}{n^{s}} \sum_{k \geq 0}\binom{-s}{k} \frac{r^{k}}{q^{k} n^{k}} \\
& =q^{-s} \sum_{k \geq 0}\binom{-s}{k} \sum_{0 \leq r<q} \frac{r^{k}}{q^{k}} A_{r} \mathcal{V}_{n_{0}}(s+k)
\end{aligned}
$$

- With $C:=\sum_{r} A_{r}$:

$$
\left(I-q^{-s} C\right) \mathcal{V}_{n_{0}}(s)=\sum_{n_{0} \leq n<q n_{0}} \frac{v(n)}{n^{s}}+\sum_{k \geq 1}\binom{-s}{k} \sum_{0 \leq r<q} \frac{r^{k}}{q^{k}} A_{r} \mathcal{V}_{n_{0}}(s+k)
$$

Mellin-Perron Summation Formula of Order 1

- Dirichlet series
- sequence $(v(n))_{n \geq 1}$
- $\mathcal{V}(s)=\sum_{n \geq 1} n^{-s} v(n)$

Mellin-Perron Summation Formula of Order 1

- Dirichlet series
- sequence $(v(n))_{n \geq 1}$
- $\mathcal{V}(s)=\sum_{n \geq 1} n^{-s} v(n)$

Mellin-Perron Summation Formula of Order 1

$$
\frac{1}{N} \sum_{1 \leq n<n^{\prime} \leq N} v(n)=\frac{1}{2 \pi i} \int_{\Re s=\vartheta} \mathcal{V}(s) \frac{N^{s}}{s(s+1)} d s
$$

Mellin-Perron Summation Formula of Order 1

- Dirichlet series
- sequence $(v(n))_{n \geq 1}$
- $\mathcal{V}(s)=\sum_{n \geq 1} n^{-s} v(n)$

Mellin-Perron Summation Formula of Order 1

$$
\begin{aligned}
\frac{1}{N} \sum_{1 \leq n<n^{\prime} \leq N} v(n)= & \frac{1}{2 \pi i} \int_{\Re s=\vartheta} \mathcal{V}(s) \frac{N^{s}}{s(s+1)} d s \\
= & N^{\kappa} \sum_{\ell \in \mathbb{Z}} \frac{\delta_{\ell}}{\chi_{\ell}\left(\chi_{\ell}+1\right)} \exp \left(2 \pi i \ell \log _{q} N\right) \\
& +\frac{1}{2 \pi i} \int_{\Re s=\vartheta-1} \mathcal{V}(s) \frac{N^{s}}{s(s+1)} \mathrm{d} s
\end{aligned}
$$

Mellin-Perron Summation Formula of Order 1

- Dirichlet series
- sequence $(v(n))_{n \geq 1}$
- $\mathcal{V}(s)=\sum_{n \geq 1} n^{-s} v(n)$

Mellin-Perron Summation Formula of Order 1

$$
\begin{aligned}
\frac{1}{N} \sum_{1 \leq n<n^{\prime} \leq N} v(n)= & \frac{1}{2 \pi i} \int_{\Re s=\vartheta} \mathcal{V}(s) \frac{N^{s}}{s(s+1)} d s \\
= & N^{\kappa} \sum_{\ell \in \mathbb{Z}} \frac{\delta_{\ell}}{\chi \ell\left(\chi_{\ell}+1\right)} \exp \left(2 \pi i \ell \log _{q} N\right) \\
& +\frac{1}{2 \pi i} \int_{\Re s=\vartheta-1} \mathcal{V}(s) \frac{N^{s}}{s(s+1)} \mathrm{d} s
\end{aligned}
$$

- Fourier coefficients
- $\delta_{\ell}=\operatorname{Residue}\left(\mathcal{V}(s), s=\chi_{\ell}\right)$
- with $\chi_{\ell}=\kappa+2 \pi i \ell / \log q$,
- κ singularity of \mathcal{V} corresponding to abscissa of convergence

Pseudo-Tauberian Theorem

Theorem (H.-Krenn 2020)

Let

- $\kappa \in \mathbb{C}, \quad q>1, \quad m \in \mathbb{Z}_{+}, \quad 0<\beta<\alpha$;
- $\Phi_{0}, \ldots, \Phi_{m-1}$ Hölder continuous 1-periodic functions with exponent α
Then

$$
\begin{aligned}
& \sum_{1 \leq n<N} n^{k} \sum_{\substack{j+k=m-1 \\
0 \leq j<m}} \frac{(\log n)^{k}}{k!} \Phi_{j}\left(\log _{q} n\right) \\
& \quad=
\end{aligned}
$$

for integers $N \rightarrow \infty$.

Pseudo-Tauberian Theorem

Theorem (H.-Krenn 2020)

Let

- $\kappa \in \mathbb{C}, \quad q>1, \quad m \in \mathbb{Z}_{+}, \quad 0<\beta<\alpha$;
- $\Phi_{0}, \ldots, \Phi_{m-1}$ Hölder continuous 1-periodic functions with exponent α
Then \exists continuously differentiable 1-periodic functions Ψ_{-1}, Ψ_{0}, \ldots, Ψ_{m-1} and a constant c such that

$$
\begin{aligned}
& \sum_{1 \leq n<N} n^{\kappa} \sum_{\substack{j+k=m-1 \\
0 \leq j<m}} \frac{(\log n)^{k}}{k!} \Phi_{j}\left(\log _{q} n\right) \\
& \quad=c+N^{\kappa+1} \sum_{\substack{k+j=m-1 \\
-1 \leq j<m}} \frac{(\log N)^{k}}{k!} \Psi_{j}\left(\log _{q} N\right)+O\left(N^{\Re \kappa+1-\beta}\right)
\end{aligned}
$$

for integers $N \rightarrow \infty$.

Pseudo-Tauberian Theorem (ctd.)

Theorem (H.-Krenn 2020, ctd.)
Let

- $\varphi_{j \ell}:=\int_{0}^{1} \Phi_{j}(u) \exp (-2 \ell \pi i u) \mathrm{d} u$: Fourier coefficients of Φ_{j}
- $\psi_{j \ell}:=\int_{0}^{1} \Psi_{j}(u) \exp (-2 \ell \pi i u) \mathrm{d} u$: Fourier coefficients of Ψ_{j}

Pseudo-Tauberian Theorem (ctd.)

Theorem (H.-Krenn 2020, ctd.)

Let

- $\varphi_{j \ell}:=\int_{0}^{1} \Phi_{j}(u) \exp (-2 \ell \pi i u) \mathrm{d} u$: Fourier coefficients of Φ_{j}
- $\psi_{j \ell}:=\int_{0}^{1} \Psi_{j}(u) \exp (-2 \ell \pi i u) \mathrm{d} u$: Fourier coefficients of Ψ_{j}

Then the corresponding generating functions fulfil

$$
\sum_{0 \leq j<m} \varphi_{j \ell} Z^{j}=\left(\kappa+1+\frac{2 \ell \pi i}{\log q}+Z\right) \sum_{-1 \leq j<m} \psi_{j \ell} Z^{j}+O\left(Z^{m}\right)
$$

for $\ell \in \mathbb{Z}$ and $Z \rightarrow 0$.

Pseudo-Tauberian Theorem (ctd.)

Theorem (H.-Krenn 2020, ctd.)

Let

- $\varphi_{j \ell}:=\int_{0}^{1} \Phi_{j}(u) \exp (-2 \ell \pi i u) \mathrm{d} u$: Fourier coefficients of Φ_{j}
- $\psi_{j \ell}:=\int_{0}^{1} \Psi_{j}(u) \exp (-2 \ell \pi i u) \mathrm{d} u$: Fourier coefficients of Ψ_{j}

Then the corresponding generating functions fulfil

$$
\sum_{0 \leq j<m} \varphi_{j \ell} Z^{j}=\left(\kappa+1+\frac{2 \ell \pi i}{\log q}+Z\right) \sum_{-1 \leq j<m} \psi_{j \ell} Z^{j}+O\left(Z^{m}\right)
$$

for $\ell \in \mathbb{Z}$ and $Z \rightarrow 0$.
If $q^{\kappa+1} \neq 1$, then Ψ_{-1} vanishes.

Esthetic Numbers—Result

Theorem (H-Krenn 2020)

$$
\begin{aligned}
\sum_{0 \leq n<N} x(n)= & \sum_{j \in\left\{1,2, \ldots,\left\lceil\frac{q-2}{3}\right\rceil\right\}} N^{\log _{q}(2 \cos (j \pi /(q+1)))} \Phi_{q j}\left(2 \log _{q^{2}} N\right) \\
& \left.+O\left((\log N)^{[q \equiv-1}(\bmod 3)\right]\right)
\end{aligned}
$$

with 2-periodic continuous functions $\Phi_{q j}$. If q is even, then the functions $\Phi_{q j}$ are actually 1-periodic.

Transducer

Write labels from right to left (least significant to most significant digit). Empty word: ε

Transducer

Write labels from right to left (least significant to most significant digit). Empty word: ε

Transducer

Write labels from right to left (least significant to most significant digit). Empty word: ε

$$
27=(0011011)_{2}=(\quad 0 \overline{1})_{2}
$$

Transducer

Write labels from right to left (least significant to most significant digit). Empty word: ε

$$
27=(0011011)_{2}=(\quad 0 \overline{1})_{2}
$$

Transducer

Write labels from right to left (least significant to most significant digit). Empty word: ε

$27=(0011011)_{2}=(\quad 0 \overline{1} 0 \overline{1})_{2}$

Transducer

Write labels from right to left (least significant to most significant digit). Empty word: ε

$$
27=(0011011)_{2}=(\quad 00 \overline{1} 0 \overline{1})_{2}
$$

Transducer

Write labels from right to left (least significant to most significant digit). Empty word: ε

$27=(0011011)_{2}=(00 \overline{1} 0 \overline{1})_{2}$

Transducer

Write labels from right to left (least significant to most significant digit). Empty word: ε

Transducer

Write labels from right to left (least significant to most significant digit). Empty word: ε

$$
27=(0011011)_{2}=(0100 \overline{1} 0 \overline{1})_{2}
$$

Transducer: Central Limit Theorem

Theorem (H-Kropf-Prodinger 2015)

Let \mathcal{T} be complete, deterministic transducer with input alphabet $\{0,1, \ldots, q-1\}$ and final period p. For fixed N, use equidistribution on $\{0,1, \ldots, N-1\}$.

Transducer: Central Limit Theorem

Theorem (H-Kropf-Prodinger 2015)

Let \mathcal{T} be complete, deterministic transducer with input alphabet $\{0,1, \ldots, q-1\}$ and final period p. For fixed N, use equidistribution on $\{0,1, \ldots, N-1\}$.
Then $\mathcal{T}(n)$ has the expected value

$$
\mathbb{E}(\mathcal{T}(n))=e_{\mathcal{T}} \log _{q} N+\Psi_{1}\left(\log _{q} N\right)+o(1)
$$

with $e_{\mathcal{T}} \in \mathbb{R}$ and a p-periodic, continuous function Ψ_{1}.

Transducer: Central Limit Theorem

Theorem (H-Kropf-Prodinger 2015)

Let \mathcal{T} be complete, deterministic transducer with input alphabet $\{0,1, \ldots, q-1\}$ and final period p. For fixed N, use equidistribution on $\{0,1, \ldots, N-1\}$.
Then $\mathcal{T}(n)$ has the expected value

$$
\mathbb{E}(\mathcal{T}(n))=e_{\mathcal{T}} \log _{q} N+\Psi_{1}\left(\log _{q} N\right)+o(1)
$$

with $e_{\mathcal{T}} \in \mathbb{R}$ and a p-periodic, continuous function Ψ_{1}. If \mathcal{T} is finally connected, then the variance is

$$
\operatorname{Var}(\mathcal{T}(n))=v_{\mathcal{T}} \log _{q} N+\Psi_{2}\left(\log _{q} N\right)+o(1)
$$

with $v_{\mathcal{T}} \in \mathbb{R}$ and a p-periodic, continuous function Ψ_{2}.

Transducer: Central Limit Theorem

Theorem (H-Kropf-Prodinger 2015)

Let \mathcal{T} be complete, deterministic transducer with input alphabet $\{0,1, \ldots, q-1\}$ and final period p. For fixed N, use equidistribution on $\{0,1, \ldots, N-1\}$.
Then $\mathcal{T}(n)$ has the expected value

$$
\mathbb{E}(\mathcal{T}(n))=e_{\mathcal{T}} \log _{q} N+\Psi_{1}\left(\log _{q} N\right)+o(1)
$$

with $e_{\mathcal{T}} \in \mathbb{R}$ and a p-periodic, continuous function Ψ_{1}. If \mathcal{T} is finally connected, then the variance is

$$
\operatorname{Var}(\mathcal{T}(n))=v_{\mathcal{T}} \log _{q} N+\Psi_{2}\left(\log _{q} N\right)+o(1)
$$

with $v_{\mathcal{T}} \in \mathbb{R}$ and a p-periodic, continuous function Ψ_{2}. If $v_{\mathcal{T}} \neq 0$, then $\mathcal{T}(n)$ is asymptotically normally distributed.

Transducer: Central Limit Theorem

Theorem (H-Kropf-Prodinger 2015)

Let \mathcal{T} be complete, deterministic transducer with input alphabet $\{0,1, \ldots, q-1\}$ and final period p. For fixed N, use equidistribution on $\{0,1, \ldots, N-1\}$.
Then $\mathcal{T}(n)$ has the expected value

$$
\mathbb{E}(\mathcal{T}(n))=e_{\mathcal{T}} \log _{q} N+\Psi_{1}\left(\log _{q} N\right)+o(1)
$$

with $e_{\mathcal{T}} \in \mathbb{R}$ and a p-periodic, continuous function Ψ_{1}. If \mathcal{T} is finally connected, then the variance is

$$
\operatorname{Var}(\mathcal{T}(n))=v_{\mathcal{T}} \log _{q} N+\Psi_{2}\left(\log _{q} N\right)+o(1)
$$

with $v_{\mathcal{T}} \in \mathbb{R}$ and a p-periodic, continuous function Ψ_{2}. If $v_{\mathcal{T}} \neq 0$, then $\mathcal{T}(n)$ is asymptotically normally distributed.

Also possible for higher dimensional input.

Connectivity Properties of the Transducer

- complete and deterministic

for $q=2$

Connectivity Properties of the Transducer

- complete and deterministic
- final component

Connectivity Properties of the Transducer

- complete and deterministic
- final component
- finally connected

Connectivity Properties of the Transducer

- complete and deterministic
- final component
- finally connected
- period $=$ greatest common divisor of all lengths of cycles
- final period $p=$ least common multiple of the periods
- finally aperiodic if $p=1$

period: 1
period: 2
final period: $p=2$

Bounded Variance

$$
\operatorname{Var}(\mathcal{T}(n))=v_{\mathcal{T}} \log _{q} N+\Psi_{2}\left(\log _{q} N\right)+o(1)
$$

When is $v_{\mathcal{T}}=0$?

Bounded Variance

$$
\operatorname{Var}(\mathcal{T}(n))=v_{\mathcal{T}} \log _{q} N+\Psi_{2}\left(\log _{q} N\right)+o(1)
$$

When is $v_{\mathcal{T}}=0$?

Theorem (H-Kropf-Wagner 2015)

Let \mathcal{T} be finally connected. Then the following assertions are equivalent:
(1) The constant $v_{\mathcal{T}}$ of the variance is 0 .
(2) There is a constant k such that the average output of every cycle in the final component is k.
(3) Length and output sum are linearly dependent (up to $O(1)$).

Bounded Variance

$$
\operatorname{Var}(\mathcal{T}(n))=v_{\mathcal{T}} \log _{q} N+\Psi_{2}\left(\log _{q} N\right)+o(1)
$$

When is $v_{\mathcal{T}}=0$?

Theorem (H-Kropf-Wagner 2015)

Let \mathcal{T} be finally connected. Then the following assertions are equivalent:
(1) The constant $v_{\mathcal{T}}$ of the variance is 0 .
(2) There is a constant k such that the average output of every cycle in the final component is k.
(3) Length and output sum are linearly dependent (up to $O(1)$).

Also possible for higher dimensional output (Kropf 2016).

