SCALING LIMITS OF RANDOM ELEMENTS OF COMBINATORIAL CLASSES

Benedikt Stufler

Technische Universität Wien dmg.tuwien.ac.at/stufler

BROWNIAN TREE: UNIVERSAL LIMIT OF RANDOM TREES

Simulation: GRANT (Generate RANdom Trees), available here: http://github.com/BenediktStufler/grant

LIMITS OF DILUTE SUPERTREES

$T_{1}(z)=z \exp \left(T_{1}(z)\right)$
$T_{d}(z)=T_{1}\left(z T_{d-1}(z)\right)$ for $d \geq 2$.

Stufler (2022, 2023+): We have

$$
\left[z^{n}\right] T_{d}(z) \sim \frac{2^{1-1 / 2^{d}}}{\left|\Gamma\left(-1 / 2^{d}\right)\right|} n^{-1-2^{-d}} e^{n}
$$

as $n \rightarrow \infty$. The uniform n-vertex supertree $T_{d, n}$ from the class T_{d} equipped with the uniform measure $\mu_{\top_{d, n}}$ on its vertex set satisfies

$$
\left(\mathrm{T}_{d, n}, \frac{1}{2 \sqrt{n}} d_{\mathrm{T}_{d, n}}, \mu \mathrm{~T}_{d, n}\right) \xrightarrow{\mathrm{d}} \mathscr{S}\left(1 / 2,-1 / 2^{d}, 1 / 2, L_{\mathrm{Brownian}}\right)
$$

in the Gromov-Hausdorff-Prokhorov sense as $n \rightarrow \infty$.

COMPOSITION SCHEMES / GIBBS PARTITIONS

Consider a composition scheme $V(W(z))$ with coefficients v_{n}, w_{n} for $n \geq 0$.

- Convergent case: single giant component, rest stochastically bounded
- Dense case: linear number of components
- Mixture case: coin flip small or linear number of components
- Dilute case: polynomial (sublinear) number of components
- ...

Gourdon (I996)
Banderier, Flajolet, Schaeffer, Soria (200I)
Flajolet, Sedgewick (2009)
Addario-Berry (2019)
Stufler $(2018,2020)$
Banderier, Kuba, Wallner (in print)
Stufler (in print)

DILUTE REGIME

Let $0<\alpha, \beta<1$ and suppose $w_{n} \sim c_{w} n^{-1-\alpha} \rho_{w}$ and $v_{n}=L_{v}(n) n^{-1-\beta} W\left(\rho_{w}\right)^{-n}$ with L_{v} slowly varying. Let $K_{(1)} \geq K_{(2)} \geq \ldots$ denote the ordered component sizes of the associated random Gibbs partition / composition scheme $V(W(z))$.

Stufler (2022), Gibbs partitions: a comprehensive phase diagram
Let $\Upsilon_{n}=\sum_{i: K_{(i)}>0} \delta_{K_{(i)} / n}$ denote the point process on]0,1] with δ referring to the
Dirac measure.Then $\Upsilon_{n} \xrightarrow{d} \Upsilon_{\alpha, \beta}$ for a point process $\Upsilon_{\alpha, \beta}$ with intensity

$$
\frac{x^{-\alpha-1}(1-x)^{\alpha(1-\beta)-1}}{B(1-\alpha, \alpha(1-\beta))} d x
$$

DILUTE REGIME

for each integer $m \geq 1$ the m th correlation function of $\Upsilon_{\alpha, \beta}$ is
given by

$$
\mathbb{E}\left[\left(\operatorname{Poi}\left(\frac{c_{w}}{W\left(\rho_{w}\right)} Z\right)\right)_{m}\right]_{\substack{x_{1}+\ldots+x_{m} \leq 1 \\ x_{1}, \ldots, x_{m} \geq 0}} \frac{\left(1-x_{1}-\ldots-x_{m}\right)^{\alpha(m-\beta)-1}}{x_{1}^{\alpha+1} \cdots x_{m}^{\alpha+1}},
$$

with the first factor denoting the m th factorial moment of the Poisson random variable Poi $\left(\frac{c_{w}}{W\left(\rho_{w}\right)} Z\right)$ with random parameter $\frac{c_{w}}{W\left(\rho_{w}\right)} Z$, so that

$$
\mathbb{P}(\operatorname{Poi}(v Z)=k)=\mathbb{E}\left[\frac{1}{k!}\left(\frac{c_{w}}{W\left(\rho_{w}\right)} Z\right)^{k} \exp \left(-\frac{c_{w}}{W\left(\rho_{w}\right)} Z\right)\right], \quad k \geq 0 .
$$

The distribution of $\frac{c_{w}}{W\left(\rho_{w}\right)} Z$ in fact only depends on α and β, so that

$$
\mathbb{E}\left[\left(\operatorname{Poi}\left(\frac{c_{w}}{W\left(\rho_{w}\right)} Z\right)\right)_{m}\right]=\left(\frac{\alpha}{\Gamma(1-\alpha)}\right)^{m} \frac{\Gamma(1-\alpha \beta) \Gamma(m+1-\beta)}{\Gamma(1+\alpha(m-\beta)) \Gamma(1-\beta)} .
$$

DILUTE REGIME

We let $\eta_{1} \geq \eta_{2} \geq \ldots>0$ denote the ranked points of Υ on $\left.] 0,1\right]$. Since almost surely $\Upsilon([0,1])=\infty$, there are indeed infinitely many such points. For all integers $k \geq 1$ the size $K_{(k)}$ of the k th largest component of P_{n} satisfies the joint distributional convergence

$$
K_{(k)} / n \xrightarrow{w} \eta_{k}, \quad k \geq 1 \text { (jointly). }
$$

Since the sum of the component sizes equals n we have $\eta_{k} \leq 1 / k$.

But what is the distribution of η_{k} ?

DILUTE REGIME

For all $0<x \leq 1$ and all integers $k \geq 1$ this leads to

$$
\begin{aligned}
& \mathbb{P}\left(\eta_{k}<x\right)=\frac{\Gamma(1-\alpha(b-1))}{2 \pi|\Gamma(-\alpha)|^{b-1} \Gamma(2-b)} \\
& \int_{0}^{\infty} \int_{-\infty}^{\infty} u^{\alpha(b-1)} \exp \left(-\frac{1}{u^{\alpha}} \int_{x}^{1} \frac{e^{i t y u}}{y^{1+\alpha}} \mathrm{d} y-i u t-|\Gamma(-\alpha)|(-i t)^{\alpha}\right) \\
& \sum_{j=0}^{k-1} \frac{1}{j!}\left(\frac{1}{u^{\alpha}} \int_{x}^{1} \frac{e^{i t y u}}{y^{1+\alpha}} \mathrm{d} y\right)^{j} \mathrm{~d} t \mathrm{~d} u .
\end{aligned}
$$

Be aware that we may not interchange the order of integration.

DILUTE REGIME

- Consider the two-parameter Poisson-Dirichlet process $\operatorname{PD}(\alpha, \theta)$ introduced by Pitman, Yor (I997)
- Handa (2009) determined its correlation functions. For $\theta=-\alpha \beta$ they agree with those of $\Upsilon_{\alpha, \beta}$.
- Using the method of moments a lemma from Kallenberg's book Random measures it follows that

$$
\Upsilon(\alpha, \beta) \stackrel{d}{=} \mathrm{PD}(\alpha,-\alpha \beta)
$$

BROWNIAN SPHERE: UNIVERSAL LIMIT OF RANDOM PLANAR MAPS

Simulation: SIMTRIA (Generate SIMple TRIAngulations): http://github.com/BenediktStufler/simtria, SCENT (Calculate closeness centrality): http://github.com/BenediktStufler/scent Mathematica, Blender

ASYMPTOTIC ENUMERATION

- Bodirsky, Kang, Löffler, McDiarmid (2007), Noy, Requilé, Rué (2020): the number c_{n} of cubic planar graphs with n labelled vertices satisfies

$$
c_{n} \sim c_{\text {cubic }} n^{-7 / 2} \rho_{\text {cubic }}^{-n} n!\text { as } n \rightarrow \infty
$$

for some constants $c, \rho>0$.

- Giménez, Noy (2009): the number p_{n} of unrestricted planar graphs with n labelled vertices satisfies

$$
p_{n} \sim c n^{-7 / 2} \rho^{-n} n!\text { as } n \rightarrow \infty
$$

for some constants $c, \rho>0$. Proof uses analytic integration and enumerative results for the 2-connected case by Bender, Gao, Wormald (2002)

- Chapuy, Fusy, Kang, Shoilekova (2008): "combinatorial integration": purely combinatorial approach to recover analytic specification by Giménez and Noy
- S. (2023): recover $p_{n} \sim c n^{-7 / 2} \rho^{-n} n$! without integration, approach based on large deviation results for random walks in the big-jump domain

WHAT ABOUT THE GLOBAL SHAPE?

- Chapuy, Fusy, Giménez, Noy (2010): The uniform random planar graph with n labelled vertices has diameter $n^{1 / 4+o_{p}(1)}$
- Problem: Methods for establishing limits for planar maps break down for graphs. No known bijection to trees with label processes!
- Asymptotic enumeration factor $n^{-7 / 2}$ provides a hint but has no probabilistic implications.

SCALING LIMIT OF CUBIC PLANAR GRAPHS

Thm. (S., 2022+) Let C_{n} denote the uniform connected cubic planar graph with n labelled vertices. Let $d_{C_{n}}$ denote the graph distance and $\mu_{C_{n}}$ the uniform measure on its vertex set. There is a constant $\gamma>0$ such that in distribution

$$
\left(C_{n}, \gamma n^{-1 / 4} d_{C_{n}}, \mu_{C_{n}}\right) \rightarrow\left(M, d_{M}, \mu_{M}\right)
$$

as $n \in 2 \mathbb{N}$ tends to infinity. Convergence is in distribution in the Gromov-Hausdorff-Prokhorov sense, with $\left(M, d_{M}, \mu_{M}\right)$ denoting the Brownian sphere.

Independent parallel proof: Albenque, Fusy, Lehericy (2022+)
Unrestricted planar graphs: ongoing joint work with Addario-Berry, Albenque, and Fusy

NETWORK DECOMPOSITION

Cubic network: oriented root edge that is allowed to be a loop or double edge

Asymptotic enumeration of cubic planar graphs via cubic network decomposition:

Bodirsky, Kang, Löffler, McDiarmid (2006) Noy, Requilé, Rué (2019)

NETWORK DECOMPOSITION

Loop Networks

Isthmus Networks

Series Networks

Parallel Networks

Polyhedral Networks

PROOF STRATEGY

I. Study first-passage percolation (FPP) on random simple triangulations. Their duals correspond to 3 -connected cubic planar graphs.
2. Relate FPP-distances to subspace distances on the 3 -connected core $\mathscr{M}\left(\mathrm{C}_{n}\right)$. Hardest part of the proof. Requires new technique!
3. Approximate C_{n} by its 3-connected core $\mathscr{M}\left(\mathrm{C}_{n}\right)$.

PROOF STRATEGY: PART III

Theorem - Let V_{n} denote the number of vertices in the largest 3-connected component of the uniform random n-vertex cubic planar graph C_{n}. Let

$$
h(t)=\frac{1}{\pi t} \sum_{n \geq 1}\left(-t 3^{2 / 3}\right)^{n} \frac{\Gamma(2 n / 3+1)}{n!} \sin (-2 n \pi / 3), \quad t \in \mathbb{R}
$$

denote the density of the map type Airy distribution. There are algebraic constants

$$
\begin{aligned}
\kappa & =0.850853090058314333870385348879612617197477 \ldots \\
c_{v} & =1.205660773457703954344217302817493214574105 \ldots
\end{aligned}
$$

such that for any constant $M>0$

$$
\begin{equation*}
\mathbb{P}\left(V_{n}=\kappa n+t n^{2 / 3}\right)=n^{-2 / 3}\left(2 c_{v} h\left(c_{v} t\right)+o(1)\right) \tag{1.3}
\end{equation*}
$$

uniformly for all $t \in[-M, M]$ satisfying $\kappa n+t n^{2 / 3} \in 2 \mathbb{N}$. Consequently,

$$
\begin{equation*}
\frac{V_{n}-\kappa n}{n^{2 / 3}} \xrightarrow{d} V_{3 / 2} \tag{1.4}
\end{equation*}
$$

for a $3 / 2$-stable random variable $V_{3 / 2}$ with density $c_{v} h\left(c_{v} t\right)$.

Related parallel work: Drmota, Noy, Rué (2022+) on cubic planar maps. Warm thanks for comments.

PROOF STRATEGY: PART III

C_{n} roughly corresponds to 3-connected core $\mathscr{M}\left(\mathrm{C}_{n}\right)$ and components $\left(\mathscr{D}_{i}\left(\mathrm{C}_{n}\right)\right)_{1 \leq i \leq 3 V_{n} / 2}$ in breadt-first-search order

PROOF STRATEGY: PART III

Lemma

- The numbers $\left|\mathcal{D}_{i}\left(\mathrm{C}_{n}\right)\right|, 1 \leq i \leq 3 V_{n} / 2$, of vertices
in the network components attached to $\mathcal{M}\left(\mathrm{C}_{n}\right)$ satisfy

$$
\max _{1 \leq i \leq 3 V_{n} / 2}\left|\mathcal{D}_{i}\left(\mathrm{C}_{n}\right)\right|=O_{p}\left(n^{2 / 3}\right)
$$

LEMMA - In a random network D_{n} of size n, for any $\epsilon>0$ there exist constants $C, c, \delta>0$ such that

$$
\mathbb{P}\left(\mathrm{D}\left(\mathrm{D}_{n}\right) \geq n^{1 / 4+\epsilon}\right) \leq C \exp \left(-c n^{\delta}\right)
$$

for all even integers $n \geq 4$.
Lemma - For any $\epsilon>0$ it holds that

$$
\max _{1 \leq i \leq 3 V_{n} / 2} \operatorname{Diam}\left(\mathcal{D}_{i}\left(\mathrm{C}_{n}\right)\right)=o_{p}\left(n^{1 / 6+\epsilon}\right)
$$

This shows that the subspace metric $\mathscr{M}\left(\mathrm{C}_{n}\right)$ approximates C_{n} in the GromovHausdorff sense with $o_{p}\left(n^{1 / 4}\right)$ fluctuations.

Prokhorov distance: linear scaling of mass measure due to exchangeability of components. Argument analogous to Addario-Berry and Wen (2017)

PROOF STRATEGY

1. Study first-passage percolation (FPP) on random simple triangulations. Their duals correspond to 3connected cubic planar graphs.
2. Relate FPP-distances to subspace distances on the 3-connected core $\mathscr{M}\left(\mathrm{C}_{n}\right)$. Hardest part of the proof. Requires new technique!
3. Approximate C_{n} by its 3-connected core $\mathscr{M}\left(\mathrm{C}_{n}\right)$.

PROOF STRATEGY: PART II

3 DIFFERENT METRICS ON 3-CONNECTED CORE $\mathscr{M}\left(\mathrm{C}_{n}\right)$:
I. Graph distance.
2. First-passage percolation distance
3. Subspace distance $\mathscr{M}\left(\mathrm{C}_{n}\right) \subset \mathrm{C}_{n}$

PROOF STRATEGY: PART II

C_{n} corresponds to 3 -connected core $\mathscr{M}\left(\mathrm{C}_{n}\right)$ and components $\left(\mathscr{D}_{i}\left(\mathrm{C}_{n}\right)\right)_{1 \leq i \leq 3 V_{n} / 2}$ in breadt-first-search order

Let D denote the Boltzmann network model for the class $\mathscr{D}+1$ of non-isthmus networks + a single edge

Lemma - Let $(\mathrm{D}(i))_{i \geq 1}$ denote independent copies of the

Boltzmann network D. For any $\epsilon>0$ and $0<\delta<3 \kappa / 2$ there exist constants $0<c<C$ and $N>0$ and sets $\left(\mathcal{E}_{n}\right)_{n \geq N}$ such that for all $n \in 2 \mathbb{N}$ with $n \geq N$

$$
\mathbb{P}\left(\left(\mathcal{M}\left(\mathrm{C}_{n}\right),\left(\mathcal{D}_{i}\left(\mathrm{C}_{n}\right)\right)_{\delta n \leq i \leq 3 V_{n} / 2} \notin \mathcal{E}_{n}\right)<\epsilon\right.
$$

and

$$
\mathbb{P}\left(\left(\mathcal{M}\left(\mathrm{C}_{n}\right),(\mathrm{D}(i))_{\delta n \leq i \leq 3 V_{n} / 2}\right) \notin \mathcal{E}_{n}\right)<\epsilon
$$

and for all elements $E \in \mathcal{E}_{n}$

$$
c<\frac{\mathbb{P}\left(\left(\mathcal{M}\left(\mathrm{C}_{n}\right),\left(\mathcal{D}_{i}\left(\mathrm{C}_{n}\right)\right)_{\delta n \leq i \leq 3 V_{n} / 2}\right)=E\right)}{\mathbb{P}\left(\left(\mathcal{M}\left(\mathrm{C}_{n}\right),(\mathrm{D}(i))_{\delta n \leq i \leq 3 V_{n} / 2}\right)=E\right)}<C .
$$

PROOF STRATEGY: PART II

For any $\epsilon>0$ and any element $\left(X, d_{X}, \nu_{X}\right) \in \mathfrak{K}$ we define

$$
\begin{array}{ll}
\rho_{\epsilon}^{X}:=\inf _{x \in X} \nu_{X}\left(C_{\epsilon}^{X}(x)\right) & \lambda_{\epsilon}^{X}:=\sup _{x \in X} \nu_{X}\left(B_{\epsilon}^{X}(x)\right) \\
C_{\epsilon}^{X}(x)=\left\{y \in X \mid d_{X}(x, y) \leq \epsilon\right\} & B_{\epsilon}^{X}(x)=\left\{y \in X \mid d_{X}(x, y)<\epsilon\right\}
\end{array}
$$

Corollary $-\operatorname{Let}\left(\mathrm{X}, d_{\mathrm{X}}, \nu_{\mathrm{X}}\right)$ and $\left(\mathrm{X}_{n}, d_{\mathrm{X}_{n}}, \nu_{\mathrm{X}_{n}}\right)_{n \geq 1}$ be random elements of \mathfrak{K} satisfying

$$
\left(\mathrm{X}_{n}, d \mathrm{X}_{n}, \nu \mathrm{X}_{n}\right) \xrightarrow{d}\left(\mathrm{X}, d_{\mathrm{X}}, \nu \mathrm{X}\right) .
$$

Then the following statements are equivalent:

1. Almost surely there is no $x \in \mathrm{X}$ with $\nu_{\mathrm{X}}(\{x\})>0$.
2. For all $\epsilon, \epsilon^{\prime}>0$ there exist $\delta>0$ and $N>0$ such that for all $n \geq N: \mathbb{P}\left(\lambda_{\delta}^{X_{n}}>\epsilon\right)<\epsilon^{\prime}$.

Then the following statements are equivalent:

1. ν_{X} has almost surely full support.
2. For all $\epsilon, \epsilon^{\prime}>0$ there are $\delta, N>0$ such that for all $n \geq N: \mathbb{P}\left(\rho_{\epsilon}^{X_{n}}<\delta\right)<\epsilon^{\prime}$.

In other words: if the limit is almost surely diffuse, then for large n each open ball in X_{n} with small radius is likely to have small mass. Conversely, if the limit is almost surely fully supported, then each closed ball in X_{n} with small mass is likely to have small radius.

PROOF STRATEGY: PART II

Lemma - Let $\Omega_{\delta} \subset \mathcal{M}\left(\mathrm{C}_{n}\right)$ denote the subset of vertices consisting of the endpoints of the first $\lfloor\delta n\rfloor$ edges. For all $\epsilon>0$ we may select $\delta>0$ small enough, such that

$$
\mathbb{P}\left(\operatorname{Diam}\left(\Omega_{\delta}\right) \leq \epsilon n^{1 / 4}\right) \geq 1-\epsilon
$$

for all sufficiently large $n \in 2 \mathbb{N}$.

Using contiguity + time-reversal argument and Part I allows us take δ even smaller so that the diameter is still small with respect to the subgraph and fpp metrics.

Lemma

- There exists a constant $c_{\mathrm{fpp}}>0$ with

$$
\sup _{x, y \in \mathcal{M}\left(\mathrm{C}_{n}\right)}\left|d_{\mathrm{C}_{n}}(x, y)-c_{\mathrm{fpp}} d_{\mathcal{M}\left(\mathrm{C}_{n}\right)}(x, y)\right|=o_{p}\left(n^{1 / 4}\right)
$$

PROOF STRATEGY

I. Study first-passage percolation (FPP) on random simple triangulations. Their duals correspond to 3connected cubic planar graphs.
2. Relate FPP-distances to subspace distances on the 3-connected core $\mathscr{M}\left(\mathrm{C}_{n}\right)$. Hardest part of the proof. Requires new technique!
3. Approximate C_{n} by its 3 -connected core $\mathscr{M}\left(\mathrm{C}_{n}\right)$.

PROOF STRATEGY: PART I

TheOrem - Let \mathcal{T}_{n} denote the uniform simple triangulation with $n+1$ vertices. Suppose that ι has finite exponential moments and that there exists a constant $\kappa>0$ such that $\mathbb{P}(\iota \geq \kappa)=1$. Then there exists a constant $c_{\text {fpp }}^{\mathcal{T}}>0$ such that

$$
n^{-1 / 4} \sup _{x, y \in \mathrm{~V}\left(\mathcal{T}_{n}\right)}\left|d_{\mathrm{fpp}}^{\mathcal{T}_{n}}(x, y)-c_{\mathrm{fpp}}^{\mathcal{T}} d_{\mathcal{T}_{n}}(x, y)\right| \xrightarrow{p} 0
$$

as n tends to infinity.

THEOREM - Let \mathscr{C}_{n} denote a uniformly selected 3-connected cubic planar graph with n labelled vertices. Suppose that ι has finite exponential moments and that there exists a constant $\kappa>0$ such that $\mathbb{P}(\iota \geq \kappa)=1$. Then there exists a constant $c_{\mathrm{fpp}}^{\mathscr{C}}>0$ such that

$$
n^{-1 / 4} \sup _{x, y \in \mathrm{~V}(\mathscr{C}(n))}\left|d_{\mathrm{fpp}}^{\mathscr{C}_{n}}(x, y)-c_{\mathrm{fpp}}^{\mathscr{C}} d_{\mathscr{C}_{n}}(x, y)\right| \xrightarrow{p} 0
$$

as $n \in 2 \mathbb{N}$ tends to infinity.
Methods: Angel and Schramm (2003); Krikun (2005) Curien and Le Gall (20|7)
Scaling limit of simple triangulations: Addario-Berry and Albenque (2017)

PROOF STRATEGY: PART I

Skeleton Decomposition

PROOF STRATEGY: PART I

PROOF STRATEGY: PART I

- UIPT of p-gon: $\mathscr{T}_{\infty}^{(p)}=\lim _{n \rightarrow \infty} \mathscr{T}_{n}^{(p)}$
- UHPT: $\mathscr{U}=\lim _{p \rightarrow \infty} \mathscr{T}_{\infty}^{(p)}$
- Use Liggett's version of Kingman's subadditive ergodic theorem

SCALING LIMIT OF CUBIC PLANAR GRAPHS

And the proof is complete!

Thm. (S., 2022+) Let C_{n} denote the uniform connected cubic planar graph with n labelled vertices. Let $d_{C_{n}}$ denote the graph distance and $\mu_{C_{n}}$ the uniform measure on its vertex set. There is a constant $\gamma>0$ such that in distribution

$$
\left(C_{n}, \gamma n^{-1 / 4} d_{C_{n}}, \mu_{C_{n}}\right) \rightarrow\left(M, d_{M}, \mu_{M}\right)
$$

as $n \in 2 \mathbb{N}$ tends to infinity. Convergence is in distribution in the Gromov-Hausdorff-Prokhorov sense, with (M, d_{M}, μ_{M}) denoting the Brownian sphere.

Thanks for zetir at ©

昆药

