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Part 1: Example for a Theoretical Work
on Evolutionary Algorithms

» Plan for this part of the talk: Show to you how a useful theory result in this
area can look like (but not all results have to follow this scheme).

= Analyze how a very simple heuristic solves a very simple problem
(proven results).

- Simplicity of the setting necessary for a strong math. analysis.

= From the result and the proof, obtain insights that could be true in more
complex settings.

- Here the clarifying nature of the maths is crucial!

» Follow-up work (by others): Validate these insights on real-world
settings.

Benjamin Doerr: Theory of Randomized Search Heuristics 3



A Very Little Background on
Evolutionary Algorithms

= Evolutionary algorithms (EAs) solve problems by setting up an evolutionary
process with solution candidates as individuals.

= Hope: After some time, the individuals in the process represent good
solutions to the problem one wants to solve.

= Very successful in practice — not because mimicking evolution gives some
mysterious computational advantage, but because practitioners find it easy
to design good algorithms in this paradigm.
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How Does an EA Look Like?

mnitialization: Put 1 random solutions in the parent population P,. \
= Fort=1,23 ..do

* From suitably selected” parents from P;_,, create A offspring via
= mutation: small random modification of a parent;
= crossover: random mix of two parents.

* From the u parents and A offspring, select* u individuals as
next parent population P;.

K = |f terminate, then output the best solution ever seen and STOP/

= By setting the parameters and choosing suitable selection, mutation, and
crossover operators, the EA can be adjusted to the problem to be solved.

*) Selections may depend on the solution quality. By this the EA “sees” the problem.

Benjamin Doerr: Theory of Randomized Search Heuristics



Research Question Discussed Now:
What is the Right Way of Doing Mutation?

= We only regard bit-string representations: 1 ‘ 0 ‘ 0 ‘ 1 ‘ 0 ‘ 1

= Solutions are described via bit-strings of length n.

= The most common representation for EAs.

= General recommendation: Bit-wise mutation

= Obtain the offspring by flipping each bit of the parent independently
with some probability p (“mutation rate”).

» Global operator: from any parent you can generate any offspring
—> Algorithms cannot get stuck forever in a local optimum.

= General recommendation: Use a small mutation rate like p = 1/n.

= - In expectation, you flip one bit.
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Informal Justifications forp = 1/n

= |mitate local search / hill-climbing: A mutation rate of 1/n maximizes the
probability p(1 — p)*~ 1! to flip a single bit.

= Mutation is destructive: If your current search point x has a Hamming
distance H(x, x*) of less than n/2 from the optimum x*, then the offspring y
has (in expectation) a larger Hamming distance and this increase is
proportional to p:

= E[Hy,x")]=H(x,x*) + p(n — 2H(x, x"))

( )
O(c) = at most yc for some constant y

O(c) = at least 6c for some constant § > 0
k@(c) = both 0(c) and Q(c)

Benjamin Doerr: Theory of Randomized Search Heuristics 7



Proven Results Supportingp =1/n

= For some very simple test-cases, a mutation rate of 1/n (or close to that) was
proven to give the asymptotically optimal expected runtime.

= (1+1) EA optimizes OneMax.

1+1) EA optimizes LeadingOnes (optimal mutation rate 1.59/n).

1+1) EA optimizes a monotonic function.

(1+1)
= (1+1) EA optimizes a pseudo-Boolean linear functions.
(1+1)
(1+1) EA with 4 < Inn optimizes OneMax.

= No convincing result that proves a different mutation rate to be preferable.
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Our Work*

= Previous state of the art:

= Strong belief that bit-wise mutation with rate 1/n is the best way to
mutate solutions.

» Based on informal considerations and mathematical proofs on very
simple problems (without local optima).

= Qur work: Conduct a mathematical runtime analysis on a classic
benchmark that has local optima and see what is the best mutation rate.

= Algorithm: (1+1) EA [next slide]

= Benchmark problem: Jump functions [slide after next slide]

*) Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, Ta Duy Nguyen: Fast genetic algorithms.
Genetic and Evolutionary Computation Conference (GECCO) 2017, pages 777-784. ACM
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(1+1) Evolutionary Algorithm

/- (1+1) EA with mutation rate p, maximizing f:{0,1}" - R \
= Choose x € {0,1}" uniformly at random
= Fort=1,23,..do

» y:= mutate(x) % flip each bit of x independently with prob. p

 if f(y) = f(x)thenx:=y

- /

= A very simple algorithm...

* {o enable a mathematical analysis,

* to study mutation in isolation.

= Runtime: First time t at which an optimum of f is generated.
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Jump Functions Benchmark

= JUMP, ,: fitness f(x) of an x € {0,1}" is the number |x|; of ones,
exceptif |[x|]; e{n—m+1,..,n—1},then f(x) =n — |x|;

global optimum
x*=(1,..,1)

1 > |X|1
n

JUMPBy, 5, (x)
A [

N

n/2 n
= Non-trivial local optima: all x € {0,1}" with |x|; = n —m.
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Runtime Analysis

= LetT, = T,(m,n) denote the expected runtime of the (1+1) EA optimizing
JUMP,, ,, with mutation rate p < 1/2.

= Theorem: Forall2<m<n/2andp <1/2,

1 ZIn%
m(q — n-m = TP = m(l _ )n—m T (1 _ )n—l'
p™(1—p) 14 14 p p

(1-0(D))

= Proof of the upper bound:

n

2
»= The local optimum is reached in expected time . (1_p;}1_1 [details omitted]

= The probability that a solution on the local optimum (having m zeroes
and n — m ones) is mutated into the global optimum is p™(1 — p)™*™ .

= Hence another pm(l_lp)n_m iterations (in expectation) to find the optimum.
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Optimal Mutation Rate

= Theorem: If m < n/4, then the optimal mutation rate p, . satisfies

m
Popt = (1 T 0(1));
and give an expected runtime of
Topt = Tpope = (1 4+ 0(1)) T ym.

= - The optimal mutation rate is very different from 1/n!

= -> We are not talking about peanuts. For m = o(n):

* Ty/n = (1+0(1)) en™,

Toa/n = (1+o(1))()
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Missing the Optimal Mutation Rate

Theorem: If p = (1 + &)(m/n) orp < (1 — ¢)(m/n), then

1 m &2
T,(m,n) = c eXP| ¢ Topt(m, n).

Very bad news: In a practical application, you cannot tell what is the “m”.
The estimates above show that guessing it wrong is very costly.

(Obvious) math. reason for the dilemma: When flipping bits independently,
the Hamming distance H(x, y) of parent x and offspring y is strongly
concentrated around the mean.

- Maybe bit-wise mutation is a bad idea?
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Solution: A New Mutation Operator

= Recap: What do we need?
= No strong concentration of H(x, y)
= Larger numbers of bits flip with reasonable probability

= 1-bit flips occur with constant probability (= easy hill-climbing)

» Solution: Heavy-tailed mutation (with parameter f > 1, say g = 1.5).
= Choose « € {1, 2, ...,n/2} randomly with Pr[a] ~ a=# [power-law].

= Perform bit-wise mutation with mutation rate a/n.

= Some maths:
= The probability to flip k bits is ®(k~#). > No strong concentration ©
= Prl[H(x,y) = 1] = 0(1), e.g., =®32% for f = 1.5 (=37% for classic mut.)
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Heavy-tailed Mutation: Results

= Theorem: The (1+1) EA with heavy-tailed mutation (f > 1) has an
expected runtime on JUMP,), ,, of

0 (mﬁ_o's Tope(m, n)) .

= One size fits all: Without “*knowing” m, this mutation operator leads to
almost the optimal runtime.

= Price for “one size fits all”: a factor of m#~%5. Small compared to the
losses from choosing a sub-optima mutation rate.

= Still a speed-up by a factor of m®(™) compared to the classic mutation.

= Good news: This works in practice. Olivier Teytaud (Meta Research, Paris)
is a big fan of this mutation operator.
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Lower Bound on the
Price for one-size fits all

The loss of slightly more than ©(m°®®>) — by taking f =1+ ¢ —
is unavoidable in a one-size fits all solution.

Theorem: Let n be sufficiently large. Let D be any distribution on the
mutation rates in [0,1/2]. Let T, (m, n) be the expected runtime of the
(1+1) EA which in each iteration samples its mutation rate from D, on
JUMP,, ,,.

Then there is an m € [2..n/2] such that Tp(m,n) = v/m Ty, (M, n).

Proof: Clever averaging argument.
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Summary: How Can a Theory Result on
Heuristics Look Like?

We did a precise mathematical runtime analysis of a synthetic scenario
(which was rather elementary here).

From the result and the maths behind, we saw a general problem (the
optimal mutation rate is very problem-specific) and developed a solution
(heavy-tailed mutation operator).

We proved that it solves the problem in the synthetic setting and, again
from understanding the maths, we are confident that this solution also

works in practice.
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Part 2: AofA Meets Heuristics Theory

= While not the typical result in the theory of randomized search heuristics,
AofA-style technique have been used to analyze randomized search
heuristics.

= Hsien-Kuei Hwang, Alois Panholzer, Nicolas Rolin, Tsung-Hsi Tsai, and
Wei-Mei Chen. Probabilistic analysis of the (1+1)-evolutionary algorithm.
Evolutionary Computation, 26:299-345, 2018.

= Very precise analysis of how the (1+1) EA optimize the OneMax
problem via “matched asymptotics”.

= Very precise analysis of how the (1+1) EA optimizes the LeadingOnes
problem via generating functions and recurrence relations.
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(1+1) EA optimizes OneMax: Difficulties

= OneMax problem: f:{0,1}" - Ny; x = ||x]|; “counting the ones”

/- (1+1) EA with mutation rate 1/n, maximizing f: {0,1}" - R \
= Choose x € {0,1}" uniformly at random
= Fort=1,23,..do
= y:= mutate(x) % flip each bit of x independently with prob. 1/n

\ * 02 @ thenx =y /

= The probability to mutate an x with m zeroes into a y with m — £ zeroes, is

SRR [ (5 R IR

0<j<min{n—m,m—~}

* Form =0(n)and ¥ =0(1), thisis ©(1), hence relevant for the 0(n) lower
ordertermin E|[T] = enlnn+c¢;n+ 0.5elnn + ¢, + O(log(n)/n).
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More AofA-Style Results?

So far: Only two AofA-style results on randomized search heuristics:
Runtime analysis of the (1+1) EA with mutation rate 1/n optimizing OneMax
and LeadingOnes.

Do these methods also work for other problems? For example...

~

= Runtime analysis of the (1+1) EA with the heavy-tailed mutation
operator?

* Runtime analyses for the (1+1) EA, which generates A offspring
in each iteration and let the best of parent and offspring survive?

J
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Part 3: Mathematically
Challenging Problems

One motivation for me to work in this field is that even very basic problem
can be mathematically very challenging.

= Sometimes, even the answer is not clear before you have a proof.

Examples: Runtime of the (1+1) EA on...
= Onemax [just discussed],
* linear functions,
= monotonic functions,

= the minimum spanning tree problem.
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Linear Functions

Definition: Let wq, ...,w,, > 0. Then

n
{01} > R, (xq, .., xp) z Wixis
=1

is called a (pseudo-Boolean) /inear function.

= “Same as OneMax, but now the bits may have different weights.”
Question: What is the runtime of the (1+1) EA on such a linear function?

Answer: For all linear functions, E|T| = enlnn + 0(n).

But no intuitive reason and no simple proof.
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Very Different Linear Functions

= Example 1: OneMax, the function counting the number of 1s in a string,
OM: {0,1}" = R, (X1, ..., Xp) P Ditq X;.

= Perfect fitness distance correlation: if a search point has higher
fitness, then it is closer to the global optimum.

= Example 2: BinaryValue, the function mapping a bit-string to the number
it represents in binary, BV:{0,1}"* - R, (x4, ..., x,) = Xi=q 2ty

= Very low fithess-distance correlation:
= BV(10..0) = 2"1 distance to optimumis n — 1,
= BV(01..1) =2""1 -1, distance to optimum is 1.
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A Glimpse on the Proof

= Theorem: For all problem sizes n and all linear functions f:{0,1}" - R with
f(x) =wix; + -+ wyx, the (1+1) EA finds the optimum x* of f in an expected
number of at most 4en In(2en) iterations.

= 18t proof idea: Without loss, we can assume that w, > w, > - > w,, > 0.

= 2" proof idea: Regard an artificial fithess measure!

= Define f(x) = Y, (2 — %) x; artificial weights™ from 2 down to 1 +%

= Key lemma: Consider the (1+1) EA optimizing the original f. Assume that
some iteration starts with the search point x and ends with the random
search point x’. Then

E[f(x)—f(x)]S<1—E>(f(x)—f(x))-
1

—> expected artificial fitness distance reduces by a factor of (1 — E) .

3" proof idea: Translate this expected progress a runtime bound (“drift analysis”).

Note: To prove the tight enlnn + 0(n) bound, one has to choose the artificial
weights dependent on the linear function f ®.
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Monotonic Functions

Definition: A function f:{0,1}"* — R is called monoftonic if the f-value strictly
increases whenever you flip a zero in the argument to one.

Question: What is the runtime of the (1+1) EA on a monotonic function?

Answer: We do not know. Known results for mutation rate c¢/n:
» For 0 < c < 1, the expected runtime on all monotonic fcts. is @(nlogn).
= Forc =1,itis Q(nlogn) and 0(nlog? n) [not known if tight].

= Forc > 2.13 ..., there are monotonic functions such that the runtime is
exponential in n. SURPRISE! Proof via a randomized construction.
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Minimum Spanning Trees

Let G = ([1..n], E) be an undirected graph with edge weights w: E — N.

A minimum spanning tree of G is a subset F c E of edges such that (|[n], F)
is connected and has minimal weight w(F) = }..cr w(e) among all such F.

Using the natural correspondence between bit-string of length |E| and
subsets of E, and giving a high penalty for each extra connected component,
this problem can be formulated as minimization problem over {0,1}£!.

Question: What is the expected runtime of the (1+1) EA on this problem?

Answer: We do not know. Known bounds are
= O0(|E|?log(n wyay)), Where wy,., is the maximum edge weight,

= O(|E|*logn).

Reference: Frank Neumann and Ingo Wegener. Randomized local search, evolutionary algorithms, and the
minimum spanning tree problem. Theoretical Computer Science, 378:32—40, 2007.
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Part 4: State of the Art

We can analyze...

= evolutionary algorithms with non-trivial parent and offspring populations
on classic single- and multi-objective benchmarks and polynomial-time
solvable combinatorial optimization problems

= also in the presence of noise;
= also with dynamic parameter choices;

= ant-colony optimizers and estimation-of-distribution algorithms on many
of the classic benchmarks;

» the Metropolis algorithm and simulated annealing on some problems.
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Part 4: State of the Art (2)

We struggle with

= weighted versions of problems (linear functions, minimum spanning
trees, shortest paths);

= understanding the precise population dynamics, and thus with showing
advantages of crossover (offspring is a mix of two parents) and
advantages from larger population sizes;

= understanding how evolutionary algorithms can profit from non-elitism
(forgetting the current-best solution).
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Summary and Conclusion

= | have shown to you

= what theoretical research on heuristics can look like: analyze a simplified
setting with mathematical means and learn from this;

» that AofA and heuristics theory are not disjoint;
= that there are many “simple” problems waiting for a clever solution;

= what is the state of the art: we can analyze certain heuristics, but we fail
to explain many things the practitioner do.

= [My] conclusion: This is a young area with open problems that are both
mathematically attractive and have the potential to have a broader impact.

= Also, this is an applied area that is very open to theoretical work ©.

1571571 Thanks!
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Further Reading

Benjamin Doerr and Frank Neumann, editors. Theory of Evolutionary
Computation—Recent Developments in Discrete Optimization. Springer,

2020. Freely available at
http://www.lix.polytechnique.fr/lLabo/Benjamin.Doerr/doerr_neumann_book.html.
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Appendix: Multiplicative Drift Theorem

= Theorem: Let X, X;,X,, ... be a sequence of random variables taking values in
the set {0} U [1, ). Let § > 0. Assume that for all t € N, we have

E[Xerq1lXe =x] < (1 =6) x.

Let T := min{t € N |X; = 0}. Then N\
1+ Inx “Drift analysis™
E[T|Xy = x] < 5 Translate
expected progress
into

expected (run-)time Y,

=  Proof of the linear functions result: Use
= § =1/4en,

= X =f&) - f(x®),

= and the estimate X, < 2n.
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