THE PROBABILITY OF RANDOM TREES BEING ISOMORPHIC

Background

• Previously studied for binary trees.

- Simply generated or (Biyenaymé-)Galton–Watson trees.
 - Conditioned.
 - Examples: plane trees, labeled trees, binary trees etc.
 - (For Jim Fill: ORTs, LURTs, binary trees etc.)
- Pólya trees.
 - ∘ (UURTs)
- Trees with restricted outdegrees.

• Isomorphisms and isomorphism classes.

ISOMORPHISM AND SYMMETRIES IN RANDOM PHYLOGENETIC TREES

MIKLÓS BÓNA,* University of Florida PHILIPPE FLAJOLET,** INRIA

Abstract

The probability that two randomly selected phylogenetic traisomorphic is found to be asymptotic to a decreasing exp

Exponential decay of probabilities?

Probability of **labeled** trees being isomorphic

Theorem 1. The probability p_n that two labeled rooted trees are isomorphic has the full asymptotic expansion

$$p_n \sim A n^{3/2} c_l^n \left(1 + \sum_{k=1}^{\infty} \frac{e_k}{n^k} \right),$$

where $A \approx 2.397678$, $c_l \approx 0.354379$ and the e_k are constants that can be calculated.

The number of labelings of a Pólya tree P is |P|!/|Aut(P)|.

$$P(x,t) = \sum_{P \in \mathcal{P}} \frac{x^{|P|}}{|\operatorname{Aut} P|^t}.$$

$$p_n = \frac{1}{n^{2(n-1)}} \sum_{P \in \mathcal{P}_n} \frac{n!^2}{|\operatorname{Aut} P|^2} = \left(\frac{n!}{n^{n-1}}\right)^2 [x^n] P(x, 2).$$

Labeled vs general Galton–Watson trees

• Not true for all Galton–Watson trees

• ... but it is for Galton–Watson trees with restricted degrees.

Theorem 2. The probability g_n that two Galton–Watson trees with degrees in a finite set D are isomorphic satisfies

 $g_n \leq Bc_g^n,$

for some constants B and $c_g < 1$.

$$\mathcal{PR}(P) = \frac{\prod_{v \in V(P)} \deg(v)!}{|\operatorname{Aut} P|}.$$

$$W(P) = w(T)\mathcal{PR}(P)$$

What do random isomorphic pairs look like?

 Do pairs of labeled trees conditioned on being isomorphic look different than regular labeled trees?

- A multivariate central limit theorem for vertices of given degrees.
- We can e.g. show that the average number of leaves in the trees differ:
 - ∘ Labeled trees: \approx 0.367879 n
 - ∘ Isomorphic pairs: \approx 0.340252 n

The number of labelings of Pólya trees

• How large is the isomorphism class corresponding to a random Pólya tree?

Theorem 6. Let \mathcal{P}_n be a random Pólya tree of size n, then the number of labelings $L(\mathcal{P}_n)$ of \mathcal{P}_n has expected value and variance

$$\mathbf{E}[\log \mathbf{L}(\mathcal{P}_n)] = n \log n - (\mu + 1)n + \frac{\log n}{2} + O(1),$$

$$\mathbf{Var}[\log \mathbf{L}(\mathcal{P}_n)] = \sigma^2 n + O(1),$$

for numerical constants $\mu \approx 0.137342$ and $\sigma^2 \approx 0.196770$ and satisfies

$$\frac{\log \mathcal{L}(\mathcal{P}_n) - \mathcal{E}[\log \mathcal{L}(\mathcal{P}_n)]}{\sqrt{n}} \xrightarrow{d} N(0, \sigma^2).$$

$$\log n! - \log |\operatorname{Aut} P|. \qquad P(x,t) = \sum_{P \in \mathcal{P}} \frac{x^{|P|}}{|\operatorname{Aut} P|^t}.$$

Number of plane representations of Galton–Watson trees

- Can prove similar results for weights of isomorphism classes of Galton–Watson trees with restricted degrees.
 - Labelings, plane representations.
- Need to pick a type of Galton-Watson tree and the corresponding type of Pólya tree.
- Now, both the mean and variance is of order n.

	μ	σ^2
Binary trees	0.444518	0.072413
Unary-binary trees	0.176278	0.025865