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Introduction

Optimization and Stochastic Gradient I

Optimization is an area rich of methods and theory
In standard textbooks we see methods like gradient
descent, Newton, etc. with their convergence analysis
Further, convex optimization is an important focus
On the other hand, in deep learning, which is an
important topic of machine learning, a special type of
optimization methods (stochastic gradient) is highly
popular
The optimization problem is non-convex
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Introduction

Optimization and Stochastic Gradient II

Interestingly the stochastic gradient method is less
used in areas other than machine learning.
In this talk, we discuss basic concepts and explain
why it is widely used in deep learning
We also share some stories about its practical use.
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Stochastic gradient methods

What is Machine Learning?

Extract knowledge from data

Classification Clustering

We focus on classification. From data with labels, we
build a model for prediction
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Stochastic gradient methods

Minimizing Training Errors

A classification method often starts with minimizing
the training errors

min
model

(training errors)

That is, all or most training data with labels should
be correctly classified by our model
A model can be a decision tree, a neural network, or
other types
This is called empirical risk minimization
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Stochastic gradient methods

Empirical Risk Minimization I

Training data {y i , x i }, x i ∈ Rn, i = 1, . . . , l ,
y i ∈ {0,1}#labels

l : # of data, n: # of features

min
θ

f (θ), f (θ) = 1

2C
θTθ+ 1

l

∑l
i=1ξ(θ; y i , x i )

θ: variables of the optimization problem; also model
weights of neural networks
ξ(θ; y, x): loss function, a way to measure training
errors ⇒ 2nd term is the average training loss
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Stochastic gradient methods

Empirical Risk Minimization II

θTθ/2: regularization term (to avoid overfitting)
C : regularization parameter (chosen by users)

Chih-Jen Lin (National Taiwan Univ.) 9 / 46



Stochastic gradient methods

Gradient Descent in Optimization

We take the negative gradient direction and a
suitable step size such that

f (θ−η∇ f (θ)) = f (θ)−η∇ f (θ)T∇ f (θ)+·· ·
< f (θ)
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Stochastic gradient methods

Estimation of the Gradient I

Recall the function is

f (θ) = 1

2C
θTθ+ 1

l

∑l
i=1ξ(θ; y i , x i )

The gradient is

θ

C
+ 1

l
∇θ

l∑
i=1

ξ(θ; y i , x i )

=θ
C

+ 1

l

l∑
i=1

∇θξ(θ; y i , x i )
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Stochastic gradient methods

Estimation of the Gradient II

Going over all data is time consuming
If data are from the same distribution

E(∇θξ(θ; y , x)) = 1

l
∇θ

l∑
i=1

ξ(θ; y i , x i )

then we may just use a subset S (often called a batch)

θ

C
+ 1

|S|∇θ

∑
i :i∈S

ξ(θ; y i , x i )
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Stochastic gradient methods

Stochastic Gradient Algorithm I

1: Given an initial learning rate η.
2: while do
3: Choose S ⊂ {1, . . . , l }.
4: Calculate

θ← θ−η(
θ

C
+ 1

|S|∇θ

∑
i :i∈S

ξ(θ; y i , x i ))

5: May adjust the learning rate η (i.e., step size)
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Stochastic gradient methods

Stochastic Gradient Algorithm II

Deciding a suitable learning rate is difficult
Too small learning rate: very slow convergence
Too large learning rate: the procedure may diverge
This is very different from standard gradient descent
methods in optimization, where we check new and
existing function values to select the step size
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Stochastic gradient methods

Momentum I

Because we use a subset of data to get an
approximate gradient, the resulting directions may be
noisy
We can consider a moving average of sub-gradients
A new vector v and a parameter α ∈ [0,1) are
introduced

v ← αv −η(
θ

C
+ 1

|S|∇θ

∑
i :i∈S

ξ(θ; y i , x i )) (1)

θ ← θ+v
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Stochastic gradient methods

Momentum II

However, the rule in (1) may be biased toward the
initial value
Thus we need bias correction, which will be discussed
later
So far the learning rate η is the same for every
component of the sub-gradient
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Stochastic gradient methods

AdaGrad I

Scaling learning rates inversely proportional to the
square root of sum of past gradient squares (Duchi
et al., 2011)
Update rule:

g ← θ

C
+ 1

|S|∇θ

∑
i :i∈S

ξ(θ; y i , x i )

r ← r +g ⊙g

θ ← θ− ϵp
r +δ

⊙g

r : sum of past gradient squares
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Stochastic gradient methods

AdaGrad II

ϵ and δ are given constants
⊙: Hadamard product (element-wise product of two
vectors/matrices)
A larger g component
⇒ a larger r component
⇒ faster decrease of the learning rate
Though details not shown, a conceptual explanation
is that infrequent features correspond to small g
components and need larger rates to learn
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Stochastic gradient methods

AdaGrad III

The above analysis is for convex problems (e.g.,
logistic regression)
But now we have a non-convex neural network!
Empirically, people find that the sum of squared
gradient since the beginning causes too fast decrease
of the learning rate
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Stochastic gradient methods

RMSProp I

This heuristic1 thinks that AdaGrad’s learning rate
may be too small before reaching a locally convex
region
Thus they propose “exponentially weighted moving
average” for summing g ⊙g
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Stochastic gradient methods

RMSProp II
Update rule

r ← ρr + (1−ρ)g ⊙g

θ ← θ− ϵp
δ+ r

⊙g

AdaGrad:

r ← r +g ⊙g

θ ← θ− ϵp
r +δ

⊙g

1https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_
slides_lec6.pdf
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Stochastic gradient methods

Adam (Adaptive Moments) I

The update rule (Kingma and Ba, 2015)

g ← θ

C
+ 1

|S|∇θ

∑
i :i∈S

ξ(θ; y i , x i )

s ← ρ1s + (1−ρ1)g

r ← ρ2r + (1−ρ2)g ⊙g

ŝ ← s

1−ρt
1

r̂ ← r

1−ρt
2

θ ← θ− ϵp
r̂ +δ

⊙ ŝ
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Stochastic gradient methods

Adam (Adaptive Moments) II

t is the current iteration index
Roughly speaking, Adam is the combination of

Momentum
RMSprop

Adam is now a popular stochastic gradient method
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Stochastic gradient methods

Bias Correction in Adam I

The two steps in Adam

ŝ ← s

1−ρt
1

r̂ ← r

1−ρt
2

are called “bias correction”
Due to the moving average, the vector is biased
toward the initial value
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Stochastic gradient methods

Bias Correction in Adam II

For the direction s used to update θ, we hope that
its expectation is similar to the expected gradient

E [s t ] = E [g t ]
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Stochastic gradient methods

Weight Decay I

Recall in our earlier description, the simple stochastic
gradient update is

θ← θ−η(
θ

C
+ 1

|S|∇θ

∑
i :i∈S

ξ(θ; y i , x i ))

In this calculation
θ

C
comes from the regularization term in f (θ)

The use of regularization follows from standard
machine learning settings
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Stochastic gradient methods

Weight Decay II

However, in the area of neural networks, this term
may come from a setting called weight decay
(Hanson and Pratt, 1988)

θ← (1−λ)θ−η(
1

|S|∇θ

∑
i :i∈S

ξ(θ; y i , x i ))

where λ is the rate of weight decay
In fact, Hanson and Pratt (1988) did not give good
reasons for decaying the weight of θ
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Stochastic gradient methods

Weight Decay III

Clearly, if

λ= 1

C

then weight decay is the same as regularization
However, as pointed out in Loshchilov and Hutter
(2019), the equivalence does not hold if adaptive
learning rate is used
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Stochastic gradient methods

Weight Decay IV

For example, in AdaGrad, the update rule is

θ← θ− ϵp
r +δ

⊙ (
1

|S|∇θ

∑
i :i∈S

ξ(θ; y i , x i ))

− ϵp
r +δ

⊙ θ

C

so the regularization term is scaled in a
component-wise way
Loshchilov and Hutter (2019) advocate to decouple
the weight decay step and propose AdamW
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Stochastic gradient methods

AdamW I

g ← 1

|S|∇θ

∑
i :i∈S

ξ(θ; y i , x i )

s ← ρ1s + (1−ρ1)g

r ← ρ2r + (1−ρ2)g ⊙g

ŝ ← s

1−ρt
1

r̂ ← r

1−ρt
2

θ ← θ− ϵp
r̂ +δ

⊙ ŝ −ϵ
θ

C
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Stochastic gradient methods

AdamW II

This is not equivalent to Adam because in Adam, θ/C
has been used in calculating g and then scaled after
Why is the decoupled setting better? Some
discussions are in Section 3 of Loshchilov and Hutter
(2019), but more investigation is needed
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Stochastic gradient methods

Choosing Stochastic Gradient Algorithms

From Goodfellow et al. (2016), “there is currently no
consensus”
Further, “the choice ... seemed to depend on the
user’s familiarity with the algorithm”
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Stochastic gradient methods

Why Stochastic Gradient Widely Used? I

Stochastic gradient is known to converge slowly.
However, in machine learning, fast final convergence
may not be important

An optimal solution θ∗ may not lead to the best
model
Further, we don’t need a point close to θ∗.
Suppose the decision value at θ∗ is 0.3 > 0 and a
positive label is predicted. Then an approximate
decision value of 0.29 makes no difference.
A not-so-accurate θ may be good enough
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Stochastic gradient methods

Why Stochastic Gradient Widely Used? II
Thus a method with slow final convergence may be
efficient enough

time

di
st

an
ce

to
op

tim
um

time

di
st

an
ce

to
op

tim
um

Slow final convergence Fast final convergence
This illustration is modified from Tsai et al. (2014)
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Stochastic gradient methods

Why Stochastic Gradient Widely Used? III

The special property of data classification is essential

E(∇θξ(θ; y , x) = 1

l
∇θ

l∑
i=1

ξ(θ; y i , x i )

We can cheaply get a good approximation of the
gradient
Easy implementation. It’s simpler than methods
using, for example, second derivative
Now gradient is calculated by automatic
differentiation
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Stochastic gradient methods

Why Stochastic Gradient Widely Used? IV

We draw a network and the gradient can be
calculated
Non-convexity plays a role

For convex, other methods may possess
advantages to more efficiently find the global
minimum
But for non-convex, efficiency to reach a
stationary point is less useful
A global minimum usually gives a good model
(as loss is minimized), but for a stationary point
we are less sure
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Stochastic gradient methods

Why Stochastic Gradient Widely Used? V

All these explain why SG is popular for deep learning
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Convergence properties

Decrease of Function Values I

In a gradient descent method, we can choose a small
enough η such that

f (θ−η∇ f (θ)) = f (θ)−η∇ f (θ)T∇ f (θ)+·· ·
< f (θ)

This relies on that

−η∇ f (θ)T∇ f (θ) < 0

However, for stochastic gradient, we no longer have
this property.

Chih-Jen Lin (National Taiwan Univ.) 39 / 46



Convergence properties

Decrease of Function Values II

Now assume the simplest situation of selecting one
data instance at a time. The sub-gradient

∇i f (θ) ≡∇θξ(θ; y i , x i )

in general does not satisfy

−η∇i f (θ)T∇ f (θ) < 0

What we can show is the decrease in expectation
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Convergence properties

Convergence in Expectation I

Suppose we consider up to T iterations and run up to
a random number of iteration τ

And τ follows a probability distribution such as

P (τ= t ) = ηt∑T−1
k=0 ηk

,

where ηt is the learning rate at each iteration t

Then we bound the expected squared-norm of the
gradient

Eτ,ĩ0,...,ĩτ−1
[∥∇ f (θτ)∥2],

where ĩ t is the index selected at iteration t
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Convergence properties

Convergence in Expectation II

Under some assumptions, we can prove the following
convergence rate

E [∥∇ f (θτ)∥2] =O(
logTp

T
)

Note that we consider the simplest situation of
selecting one data instance at a time
It is more complicated to establish the proof for
commonly used stochastic gradient methods
For some of them, the proofs are still lacking
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Practical use
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Practical use

A Story on the Use of Stochastic Gradient I

Recently pre-trained language models (e.g.,
ChatGPT) draw lots of attention
Behind them an optimization problem is solved by
stochastic gradient methods
BERT (Devlin et al., 2019) is a pioneer of such
pre-trained models, cited by tens of thousands papers
It applies Adam for the optimization
But the authors forgot to do the bias correction step
Later people realized this (e.g., Zhang et al., 2021)
and pointed out the instability in some situations
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Practical use

A Story on the Use of Stochastic Gradient
II

For example, the process may under-fit the data and
require more iterations
However, BERT did achieve the best test
performance on many applications when it was
proposed
This interesting story reflects the role of optimization
in machine learning
Optimization is an important tool for machine
learning but we also need useful models and other
things to achieve good final test performance
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Practical use

Conclusions

Stochastic gradient methods are the dominant
optimization technique for deep learning
We have discussed commonly used stochastic
gradient methods and explain why they are widely
used for deep learning
However, many issues from theoretical convergence
to the practical use remain to be investigated
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