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BROWNIAN TREE: UNIVERSAL LIMIT OF RANDOM TREES

BROWNIAN TREE

Simulation: GRANT (Generate RANdom Trees), available here: http://github.com/BenediktStufler/grant



LIMITS OF DILUTE SUPERTREES

SUPERTREES

Stufler (2022, 2023+):

 for .

T1(z) = z exp(T1(z))

Td(z) = T1(zTd−1(z)) d ≥ 2



COMPOSITION SCHEMES / GIBBS PARTITIONS

COMPOSITION SCHEMES

Consider a composition scheme  with coefficients  for .V(W(z)) vn, wn n ≥ 0

Convergent case: single giant component, rest stochastically bounded

Dense case: linear number of components

Mixture case: coin flip small or linear number of components

Dilute case: polynomial (sublinear) number of components

...

Gourdon (1996)
Banderier, Flajolet, Schaeffer, Soria (2001)
Flajolet, Sedgewick (2009)
Addario-Berry (2019)
Stufler (2018, 2020)
Banderier, Kuba, Wallner (in print)
Stufler (in print)



DILUTE REGIME

COMPOSITION SCHEMES

Let  and suppose  and  
with  slowly varying. Let  denote the ordered component 

sizes of the associated random Gibbs partition / composition scheme .

0 < α, β < 1 wn ∼ cwn−1−αρw vn = Lv(n)n−1−βW(ρw)−n

Lv K(1) ≥ K(2) ≥ …
V(W(z))

Let  denote the point process on  with  referring to the 

Dirac measure. Then  for a point process  with intensity

Υn = ∑
i:K(i)>0

δK(i)/n ]0,1] δ

Υn
d⟶ Υα,β Υα,β

Stufler (2022), Gibbs partitions: a comprehensive phase diagram

x−α−1(1 − x)α(1−β)−1

B(1 − α, α(1 − β))
dx



DILUTE REGIME

COMPOSITION SCHEMES



DILUTE REGIME
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DILUTE REGIME
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DILUTE REGIME

COMPOSITION SCHEMES

Consider the two-parameter Poisson-Dirichlet process PD( , ) 
introduced by Pitman, Yor (1997)

Handa (2009) determined its correlation functions. For  they 
agree with those of .

Using the method of moments a lemma from Kallenberg's book Random 
measures it follows that

α θ

θ = − αβ
Υα,β

Υ(α, β) d= PD(α, − αβ)



BROWNIAN SPHERE: UNIVERSAL LIMIT OF RANDOM PLANAR MAPS

INTRODUCTION

Simulation:  SIMTRIA (Generate SIMple TRIAngulations): http://github.com/BenediktStufler/simtria, 
   SCENT (Calculate closeness centrality): http://github.com/BenediktStufler/scent    
   Mathematica, Blender

Le Gall (2013), Miermont (2013), ...

http://www.apple.com
http://github.com/BenediktStufler/scent




ASYMPTOTIC ENUMERATION
Bodirsky, Kang, Löffler, McDiarmid (2007), Noy, Requilé, Rué 
(2020): the number  of cubic planar graphs with  labelled vertices satisfies

 as 

for some constants . 

Giménez, Noy (2009): the number  of unrestricted planar graphs with  
labelled vertices satisfies

  as 
for some constants . Proof uses analytic integration and enumerative 
results for the 2-connected case by Bender, Gao, Wormald (2002)

Chapuy, Fusy, Kang, Shoilekova (2008): "combinatorial integration": purely 
combinatorial approach to recover analytic specification by Giménez and Noy

S. (2023): recover  without integration, approach based on 
large deviation results for random walks in the big-jump domain

cn n
cn ∼ ccubicn−7/2ρ−n

cubicn! n → ∞
c, ρ > 0

pn n

pn ∼ cn−7/2ρ−nn! n → ∞
c, ρ > 0

pn ∼ cn−7/2ρ−nn!

INTRODUCTION



WHAT ABOUT THE GLOBAL SHAPE?

INTRODUCTION

Chapuy, Fusy, Giménez, Noy (2010):  The uniform random planar 
graph with  labelled vertices has diameter 

Problem: Methods for establishing limits for planar maps break 
down for graphs. No known bijection to trees with label 
processes!

Asymptotic enumeration factor  provides a hint but has no probabilistic 
implications. 

n n1/4+op(1)

n−7/2



MAIN RESULT

SCALING LIMIT OF CUBIC PLANAR GRAPHS

Thm. (S., 2022+) Let  denote the uniform connected cubic 
planar graph with  labelled vertices. Let  denote the graph distance 
and  the uniform measure on its vertex set.  There is a constant 

 such that in distribution

 

as  tends to infinity. Convergence is in distribution in the 
Gromov-Hausdorff-Prokhorov sense, with  denoting the 
Brownian sphere.

Cn
n dCn

μCn

γ > 0

(Cn, γn−1/4dCn
, μCn

) → (M, dM, μM)

n ∈ 2ℕ
(M, dM, μM)

Unrestricted planar graphs: ongoing joint work with Addario-Berry, Albenque, and Fusy
Independent parallel proof: Albenque, Fusy, Lehericy (2022+)



NETWORK DECOMPOSITION

Cubic network: oriented root edge that is 
allowed to be a loop or double edge

Asymptotic enumeration of cubic planar 
graphs via cubic network decomposition:  

Bodirsky, Kang, Löffler, McDiarmid (2006) 
Noy, Requilé, Rué (2019) 



NETWORK DECOMPOSITION



PROOF STRATEGY
1. Study first-passage percolation (FPP) on random 

simple triangulations. Their duals correspond to 
3-connected cubic planar graphs.

2. Relate FPP-distances to subspace distances on 
the 3-connected core . Hardest part of 
the proof. Requires new technique!

3. Approximate  by its 3-connected 
core .

ℳ(𝖢n)

𝖢n
ℳ(𝖢n)



Related parallel work: Drmota, Noy, Rué (2022+) on cubic 
planar maps. Warm thanks for comments.

PROOF STRATEGY: PART III



 roughly corresponds to 3-connected core 
 and components  in 

breadt-first-search order

𝖢n
ℳ(𝖢n) (𝒟i(𝖢n))1≤i≤3Vn/2

PROOF STRATEGY: PART III



PROOF STRATEGY: PART III

This shows that the subspace metric  approximates   in the Gromov-
Hausdorff sense with  fluctuations.

Prokhorov distance: linear scaling of mass measure due to exchangeability of 
components. Argument analogous to Addario-Berry and Wen (2017)

ℳ(𝖢n) 𝖢n
op(n1/4)



PROOF STRATEGY
1. Study first-passage percolation (FPP) on random 

simple triangulations. Their duals correspond to 3-
connected cubic planar graphs.

2. Relate FPP-distances to subspace 
distances on the 3-connected core 

. Hardest part of the proof. 
Requires new technique!

3. Approximate  by its 3-connected core .

ℳ(𝖢n)

𝖢n ℳ(𝖢n)



PROOF STRATEGY: PART II

1. Graph distance.

2. First-passage percolation distance

3. Subspace distance ℳ(𝖢n) ⊂ 𝖢n

3 DIFFERENT METRICS ON 3-CONNECTED CORE :ℳ(𝖢n)



PROOF STRATEGY: PART II
 corresponds to 3-connected core 

 and components  
in breadt-first-search order

𝖢n
ℳ(𝖢n) (𝒟i(𝖢n))1≤i≤3Vn/2

Let  denote the Boltzmann network model for the class  of non-isthmus 
networks + a single edge

𝖣 𝒟 + 1



PROOF STRATEGY: PART II



PROOF STRATEGY: PART II

Using contiguity + time-reversal argument and Part 1 allows us take  even smaller 
so that the diameter is still small with respect to the subgraph and fpp metrics.

δ



PROOF STRATEGY
1. Study first-passage percolation (FPP) 

on random simple triangulations. 
Their duals correspond to 3-
connected cubic planar graphs.

2. Relate FPP-distances to subspace distances on the 
3-connected core . Hardest part of the 
proof. Requires new technique!

3. Approximate  by its 3-connected core .

ℳ(𝖢n)

𝖢n ℳ(𝖢n)



Methods: Angel and Schramm (2003); Krikun (2005) 
Curien and Le Gall (2017)

Scaling limit of simple triangulations:
Addario-Berry and Albenque (2017)

PROOF STRATEGY: PART 1



PROOF STRATEGY: PART 1

Skeleton Decomposition



PROOF STRATEGY: PART 1



PROOF STRATEGY: PART 1

UIPT of -gon: 

UHPT: 

Use Liggett's version of Kingman's subadditive ergodic theorem

p 𝒯(p)
∞ = lim

n→∞
𝒯(p)

n

𝒰 = lim
p→∞

𝒯(p)
∞



MAIN RESULT

SCALING LIMIT OF CUBIC PLANAR GRAPHS

Thm. (S., 2022+) Let  denote the uniform connected cubic 
planar graph with  labelled vertices. Let  denote the graph distance 
and  the uniform measure on its vertex set.  There is a constant 

 such that in distribution

 

as  tends to infinity. Convergence is in distribution in the 
Gromov-Hausdorff-Prokhorov sense, with  denoting the 
Brownian sphere.

Cn
n dCn

μCn

γ > 0

(Cn, γn−1/4dCn
, μCn

) → (M, dM, μM)

n ∈ 2ℕ
(M, dM, μM)

And the proof is complete!



THANKS FOR YOUR 
ATTENTION

Thanks for your attention.


