

Theory of Randomized Search Heuristics

Benjamin Doerr École Polytechnique Institut Polytechnique de Paris

AofA 2023

Outline

- Part 1: What a typical result in the theory of randomized search heuristics can look like
- Part 2: AofA meets heuristics
- Part 3: Simple problems that are difficult
- Part 4: State of the art

Part 1: Example for a Theoretical Work on Evolutionary Algorithms

- Plan for this part of the talk: Show to you how a useful theory result in this area can look like (but not all results have to follow this scheme).
 - Analyze how a very simple heuristic solves a very simple problem (proven results).
 Simplicity of the setting persons for a strong mathematic

 \rightarrow Simplicity of the setting necessary for a strong math. analysis.

 From the result and the proof, obtain insights that could be true in more complex settings.

 \rightarrow Here the clarifying nature of the maths is crucial!

 Follow-up work (by others): Validate these insights on real-world settings.

A Very Little Background on Evolutionary Algorithms

- Evolutionary algorithms (EAs) solve problems by setting up an evolutionary process with solution candidates as individuals.
 - Hope: After some time, the individuals in the process represent good solutions to the problem one wants to solve.
- Very successful in practice not because mimicking evolution gives some mysterious computational advantage, but because practitioners find it easy to design good algorithms in this paradigm.

How Does an EA Look Like?

- Initialization: Put μ random solutions in the parent population P_0 .
- For *t* = 1,2,3, ... do
 - From suitably selected* parents from P_{t-1} , create λ offspring via
 - mutation: small random modification of a parent;
 - crossover: random mix of two parents.
 - From the μ parents and λ offspring, select* μ individuals as next parent population P_t .
 - If *terminate*, then output the best solution ever seen and STOP
- By setting the parameters and choosing suitable selection, mutation, and crossover operators, the EA can be adjusted to the problem to be solved.

*) Selections may depend on the solution quality. By this the EA "sees" the problem.

Benjamin Doerr: Theory of Randomized Search Heuristics

Research Question Discussed Now: What is the Right Way of Doing Mutation?

- We only regard *bit-string representations*:
 - Solutions are described via bit-strings of length n.
 - The most common representation for EAs.
- General recommendation: *Bit-wise mutation*
 - Obtain the offspring by flipping each bit of the parent independently with some probability p ("mutation rate").
 - Global operator: from any parent you can generate any offspring
 Algorithms cannot get stuck forever in a local optimum.
- General recommendation: Use a small mutation rate like p = 1/n.
 - \rightarrow In expectation, you flip one bit.

Informal Justifications for p = 1/n

Imitate local search / hill-climbing: A mutation rate of 1/n maximizes the probability $p(1-p)^{n-1}$ to flip a single bit.

- Mutation is destructive: If your current search point x has a Hamming distance H(x, x*) of less than n/2 from the optimum x*, then the offspring y has (in expectation) a larger Hamming distance and this increase is proportional to p:
 - $E[H(y, x^*)] = H(x, x^*) + p(n 2H(x, x^*))$

 $O(c) = \operatorname{at} \operatorname{most} \gamma c$ for some constant γ $\Omega(c) = \operatorname{at} \operatorname{least} \delta c$ for some constant $\delta > 0$ $\Theta(c) = \operatorname{both} O(c)$ and $\Omega(c)$

Proven Results Supporting p = 1/n

- For some very simple test-cases, a mutation rate of 1/n (or close to that) was
 proven to give the asymptotically optimal expected runtime.
 - (1+1) EA optimizes OneMax.
 - (1+1) EA optimizes LeadingOnes (optimal mutation rate 1.59/n).
 - (1+1) EA optimizes a pseudo-Boolean linear functions.
 - (1+1) EA optimizes a monotonic function.
 - $(1+\lambda)$ EA with $\lambda \leq \ln n$ optimizes OneMax.
- No convincing result that proves a different mutation rate to be preferable.

Our Work*

- Previous state of the art:
 - Strong belief that bit-wise mutation with rate 1/n is the best way to mutate solutions.
 - Based on informal considerations and mathematical proofs on very simple problems (without local optima).
- Our work: Conduct a mathematical runtime analysis on a classic benchmark that has local optima and see what is the best mutation rate.
 - Algorithm: (1+1) EA [next slide]
 - Benchmark problem: Jump functions [slide after next slide]

*) Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, Ta Duy Nguyen: Fast genetic algorithms. Genetic and Evolutionary Computation Conference (GECCO) 2017, pages 777-784. ACM

(1+1) Evolutionary Algorithm

- (1+1) EA with mutation rate p, maximizing $f: \{0, 1\}^n \to \mathbb{R}$
- Choose $x \in \{0,1\}^n$ uniformly at random
- For *t* = 1,2,3, ... do
 - $y \coloneqq \text{mutate}(x)$ % flip each bit of x independently with prob. p
 - if $f(y) \ge f(x)$ then $x \coloneqq y$

- A very simple algorithm...
 - to enable a mathematical analysis,
 - to study mutation in isolation.
- Runtime: First time t at which an optimum of f is generated.

Jump Functions Benchmark

• $JUMP_{m,n}$: fitness f(x) of an $x \in \{0,1\}^n$ is the number $|x|_1$ of ones, except if $|x|_1 \in \{n - m + 1, ..., n - 1\}$, then $f(x) = n - |x|_1$

• Non-trivial *local optima*: all $x \in \{0,1\}^n$ with $|x|_1 = n - m$.

Runtime Analysis

- Let $T_p = T_p(m, n)$ denote the expected runtime of the (1+1) EA optimizing $JUMP_{m,n}$ with mutation rate $p \le 1/2$.
- Theorem: For all $2 \le m \le n/2$ and $p \le 1/2$,

$$(1-o(1))\frac{1}{p^m(1-p)^{n-m}} \le T_p \le \frac{1}{p^m(1-p)^{n-m}} + \frac{2\ln\frac{n}{m}}{p(1-p)^{n-1}}.$$

- Proof of the upper bound:
 - The local optimum is reached in expected time $\frac{21 \frac{n}{m}}{p(1-p)^{n-1}}$ [details omitted]
 - The probability that a solution on the local optimum (having *m* zeroes and n m ones) is mutated into the global optimum is $p^m(1-p)^{n-m}$.
 - Hence another $\frac{1}{p^m(1-p)^{n-m}}$ iterations (in expectation) to find the optimum.

20

Optimal Mutation Rate

• Theorem: If $m \le n/4$, then the optimal mutation rate p_{opt} satisfies

$$p_{\rm opt} = \left(1 \pm o(1)\right) \frac{m}{n}$$

and give an expected runtime of

$$T_{\text{opt}} \coloneqq T_{p_{\text{opt}}} = (1 + o(1))T_{m/n}$$

- \rightarrow The optimal mutation rate is very different from 1/n !
- \rightarrow We are not talking about peanuts. For m = o(n):

•
$$T_{1/n} = (1 + o(1)) e n^m$$
,

•
$$T_{m/n} = \left(1 + o(1)\right) \left(\frac{e}{m}\right)^m n^m$$
.

Missing the Optimal Mutation Rate

- Theorem: If $p \ge (1 + \varepsilon)(m/n)$ or $p \le (1 \varepsilon)(m/n)$, then $T_p(m, n) \ge \frac{1}{6} \exp\left(\frac{m \varepsilon^2}{5}\right) T_{\text{opt}}(m, n).$
- Very bad news: In a practical application, you cannot tell what is the "m".
 The estimates above show that guessing it wrong is very costly.
- (Obvious) math. reason for the dilemma: When flipping bits independently, the Hamming distance H(x, y) of parent x and offspring y is strongly concentrated around the mean.

■ → Maybe bit-wise mutation is a bad idea?

Solution: A New Mutation Operator

- Recap: What do we need?
 - No strong concentration of H(x, y)
 - Larger numbers of bits flip with reasonable probability
 - 1-bit flips occur with constant probability (\rightarrow easy hill-climbing)
- Solution: *Heavy-tailed mutation* (with parameter $\beta > 1$, say $\beta = 1.5$).
 - Choose $\alpha \in \{1, 2, ..., n/2\}$ randomly with $Pr[\alpha] \sim \alpha^{-\beta}$ [power-law].
 - Perform bit-wise mutation with mutation rate α/n .
- Some maths:
 - The probability to flip k bits is $\Theta(k^{-\beta})$. \rightarrow No strong concentration \bigcirc
 - $\Pr[H(x, y) = 1] = \Theta(1)$, e.g., $\approx 32\%$ for $\beta = 1.5$ ($\approx 37\%$ for classic mut.)

Heavy-tailed Mutation: Results

• Theorem: The (1+1) EA with heavy-tailed mutation ($\beta > 1$) has an expected runtime on $JUMP_{m,n}$ of

 $O\left(m^{\beta-0.5} T_{opt}(m,n)\right).$

- One size fits all: Without "knowing" m, this mutation operator leads to almost the optimal runtime.
 - Price for "one size fits all": a factor of m^{β-0.5}. Small compared to the losses from choosing a sub-optima mutation rate.
 - Still a speed-up by a factor of $m^{\Theta(m)}$ compared to the classic mutation.
- Good news: This works in practice. Olivier Teytaud (Meta Research, Paris) is a big fan of this mutation operator.

Lower Bound on the *Price for one-size fits all*

- The loss of slightly more than $\Theta(m^{0.5})$ by taking $\beta = 1 + \varepsilon$ is unavoidable in a one-size fits all solution.
- Theorem: Let *n* be sufficiently large. Let *D* be any distribution on the mutation rates in [0, 1/2]. Let $T_D(m, n)$ be the expected runtime of the (1+1) EA which in each iteration samples its mutation rate from *D*, on $JUMP_{m,n}$.
- Then there is an $m \in [2 ... n/2]$ such that $T_D(m, n) \ge \sqrt{m} T_{opt}(m, n)$.
- Proof: Clever averaging argument.

Summary: How Can a Theory Result on Heuristics Look Like?

- We did a precise mathematical runtime analysis of a synthetic scenario (which was rather elementary here).
- From the result and the maths behind, we saw a general problem (the optimal mutation rate is very problem-specific) and developed a solution (heavy-tailed mutation operator).
- We proved that it solves the problem in the synthetic setting and, again from understanding the maths, we are confident that this solution also works in practice.

Part 2: AofA Meets Heuristics Theory

- While not the typical result in the theory of randomized search heuristics, AofA-style technique have been used to analyze randomized search heuristics.
- Hsien-Kuei Hwang, Alois Panholzer, Nicolas Rolin, Tsung-Hsi Tsai, and Wei-Mei Chen. Probabilistic analysis of the (1+1)-evolutionary algorithm. *Evolutionary Computation*, 26:299–345, 2018.
 - Very precise analysis of how the (1+1) EA optimize the OneMax problem via "matched asymptotics".
 - Very precise analysis of how the (1+1) EA optimizes the LeadingOnes problem via generating functions and recurrence relations.

(1+1) EA optimizes OneMax: Difficulties

- OneMax problem: $f: \{0,1\}^n \to \mathbb{N}_0; x \mapsto ||x||_1$ "counting the ones"
 - (1+1) EA with mutation rate 1/n, maximizing $f: \{0, 1\}^n \to \mathbb{R}$
 - Choose $x \in \{0,1\}^n$ uniformly at random
 - For *t* = 1,2,3, ... do
 - $y \coloneqq \text{mutate}(x)$ % flip each bit of x independently with prob. 1/n
 - if $f(y) \ge f(x)$ then $x \coloneqq y$
- The probability to mutate an x with m zeroes into a y with $m \ell$ zeroes, is

$$\lambda_{n,m,\ell} = \sum_{0 \leqslant j \leqslant \min\{n-m,m-\ell\}} \binom{n-m}{j} \left(\frac{1}{n}\right)^j \left(1-\frac{1}{n}\right)^{n-m-j} \binom{m}{j+\ell} \left(\frac{1}{n}\right)^{j+\ell} \left(1-\frac{1}{n}\right)^{m-j-\ell}$$

• For $m = \Theta(n)$ and $\ell = \Theta(1)$, this is $\Theta(1)$, hence relevant for the $\Theta(n)$ lower order term in $E[T] = en \ln n + c_1 n + 0.5 e \ln n + c_2 + O(\log(n)/n)$.

More AofA-Style Results?

- So far: Only two AofA-style results on randomized search heuristics: Runtime analysis of the (1+1) EA with mutation rate 1/n optimizing OneMax and LeadingOnes.
- Do these methods also work for other problems? For example...
 - Runtime analysis of the (1+1) EA with the heavy-tailed mutation operator?
 - Runtime analyses for the $(1+\lambda)$ EA, which generates λ offspring in each iteration and let the best of parent and offspring survive?

Part 3: Mathematically Challenging Problems

- One motivation for me to work in this field is that even very basic problem can be mathematically very challenging.
 - Sometimes, even the answer is not clear before you have a proof.
- Examples: Runtime of the (1+1) EA on...
 - Onemax [just discussed],
 - linear functions,
 - monotonic functions,
 - the minimum spanning tree problem.

Linear Functions

• Definition: Let $w_1, \dots, w_n > 0$. Then

$$f: \{0,1\}^n \to \mathbb{R}, (x_1, \dots, x_n) \mapsto \sum_{i=1}^n w_i x_i,$$

is called a (pseudo-Boolean) *linear function*.

- "Same as OneMax, but now the bits may have different weights."
- Question: What is the runtime of the (1+1) EA on such a linear function?
- Answer: For all linear functions, $E[T] = en \ln n \pm O(n)$.
- But no intuitive reason and no simple proof.

Very Different Linear Functions

- **Example 1:** OneMax, the function counting the number of 1s in a string, OM: $\{0,1\}^n \to \mathbb{R}, (x_1, ..., x_n) \mapsto \sum_{i=1}^n x_i$.
 - Perfect fitness distance correlation: if a search point has higher fitness, then it is closer to the global optimum.

- **Example 2:** BinaryValue, the function mapping a bit-string to the number it represents in binary, BV: $\{0,1\}^n \to \mathbb{R}, (x_1, \dots, x_n) \mapsto \sum_{i=1}^n 2^{n-i} x_i$.
 - Very low fitness-distance correlation:
 - $BV(10 ... 0) = 2^{n-1}$, distance to optimum is n 1,
 - $BV(01 ... 1) = 2^{n-1} 1$, distance to optimum is 1.

A Glimpse on the Proof

- <u>Theorem</u>: For all problem sizes *n* and all linear functions $f: \{0,1\}^n \to \mathbb{R}$ with $f(x) = w_1 x_1 + \dots + w_n x_n$ the (1+1) EA finds the optimum x^* of *f* in an expected number of at most $4en \ln(2en)$ iterations.
- <u>1st proof idea</u>: Without loss, we can assume that $w_1 \ge w_2 \ge \cdots \ge w_n > 0$.
- <u>2nd proof idea:</u> Regard an artificial fitness measure!
 - Define $\tilde{f}(x) = \sum_{i=1}^{n} \left(2 \frac{i-1}{n}\right) x_i$ "artificial weights" from 2 down to $1 + \frac{1}{n}$
 - Key lemma: Consider the (1+1) EA optimizing the original *f*. Assume that some iteration starts with the search point *x* and ends with the random search point *x*'. Then

$$E\left[\tilde{f}(x^*) - \tilde{f}(x')\right] \le \left(1 - \frac{1}{4en}\right) \left(\tilde{f}(x^*) - \tilde{f}(x)\right).$$

→ expected artificial fitness distance reduces by a factor of $\left(1 - \frac{1}{4en}\right)$.

- <u>3rd proof idea:</u> Translate this expected progress a runtime bound ("drift analysis").
- Note: To prove the tight $en \ln n \pm O(n)$ bound, one has to choose the artificial weights dependent on the linear function $f \otimes$.

References

- First (and complicated) proof of an O(n log n) upper bound for all linear functions: Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (1+1) evolutionary algorithm. *Theoretical Computer Science*, 276:51–81, 2002.
- Proof via multiplicative drift: Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multiplicative drift analysis. *Algorithmica*, 64:673–697, 2012.
- Proof of this result for all mutation rates c/n, c a constant: Benjamin Doerr and Leslie A. Goldberg. Adaptive drift analysis. *Algorithmica*, 65:224–250, 2013.
- Proof the $(1 \pm o(1))e n \ln n$ bound: Carsten Witt. Tight bounds on the optimization time of a randomized search heuristic on linear functions. *Combinatorics, Probability & Computing*, 22:294–318, 2013.

Monotonic Functions

- Definition: A function $f: \{0,1\}^n \to \mathbb{R}$ is called *monotonic* if the *f*-value strictly increases whenever you flip a zero in the argument to one.
- Question: What is the runtime of the (1+1) EA on a monotonic function?
- Answer: We do not know. Known results for mutation rate c/n:
 - For 0 < c < 1, the expected runtime on all monotonic fcts. is $\Theta(n \log n)$.
 - For c = 1, it is $\Omega(n \log n)$ and $O(n \log^2 n)$ [not known if tight].
 - For c > 2.13 ..., there are monotonic functions such that the runtime is exponential in n. SURPRISE! Proof via a randomized construction.

References

- First proof that monotonic functions can be difficult to optimize (when the mutation rate is 16/n or higher): Benjamin Doerr, Thomas Jansen, Dirk Sudholt, Carola Winzen, and Christine Zarges. Mutation rate matters even when optimizing mono tone functions. *Evolutionary Computation*, 21:1–21, 2013.
- Proof that this problem appears already for mutation rates above ≈ 2.13/n: Johannes Lengler and Angelika Steger. Drift analysis and evolutionary algorithms revisited. *Combinatorics, Probability & Computing*, 27:643–666, 2018.
- Proof of the O(n log² n) bound for mutation rate 1/n: Johannes Lengler, Anders Martinsson, and Angelika Steger. When does hillclimbing fail on monotone functions: an entropy compression argument. In *Analytic Algorithmics and Combinatorics, ANALCO 2019*, pages 94–102. SIAM, 2019.

Minimum Spanning Trees

- Let G = ([1..n], E) be an undirected graph with edge weights $w: E \to \mathbb{N}$.
- A minimum spanning tree of *G* is a subset $F \subset E$ of edges such that ([n], F) is connected and has minimal weight $w(F) = \sum_{e \in F} w(e)$ among all such *F*.
- Using the natural correspondence between bit-string of length |*E*| and subsets of *E*, and giving a high penalty for each extra connected component, this problem can be formulated as minimization problem over {0,1}^{|E|}.
- Question: What is the expected runtime of the (1+1) EA on this problem?
- Answer: We do not know. Known bounds are
 - $O(|E|^2 \log(n w_{\text{max}}))$, where w_{max} is the maximum edge weight,
 - $\Omega(|E|^2 \log n).$
- Reference: Frank Neumann and Ingo Wegener. Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theoretical Computer Science, 378:32–40, 2007.

Part 4: State of the Art

- We can analyze...
 - evolutionary algorithms with non-trivial parent and offspring populations on classic single- and multi-objective benchmarks and polynomial-time solvable combinatorial optimization problems
 - also in the presence of noise;
 - also with dynamic parameter choices;
 - ant-colony optimizers and estimation-of-distribution algorithms on many of the classic benchmarks;
 - the Metropolis algorithm and simulated annealing on some problems.

Part 4: State of the Art (2)

- We struggle with
 - weighted versions of problems (linear functions, minimum spanning trees, shortest paths);
 - understanding the precise population dynamics, and thus with showing advantages of crossover (offspring is a mix of two parents) and advantages from larger population sizes;
 - understanding how evolutionary algorithms can profit from non-elitism (forgetting the current-best solution).

Summary and Conclusion

- I have shown to you
 - what theoretical research on heuristics can look like: analyze a simplified setting with mathematical means and learn from this;
 - that AofA and heuristics theory are not disjoint;
 - that there are many "simple" problems waiting for a clever solution;
 - what is the state of the art: we can analyze certain heuristics, but we fail to explain many things the practitioner do.
- [My] conclusion: This is a young area with open problems that are both mathematically attractive and have the potential to have a broader impact.
 - Also, this is an applied area that is very open to theoretical work ☺.

谢谢! Thanks!

Further Reading

 Benjamin Doerr and Frank Neumann, editors. Theory of Evolutionary Computation—Recent Developments in Discrete Optimization. Springer, 2020. Freely available at http://www.lix.polytechnique.fr/Labo/Benjamin.Doerr/doerr_neumann_book.html.

Appendix: Multiplicative Drift Theorem

• <u>Theorem</u>: Let $X_0, X_1, X_2, ...$ be a sequence of random variables taking values in the set $\{0\} \cup [1, \infty)$. Let $\delta > 0$. Assume that for all $t \in \mathbb{N}$, we have

- Proof of the linear functions result: Use
 - $\delta = 1/4en$,
 - $X_t = \tilde{f}(x^*) \tilde{f}(x^{(t)}),$
 - and the estimate $X_0 \leq 2n$.