
Theory of Randomized
Search Heuristics

Benh LIEU SONG, CC BY-SA 3.0,
via Wikimedia Commons

Benjamin Doerr
École Polytechnique

Institut Polytechnique de Paris

AofA 2023

Benjamin Doerr: Theory of Randomized Search Heuristics

Outline

 Part 1: What a typical result in the theory of randomized search heuristics
can look like

 Part 2: AofA meets heuristics

 Part 3: Simple problems that are difficult

 Part 4: State of the art

2

Benjamin Doerr: Theory of Randomized Search Heuristics

Part 1: Example for a Theoretical Work
on Evolutionary Algorithms

 Plan for this part of the talk: Show to you how a useful theory result in this
area can look like (but not all results have to follow this scheme).

 Analyze how a very simple heuristic solves a very simple problem
(proven results).
 Simplicity of the setting necessary for a strong math. analysis.

 From the result and the proof, obtain insights that could be true in more
complex settings.
 Here the clarifying nature of the maths is crucial!

 Follow-up work (by others): Validate these insights on real-world
settings.

3

Benjamin Doerr: Theory of Randomized Search Heuristics

A Very Little Background on
Evolutionary Algorithms

 Evolutionary algorithms (EAs) solve problems by setting up an evolutionary
process with solution candidates as individuals.

 Hope: After some time, the individuals in the process represent good
solutions to the problem one wants to solve.

 Very successful in practice – not because mimicking evolution gives some
mysterious computational advantage, but because practitioners find it easy
to design good algorithms in this paradigm.

4

Benjamin Doerr: Theory of Randomized Search Heuristics

How Does an EA Look Like?

 Initialization: Put random solutions in the parent population ଴.

 For do

 From suitably selected* parents from ௧ିଵ, create offspring via

 mutation: small random modification of a parent;

 crossover: random mix of two parents.

 From the parents and offspring, select* individuals as
next parent population ௧.

 If terminate, then output the best solution ever seen and STOP

 By setting the parameters and choosing suitable selection, mutation, and
crossover operators, the EA can be adjusted to the problem to be solved.

5

*) Selections may depend on the solution quality. By this the EA “sees” the problem.

Benjamin Doerr: Theory of Randomized Search Heuristics

Research Question Discussed Now:
What is the Right Way of Doing Mutation?

 We only regard bit-string representations:

 Solutions are described via bit-strings of length .

 The most common representation for EAs.

 General recommendation: Bit-wise mutation

 Obtain the offspring by flipping each bit of the parent independently
with some probability (“mutation rate”).

 Global operator: from any parent you can generate any offspring
 Algorithms cannot get stuck forever in a local optimum.

 General recommendation: Use a small mutation rate like .

  In expectation, you flip one bit.

6

101001

Benjamin Doerr: Theory of Randomized Search Heuristics

Informal Justifications for

 Imitate local search / hill-climbing: A mutation rate of maximizes the
probability ௡ିଵ to flip a single bit.

 Mutation is destructive: If your current search point has a Hamming
distance ∗ of less than from the optimum ∗, then the offspring
has (in expectation) a larger Hamming distance and this increase is
proportional to :

 ∗ ∗ ∗

7

at most for some constant
at least for some constant
both and

Benjamin Doerr: Theory of Randomized Search Heuristics

Proven Results Supporting

 For some very simple test-cases, a mutation rate of (or close to that) was
proven to give the asymptotically optimal expected runtime.

 (1+1) EA optimizes OneMax.

 (1+1) EA optimizes LeadingOnes (optimal mutation rate).

 (1+1) EA optimizes a pseudo-Boolean linear functions.

 (1+1) EA optimizes a monotonic function.

 (1+) EA with optimizes OneMax.

 No convincing result that proves a different mutation rate to be preferable.

8

Benjamin Doerr: Theory of Randomized Search Heuristics

Our Work*

 Previous state of the art:

 Strong belief that bit-wise mutation with rate is the best way to
mutate solutions.

 Based on informal considerations and mathematical proofs on very
simple problems (without local optima).

 Our work: Conduct a mathematical runtime analysis on a classic
benchmark that has local optima and see what is the best mutation rate.

 Algorithm: (1+1) EA [next slide]

 Benchmark problem: Jump functions [slide after next slide]

9

*) Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, Ta Duy Nguyen: Fast genetic algorithms.
Genetic and Evolutionary Computation Conference (GECCO) 2017, pages 777-784. ACM

Benjamin Doerr: Theory of Randomized Search Heuristics

(1+1) Evolutionary Algorithm

 (1+1) EA with mutation rate , maximizing 𝒏

 Choose ௡ uniformly at random

 For do

 % flip each bit of independently with prob.

 if then

 A very simple algorithm…

 to enable a mathematical analysis,

 to study mutation in isolation.

 Runtime: First time at which an optimum of is generated.

10

Benjamin Doerr: Theory of Randomized Search Heuristics

Jump Functions Benchmark

 ௠,௡: fitness of an ௡ is the number ଵ of ones,
except if ଵ , then ଵ

 Non-trivial local optima: all ௡ with ଵ .

11

ଵ

௠,௡

global optimum
∗

Benjamin Doerr: Theory of Randomized Search Heuristics

Runtime Analysis

 Let ௣ ௣ denote the expected runtime of the (1+1) EA optimizing

௠,௡ with mutation rate .

 Theorem: For all and ,

𝒎 𝒏ି𝒎 ௣ 𝒎 𝒏ି𝒎 ௡ିଵ

 Proof of the upper bound:

 The local optimum is reached in expected time
ଶ ୪

೙

೘

௣ ଵି௣ ೙షభ [details omitted]

 The probability that a solution on the local optimum (having zeroes
and ones) is mutated into the global optimum is ௠ ௡ି௠.

 Hence another
ଵ

௣೘ ଵି௣ ೙ష೘ iterations (in expectation) to find the optimum.

12

Benjamin Doerr: Theory of Randomized Search Heuristics

Optimal Mutation Rate

 Theorem: If , then the optimal mutation rate ୭୮୲ satisfies

୭୮୲

and give an expected runtime of

୭୮୲ ௣౥౦౪ ௠ ௡⁄

  The optimal mutation rate is very different from !

  We are not talking about peanuts. For :

 𝟏 𝒏⁄
𝒎,

 𝒎 𝒏⁄
𝒆

𝒎

𝒎
𝒎.

13

Benjamin Doerr: Theory of Randomized Search Heuristics

Missing the Optimal Mutation Rate

 Theorem: If or , then

௣

ଶ

୭୮୲

 Very bad news: In a practical application, you cannot tell what is the “ ”.
The estimates above show that guessing it wrong is very costly.

 (Obvious) math. reason for the dilemma: When flipping bits independently,
the Hamming distance of parent and offspring is strongly
concentrated around the mean.

  Maybe bit-wise mutation is a bad idea?

14

Benjamin Doerr: Theory of Randomized Search Heuristics

Solution: A New Mutation Operator

 Recap: What do we need?

 No strong concentration of

 Larger numbers of bits flip with reasonable probability

 1-bit flips occur with constant probability ( easy hill-climbing)

 Solution: Heavy-tailed mutation (with parameter , say).

 Choose randomly with ିఉ [power-law].

 Perform bit-wise mutation with mutation rate .

 Some maths:

 The probability to flip bits is ିఉ .  No strong concentration 

 , e.g., 32% for (37% for classic mut.)

15

Benjamin Doerr: Theory of Randomized Search Heuristics

Heavy-tailed Mutation: Results

 Theorem: The (1+1) EA with heavy-tailed mutation () has an
expected runtime on ௠,௡ of

ఉି଴.ହ
௢௣௧

 One size fits all: Without “knowing” , this mutation operator leads to
almost the optimal runtime.

 Price for “one size fits all”: a factor of ఉି଴.ହ Small compared to the
losses from choosing a sub-optima mutation rate.

 Still a speed-up by a factor of ஀(௠) compared to the classic mutation.

 Good news: This works in practice. Olivier Teytaud (Meta Research, Paris)
is a big fan of this mutation operator.

16

Benjamin Doerr: Theory of Randomized Search Heuristics

Lower Bound on the
Price for one-size fits all

 The loss of slightly more than ଴.ହ – by taking –
is unavoidable in a one-size fits all solution.

 Theorem: Let be sufficiently large. Let be any distribution on the
mutation rates in . Let ஽ be the expected runtime of the
(1+1) EA which in each iteration samples its mutation rate from , on

௠,௡.

 Then there is an such that ஽ ௢௣௧ .

 Proof: Clever averaging argument.

17

Benjamin Doerr: Theory of Randomized Search Heuristics

Summary: How Can a Theory Result on
Heuristics Look Like?

 We did a precise mathematical runtime analysis of a synthetic scenario
(which was rather elementary here).

 From the result and the maths behind, we saw a general problem (the
optimal mutation rate is very problem-specific) and developed a solution
(heavy-tailed mutation operator).

 We proved that it solves the problem in the synthetic setting and, again
from understanding the maths, we are confident that this solution also
works in practice.

18

Benjamin Doerr: Theory of Randomized Search Heuristics

Part 2: AofA Meets Heuristics Theory

 While not the typical result in the theory of randomized search heuristics,
AofA-style technique have been used to analyze randomized search
heuristics.

 Hsien-Kuei Hwang, Alois Panholzer, Nicolas Rolin, Tsung-Hsi Tsai, and
Wei-Mei Chen. Probabilistic analysis of the (1+1)-evolutionary algorithm.
Evolutionary Computation, 26:299–345, 2018.

 Very precise analysis of how the (1+1) EA optimize the OneMax
problem via “matched asymptotics”.

 Very precise analysis of how the (1+1) EA optimizes the LeadingOnes
problem via generating functions and recurrence relations.

19

Benjamin Doerr: Theory of Randomized Search Heuristics

 OneMax problem: ௡
଴ ଵ “counting the ones”

 (1+1) EA with mutation rate , maximizing 𝒏

 Choose ௡ uniformly at random

 For do

 % flip each bit of independently with prob.

 if then

 The probability to mutate an with zeroes into a with zeroes, is

 For and , this is , hence relevant for the lower
order term in ଵ ଶ .

(1+1) EA optimizes OneMax: Difficulties

20

Benjamin Doerr: Theory of Randomized Search Heuristics

 So far: Only two AofA-style results on randomized search heuristics:
Runtime analysis of the (1+1) EA with mutation rate optimizing OneMax
and LeadingOnes.

 Do these methods also work for other problems? For example…

 Runtime analysis of the (1+1) EA with the heavy-tailed mutation
operator?

 Runtime analyses for the (1+) EA, which generates offspring
in each iteration and let the best of parent and offspring survive?

More AofA-Style Results?

21

Benjamin Doerr: Theory of Randomized Search Heuristics

 One motivation for me to work in this field is that even very basic problem
can be mathematically very challenging.

 Sometimes, even the answer is not clear before you have a proof.

 Examples: Runtime of the (1+1) EA on…

 Onemax [just discussed],

 linear functions,

 monotonic functions,

 the minimum spanning tree problem.

Part 3: Mathematically
Challenging Problems

22

Benjamin Doerr: Theory of Randomized Search Heuristics

 Definition: Let ଵ ௡ . Then

௡
ଵ ௡ ௜ ௜

௡

௜ୀଵ

is called a (pseudo-Boolean) linear function.

 “Same as OneMax, but now the bits may have different weights.”

 Question: What is the runtime of the (1+1) EA on such a linear function?

 Answer: For all linear functions, .

 But no intuitive reason and no simple proof.

Linear Functions

23

Benjamin Doerr: Theory of Randomized Search Heuristics

Very Different Linear Functions

 Example 1: OneMax, the function counting the number of 1s in a string,
௡

ଵ ௡ ௜
௡
௜ୀଵ .

 Perfect fitness distance correlation: if a search point has higher
fitness, then it is closer to the global optimum.

 Example 2: BinaryValue, the function mapping a bit-string to the number
it represents in binary, ௡

ଵ ௡
௡ି௜

௜
௡
௜ୀଵ .

 Very low fitness-distance correlation:

 ௡ିଵ, distance to optimum is ,

 ௡ିଵ , distance to optimum is .

24

Benjamin Doerr: Theory of Randomized Search Heuristics

A Glimpse on the Proof

 Theorem: For all problem sizes and all linear functions ௡ with

ଵ ଵ ௡ ௡ the (1+1) EA finds the optimum ∗ of in an expected
number of at most iterations.

 1st proof idea: Without loss, we can assume that ଵ ଶ ௡ .

 2nd proof idea: Regard an artificial fitness measure!

 Define
௜ିଵ

௡ ௜
௡
௜ୀଵ “artificial weights” from down to

ଵ

௡

 Key lemma: Consider the (1+1) EA optimizing the original . Assume that
some iteration starts with the search point and ends with the random
search point . Then

∗ ᇱ ∗

 expected artificial fitness distance reduces by a factor of
ଵ

ସ௘௡

 3rd proof idea: Translate this expected progress a runtime bound (“drift analysis”).

 Note: To prove the tight bound, one has to choose the artificial
weights dependent on the linear function .

25

Benjamin Doerr: Theory of Randomized Search Heuristics

 First (and complicated) proof of an upper bound for all linear
functions: Stefan Droste, Thomas Jansen, and Ingo Wegener. On the
analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science,
276:51–81, 2002.

 Proof via multiplicative drift: Benjamin Doerr, Daniel Johannsen, and Carola
Winzen. Multiplicative drift analysis. Algorithmica, 64:673–697, 2012.

 Proof of this result for all mutation rates , a constant: Benjamin Doerr
and Leslie A. Goldberg. Adaptive drift analysis. Algorithmica, 65:224–250,
2013.

 Proof the bound: Carsten Witt. Tight bounds on the
optimization time of a randomized search heuristic on linear functions.
Combinatorics, Probability & Computing, 22:294–318, 2013.

References

26

Benjamin Doerr: Theory of Randomized Search Heuristics

 Definition: A function ௡ is called monotonic if the -value strictly
increases whenever you flip a zero in the argument to one.

 Question: What is the runtime of the (1+1) EA on a monotonic function?

 Answer: We do not know. Known results for mutation rate :

 For , the expected runtime on all monotonic fcts. is

 For , it is and ଶ [not known if tight].

 For , there are monotonic functions such that the runtime is
exponential in . SURPRISE! Proof via a randomized construction.

Monotonic Functions

27

Benjamin Doerr: Theory of Randomized Search Heuristics

 First proof that monotonic functions can be difficult to optimize (when the
mutation rate is or higher): Benjamin Doerr, Thomas Jansen, Dirk
Sudholt, Carola Winzen, and Christine Zarges. Mutation rate matters even
when optimizing mono tone functions. Evolutionary Computation, 21:1–21,
2013.

 Proof that this problem appears already for mutation rates above :
Johannes Lengler and Angelika Steger. Drift analysis and evolutionary
algorithms revisited. Combinatorics, Probability & Computing, 27:643–666,
2018.

 Proof of the ଶ bound for mutation rate : Johannes Lengler,
Anders Martinsson, and Angelika Steger. When does hillclimbing fail on
monotone functions: an entropy compression argument. In Analytic
Algorithmics and Combinatorics, ANALCO 2019, pages 94–102. SIAM,
2019.

References

28

Benjamin Doerr: Theory of Randomized Search Heuristics

 Let be an undirected graph with edge weights .

 A minimum spanning tree of is a subset of edges such that
is connected and has minimal weight ௘∈ி among all such .

 Using the natural correspondence between bit-string of length and
subsets of , and giving a high penalty for each extra connected component,
this problem can be formulated as minimization problem over |ா|.

 Question: What is the expected runtime of the (1+1) EA on this problem?

 Answer: We do not know. Known bounds are

 ଶ
୫ୟ୶ , where ୫ୟ୶ is the maximum edge weight,

 ଶ

 Reference: Frank Neumann and Ingo Wegener. Randomized local search, evolutionary algorithms, and the
minimum spanning tree problem. Theoretical Computer Science, 378:32–40, 2007.

Minimum Spanning Trees

29

Benjamin Doerr: Theory of Randomized Search Heuristics

 We can analyze…

 evolutionary algorithms with non-trivial parent and offspring populations
on classic single- and multi-objective benchmarks and polynomial-time
solvable combinatorial optimization problems

 also in the presence of noise;

 also with dynamic parameter choices;

 ant-colony optimizers and estimation-of-distribution algorithms on many
of the classic benchmarks;

 the Metropolis algorithm and simulated annealing on some problems.

Part 4: State of the Art

30

Benjamin Doerr: Theory of Randomized Search Heuristics

 We struggle with

 weighted versions of problems (linear functions, minimum spanning
trees, shortest paths);

 understanding the precise population dynamics, and thus with showing
advantages of crossover (offspring is a mix of two parents) and
advantages from larger population sizes;

 understanding how evolutionary algorithms can profit from non-elitism
(forgetting the current-best solution).

Part 4: State of the Art (2)

31

Benjamin Doerr: Theory of Randomized Search Heuristics

 I have shown to you

 what theoretical research on heuristics can look like: analyze a simplified
setting with mathematical means and learn from this;

 that AofA and heuristics theory are not disjoint;

 that there are many “simple” problems waiting for a clever solution;

 what is the state of the art: we can analyze certain heuristics, but we fail
to explain many things the practitioner do.

 [My] conclusion: This is a young area with open problems that are both
mathematically attractive and have the potential to have a broader impact.

 Also, this is an applied area that is very open to theoretical work .

Summary and Conclusion

32

谢谢! Thanks!

Benjamin Doerr: Theory of Randomized Search Heuristics

 Benjamin Doerr and Frank Neumann, editors. Theory of Evolutionary
Computation—Recent Developments in Discrete Optimization. Springer,
2020. Freely available at
http://www.lix.polytechnique.fr/Labo/Benjamin.Doerr/doerr_neumann_book.html.

Further Reading

33

Benjamin Doerr: Theory of Randomized Search Heuristics

Appendix: Multiplicative Drift Theorem

 Theorem: Let ଴ ଵ ଶ be a sequence of random variables taking values in
the set . Let . Assume that for all , we have

௧ାଵ ௧

Let ௧ . Then

଴

 Proof of the linear functions result: Use

 ,

 ௧
∗ (௧) ,

 and the estimate ଴ .

34

“Drift analysis”:
Translate

expected progress
into

expected (run-)time

