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Part 1: Example for a Theoretical Work 
on Evolutionary Algorithms 

 Plan for this part of the talk: Show to you how a useful theory result in this 
area can look like (but not all results have to follow this scheme).

 Analyze how a very simple heuristic solves a very simple problem
(proven results).
 Simplicity of the setting necessary for a strong math. analysis.

 From the result and the proof, obtain insights that could be true in more 
complex settings.
 Here the clarifying nature of the maths is crucial!

 Follow-up work (by others): Validate these insights on real-world 
settings.
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A Very Little Background on 
Evolutionary Algorithms

 Evolutionary algorithms (EAs) solve problems by setting up an evolutionary 
process with solution candidates as individuals.

 Hope: After some time, the individuals in the process represent good 
solutions to the problem one wants to solve.

 Very successful in practice – not because mimicking evolution gives some 
mysterious computational advantage, but because practitioners find it easy 
to design good algorithms in this paradigm.
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How Does an EA Look Like?

 Initialization: Put random solutions in the parent population .

 For do

 From suitably selected* parents from , create offspring via

 mutation: small random modification of a parent;

 crossover: random mix of two parents.

 From the parents and offspring, select* individuals as 
next parent population .

 If terminate, then output the best solution ever seen and STOP

 By setting the parameters and choosing suitable selection, mutation, and 
crossover operators, the EA can be adjusted to the problem to be solved.
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*) Selections may depend on the solution quality. By this the EA “sees” the problem. 
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Research Question Discussed Now: 
What is the Right Way of Doing Mutation?

 We only regard bit-string representations: 

 Solutions are described via bit-strings of length .

 The most common representation for EAs.

 General recommendation: Bit-wise mutation

 Obtain the offspring by flipping each bit of the parent independently 
with some probability (“mutation rate”).

 Global operator: from any parent you can generate any offspring 
 Algorithms cannot get stuck forever in a local optimum.

 General recommendation: Use a small mutation rate like .

  In expectation, you flip one bit.
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Informal Justifications for 

 Imitate local search / hill-climbing: A mutation rate of maximizes the 
probability to flip a single bit.

 Mutation is destructive: If your current search point has a Hamming 
distance ∗ of less than from the optimum ∗, then the offspring 
has (in expectation) a larger Hamming distance and this increase is 
proportional to :

 ∗ ∗ ∗
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at most for some constant 
at least for some constant 
both and 
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Proven Results Supporting 

 For some very simple test-cases, a mutation rate of (or close to that) was 
proven to give the asymptotically optimal expected runtime.

 (1+1) EA optimizes OneMax.

 (1+1) EA optimizes LeadingOnes (optimal mutation rate ).

 (1+1) EA optimizes a pseudo-Boolean linear functions.

 (1+1) EA optimizes a monotonic function.

 (1+ ) EA with optimizes OneMax.

 No convincing result that proves a different mutation rate to be preferable.
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Our Work*

 Previous state of the art:

 Strong belief that bit-wise mutation with rate is the best way to 
mutate solutions.

 Based on informal considerations and mathematical proofs on very 
simple problems (without local optima).

 Our work: Conduct a mathematical runtime analysis on a classic 
benchmark that has local optima and see what is the best mutation rate.

 Algorithm: (1+1) EA [next slide]

 Benchmark problem: Jump functions [slide after next slide]
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*) Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, Ta Duy Nguyen: Fast genetic algorithms.
Genetic and Evolutionary Computation Conference (GECCO) 2017, pages 777-784. ACM
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(1+1) Evolutionary Algorithm

 (1+1) EA with mutation rate , maximizing 𝒏

 Choose uniformly at random

 For do

 % flip each bit of independently with prob. 

 if then 

 A very simple algorithm…

 to enable a mathematical analysis,

 to study mutation in isolation.

 Runtime: First time at which an optimum of is generated.
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Jump Functions Benchmark

 , : fitness of an is the number of ones, 
except if , then 

 Non-trivial local optima: all with .
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Runtime Analysis

 Let denote the expected runtime of the (1+1) EA optimizing 

, with mutation rate . 

 Theorem: For all and ,

𝒎 𝒏 𝒎 𝒎 𝒏 𝒎

 Proof of the upper bound: 

 The local optimum is reached in expected time [details omitted]

 The probability that a solution on the local optimum (having zeroes 
and ones) is mutated into the global optimum is .

 Hence another iterations (in expectation) to find the optimum.
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Optimal Mutation Rate

 Theorem: If , then the optimal mutation rate satisfies 

and give an expected runtime of 

⁄

  The optimal mutation rate is very different from !

  We are not talking about peanuts. For :

 𝟏 𝒏⁄
𝒎,

 𝒎 𝒏⁄
𝒆

𝒎

𝒎
𝒎.
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Missing the Optimal Mutation Rate

 Theorem: If or , then 

 Very bad news: In a practical application, you cannot tell what is the “ ”. 
The estimates above show that guessing it wrong is very costly.  

 (Obvious) math. reason for the dilemma: When flipping bits independently, 
the Hamming distance of parent and offspring is strongly 
concentrated around the mean. 

  Maybe bit-wise mutation is a bad idea?
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Solution: A New Mutation Operator

 Recap: What do we need?

 No strong concentration of 

 Larger numbers of bits flip with reasonable probability

 1-bit flips occur with constant probability ( easy hill-climbing)

 Solution: Heavy-tailed mutation (with parameter , say ). 

 Choose randomly with [power-law].

 Perform bit-wise mutation with mutation rate .

 Some maths: 

 The probability to flip bits is .  No strong concentration 

 , e.g., 32% for ( 37% for classic mut.)
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Heavy-tailed Mutation: Results

 Theorem: The (1+1) EA with heavy-tailed mutation ( ) has an 
expected runtime on , of

.

 One size fits all: Without “knowing” , this mutation operator leads to 
almost the optimal runtime.

 Price for “one size fits all”: a factor of . Small compared to the 
losses from choosing a sub-optima mutation rate. 

 Still a speed-up by a factor of ( ) compared to the classic mutation.

 Good news: This works in practice. Olivier Teytaud (Meta Research, Paris) 
is a big fan of this mutation operator.
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Lower Bound on the 
Price for one-size fits all

 The loss of slightly more than . – by taking –
is unavoidable in a one-size fits all solution.

 Theorem: Let be sufficiently large. Let be any distribution on the 
mutation rates in . Let be the expected runtime of the 
(1+1) EA which in each iteration samples its mutation rate from , on 

, . 

 Then there is an such that .

 Proof: Clever averaging argument. 
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Summary: How Can a Theory Result on 
Heuristics Look Like?

 We did a precise mathematical runtime analysis of a synthetic scenario 
(which was rather elementary here).

 From the result and the maths behind, we saw a general problem (the 
optimal mutation rate is very problem-specific) and developed a solution 
(heavy-tailed mutation operator).

 We proved that it solves the problem in the synthetic setting and, again 
from understanding the maths, we are confident that this solution also 
works in practice.

18



Benjamin Doerr: Theory of Randomized Search Heuristics

Part 2: AofA Meets Heuristics Theory

 While not the typical result in the theory of randomized search heuristics, 
AofA-style technique have been used to analyze randomized search 
heuristics. 

 Hsien-Kuei Hwang, Alois Panholzer, Nicolas Rolin, Tsung-Hsi Tsai, and 
Wei-Mei Chen. Probabilistic analysis of the (1+1)-evolutionary algorithm. 
Evolutionary Computation, 26:299–345, 2018. 

 Very precise analysis of how the (1+1) EA optimize the OneMax
problem via “matched asymptotics”.

 Very precise analysis of how the (1+1) EA optimizes the LeadingOnes
problem via generating functions and recurrence relations.
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 OneMax problem: “counting the ones”

 (1+1) EA with mutation rate , maximizing 𝒏

 Choose uniformly at random

 For do

 % flip each bit of independently with prob. 

 if then 

 The probability to mutate an with zeroes into a with zeroes, is

 For and , this is , hence relevant for the lower 
order term in . 

(1+1) EA optimizes OneMax: Difficulties
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 So far: Only two AofA-style results on randomized search heuristics: 
Runtime analysis of the (1+1) EA with mutation rate optimizing OneMax
and LeadingOnes.

 Do these methods also work for other problems? For example…

 Runtime analysis of the (1+1) EA with the heavy-tailed mutation 
operator?

 Runtime analyses for the (1+ ) EA, which generates offspring 
in each iteration and let the best of parent and offspring survive?

More AofA-Style Results?
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 One motivation for me to work in this field is that even very basic problem 
can be mathematically very challenging.

 Sometimes, even the answer is not clear before you have a proof.

 Examples: Runtime of the (1+1) EA on…

 Onemax [just discussed],

 linear functions,

 monotonic functions,

 the minimum spanning tree problem.

Part 3: Mathematically 
Challenging Problems
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 Definition: Let . Then

is called a (pseudo-Boolean) linear function.

 “Same as OneMax, but now the bits may have different weights.”

 Question: What is the runtime of the (1+1) EA on such a linear function?

 Answer: For all linear functions, . 

 But no intuitive reason and no simple proof.

Linear Functions

23



Benjamin Doerr: Theory of Randomized Search Heuristics

Very Different Linear Functions

 Example 1: OneMax, the function counting the number of 1s in a string, 
. 

 Perfect fitness distance correlation: if a search point has higher 
fitness, then it is closer to the global optimum.

 Example 2: BinaryValue, the function mapping a bit-string to the number 
it represents in binary, .

 Very low fitness-distance correlation:  

 , distance to optimum is ,

 , distance to optimum is .
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A Glimpse on the Proof

 Theorem: For all problem sizes and all linear functions with 
the (1+1) EA finds the optimum ∗ of in an expected 

number of at most iterations.

 1st proof idea: Without loss, we can assume that .

 2nd proof idea: Regard an artificial fitness measure!

 Define “artificial weights” from down to 

 Key lemma: Consider the (1+1) EA optimizing the original . Assume that 
some iteration starts with the search point and ends with the random 
search point . Then

∗ ∗

 expected artificial fitness distance reduces by a factor of 

 3rd proof idea: Translate this expected progress a runtime bound (“drift analysis”).

 Note: To prove the tight bound, one has to choose the artificial 
weights dependent on the linear function .
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 First (and complicated) proof of an upper bound for all linear 
functions: Stefan Droste, Thomas Jansen, and Ingo Wegener. On the 
analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science, 
276:51–81, 2002.

 Proof via multiplicative drift: Benjamin Doerr, Daniel Johannsen, and Carola 
Winzen. Multiplicative drift analysis. Algorithmica, 64:673–697, 2012.

 Proof of this result for all mutation rates , a constant: Benjamin Doerr
and Leslie A. Goldberg. Adaptive drift analysis. Algorithmica, 65:224–250, 
2013.

 Proof the bound: Carsten Witt. Tight bounds on the 
optimization time of a randomized search heuristic on linear functions. 
Combinatorics, Probability & Computing, 22:294–318, 2013.

References
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 Definition: A function is called monotonic if the -value strictly 
increases whenever you flip a zero in the argument to one.

 Question: What is the runtime of the (1+1) EA on a monotonic function?

 Answer: We do not know. Known results for mutation rate :

 For , the expected runtime on all monotonic fcts. is 

 For , it is and [not known if tight].

 For , there are monotonic functions such that the runtime is 
exponential in . SURPRISE! Proof via a randomized construction.

Monotonic Functions
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 First proof that monotonic functions can be difficult to optimize (when the 
mutation rate is or higher): Benjamin Doerr, Thomas Jansen, Dirk 
Sudholt, Carola Winzen, and Christine Zarges. Mutation rate matters even 
when optimizing mono tone functions. Evolutionary Computation, 21:1–21, 
2013.

 Proof that this problem appears already for mutation rates above : 
Johannes Lengler and Angelika Steger. Drift analysis and evolutionary 
algorithms revisited. Combinatorics, Probability & Computing, 27:643–666, 
2018.

 Proof of the bound for mutation rate : Johannes Lengler, 
Anders Martinsson, and Angelika Steger. When does hillclimbing fail on 
monotone functions: an entropy compression argument. In Analytic 
Algorithmics and Combinatorics, ANALCO 2019, pages 94–102. SIAM, 
2019.

References
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 Let be an undirected graph with edge weights . 

 A minimum spanning tree of is a subset of edges such that 
is connected and has minimal weight ∈ among all such .

 Using the natural correspondence between bit-string of length and 
subsets of , and giving a high penalty for each extra connected component, 
this problem can be formulated as minimization problem over | |. 

 Question: What is the expected runtime of the (1+1) EA on this problem?

 Answer: We do not know. Known bounds are

 , where is the maximum edge weight,



 Reference: Frank Neumann and Ingo Wegener. Randomized local search, evolutionary algorithms, and the 
minimum spanning tree problem. Theoretical Computer Science, 378:32–40, 2007.

Minimum Spanning Trees
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 We can analyze…

 evolutionary algorithms with non-trivial parent and offspring populations 
on classic single- and multi-objective benchmarks and polynomial-time 
solvable combinatorial optimization problems

 also in the presence of noise;

 also with dynamic parameter choices;

 ant-colony optimizers and estimation-of-distribution algorithms on many 
of the classic benchmarks;

 the Metropolis algorithm and simulated annealing on some problems.

Part 4: State of the Art
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 We struggle with

 weighted versions of problems (linear functions, minimum spanning 
trees, shortest paths);

 understanding the precise population dynamics, and thus with showing 
advantages of crossover (offspring is a mix of two parents) and 
advantages from larger population sizes;

 understanding how evolutionary algorithms can profit from non-elitism
(forgetting the current-best solution).

Part 4: State of the Art (2)
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 I have shown to you

 what theoretical research on heuristics can look like: analyze a simplified 
setting with mathematical means and learn from this;

 that AofA and heuristics theory are not disjoint;

 that there are many “simple” problems waiting for a clever solution;

 what is the state of the art: we can analyze certain heuristics, but we fail 
to explain many things the practitioner do.

 [My] conclusion: This is a young area with open problems that are both 
mathematically attractive and have the potential to have a broader impact.

 Also, this is an applied area that is very open to theoretical work .

Summary and Conclusion
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 Benjamin Doerr and Frank Neumann, editors. Theory of Evolutionary 
Computation—Recent Developments in Discrete Optimization. Springer, 
2020. Freely available at 
http://www.lix.polytechnique.fr/Labo/Benjamin.Doerr/doerr_neumann_book.html.

Further Reading
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Appendix: Multiplicative Drift Theorem

 Theorem: Let be a sequence of random variables taking values in 
the set . Let . Assume that for all , we have

Let . Then 

 Proof of the linear functions result: Use

 ,

 ∗ ( ) ,

 and the estimate .
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“Drift analysis”:
Translate

expected progress
into

expected (run-)time


