Normalisation of random linear $\lambda\text{-terms}$

Alexandros Singh

Based on joint work with Olivier Bodini, Bernhard Gittenberger Michael Wallner, and Noam Zeilberger.

> AofA 2023 - Taiwan Friday, June 30 2023

$$f, t := x \mid \lambda x.t \mid (f t)$$

$$f, t := x \mid \lambda x.t \mid (f t)$$
variables

A calculus of functions taking a single argument:

•Introduced by Church around 1928, developed together with Kleene, Rosser.

A calculus of functions taking a single argument:

- •Introduced by Church around 1928, developed together with Kleene, Rosser.
- •It can encode: arithmetic, data structures, programming ...

Church-Turing thesis: "effectively computable" = definable in λ -calculus (or Turing machines, or recursive functions).

A calculus of functions taking a single argument:

- •Introduced by Church around 1928, developed together with Kleene, Rosser.
- •It can encode: arithmetic, data structures, programming ...

Church-Turing thesis: "effectively computable" = definable in λ -calculus (or Turing machines, or recursive functions).

•In its typed form: functional programming, proof theory,...

More on the λ -calculus Examples of terms:

 $f(x) = x \rightsquigarrow \lambda x.x$ $g(x, y) = y \rightsquigarrow \lambda x.\lambda y.y$ $f \circ g \rightsquigarrow (\lambda x.x)(\lambda x.\lambda y.y)$

(Currying: $X \times Y \to Z \iff X \to Y \to Z$)

More on the λ -calculus Examples of terms:

 $f(x) = x \rightsquigarrow \lambda x.x$ $g(x, y) = y \rightsquigarrow \lambda x.\lambda y.y$ $f \circ g \rightsquigarrow (\lambda x.x)(\lambda x.\lambda y.y)$

(Currying:
$$X \times Y \to Z \iff X \to Y \to Z$$
)

Some terminology:

 $(\lambda x.(x y))$ $(\lambda x.(x x))(\lambda z.z)$ $((\lambda x.\lambda y.(y x)) a)$

open term (has *free* variables) closed term (no free variables) linear term (bound vars. used once) More on the λ -calculus Examples of terms:

 $f(x) = x \rightsquigarrow \lambda x.x$ $g(x, y) = y \rightsquigarrow \lambda x.\lambda y.y$ $f \circ g \rightsquigarrow (\lambda x.x)(\lambda x.\lambda y.y)$

(Currying:
$$X \times Y \to Z \iff X \to Y \to Z$$
)

Some terminology:

 $(\lambda x.(x y))$ open term (has *free* variables) $(\lambda x.(x x))(\lambda z.z)$ closed term (no free variables) $((\lambda x.\lambda y.(y x)) a)$ linear term (bound vars. used once)

Terms are considered up to *careful* renaming of variables: $(\lambda x.\lambda y.(x y x)) \stackrel{\alpha}{=} (\lambda z.\lambda y.(z y z)) \stackrel{\alpha}{\neq} (\lambda x.\lambda y.(z y x))$

Dynamics of the λ -calculus: β -reductions

$$((\lambda x.t_1) t_2) \xrightarrow{\beta} t_1[x := t_2]$$

Dynamics of the λ -calculus: β -reductions

$$\begin{array}{ccc} \mathsf{redex} & ((\lambda x.t_1) t_2) \xrightarrow{\beta} t_1[x := t_2] \\ & & & \\ \end{array}$$

What it means: Given a function $f = x \mapsto t_1$ and an argument t_2 , to compute $f(t_2)$, replace x with t_2 inside t_1 .

Dynamics of the λ -calculus: β -reductions

$$((\lambda x.t_1) t_2) \xrightarrow{\beta} t_1[x := t_2]$$

What it means: Given a function $f = x \mapsto t_1$ and an argument t_2 , to compute $f(t_2)$, replace x with t_2 inside t_1 .

Examples of reductions:

$$f \circ g = g \rightsquigarrow (\lambda x.x)(\lambda x.\lambda y.y) \xrightarrow{\beta} x[x := (\lambda x.\lambda y.y)] = (\lambda x.\lambda y.y)$$

Dynamics of the λ -calculus: β -reductions

$$((\lambda x.t_1) t_2) \xrightarrow{\beta} t_1[x := t_2]$$

What it means: Given a function $f = x \mapsto t_1$ and an argument t_2 , to compute $f(t_2)$, replace x with t_2 inside t_1 .

Examples of reductions:

$$f \circ g = g \rightsquigarrow (\lambda x.x)(\lambda x.\lambda y.y) \xrightarrow{\beta} x[x := (\lambda x.\lambda y.y)] = (\lambda x.\lambda y.y)$$

 $((\lambda x.((\lambda y.(y x)) z)) (a b))$

Dynamics of the λ -calculus: β -reductions

$$((\lambda x.t_1) t_2) \xrightarrow{\beta} t_1[x := t_2]$$

What it means: Given a function $f = x \mapsto t_1$ and an argument t_2 , to compute $f(t_2)$, replace x with t_2 inside t_1 .

Examples of reductions:

$$f \circ g = g \rightsquigarrow (\lambda x.x)(\lambda x.\lambda y.y) \xrightarrow{\beta} x[x := (\lambda x.\lambda y.y)] = (\lambda x.\lambda y.y)$$

$((\lambda x.((\lambda y.(y x)) z)) (a b))$

Dynamics of the λ -calculus: β -reductions

$$((\lambda x.t_1) t_2) \xrightarrow{\beta} t_1[x := t_2]$$

What it means: Given a function $f = x \mapsto t_1$ and an argument t_2 , to compute $f(t_2)$, replace x with t_2 inside t_1 .

Examples of reductions:

$$f \circ g = g \rightsquigarrow (\lambda x.x)(\lambda x.\lambda y.y) \xrightarrow{\beta} x[x := (\lambda x.\lambda y.y)] = (\lambda x.\lambda y.y)$$

 $((\lambda x.((\lambda y.(y x)) z)) (a b))$

Dynamics of the λ -calculus: β -reductions

$$((\lambda x.t_1) t_2) \xrightarrow{\beta} t_1[x := t_2]$$

What it means: Given a function $f = x \mapsto t_1$ and an argument t_2 , to compute $f(t_2)$, replace x with t_2 inside t_1 .

Examples of reductions:

$$f \circ g = g \rightsquigarrow (\lambda x.x)(\lambda x.\lambda y.y) \xrightarrow{\beta} x[x := (\lambda x.\lambda y.y)] = (\lambda x.\lambda y.y)$$
$$((\lambda x.((\lambda y.(y \ x)) \ z)) \ (a \ b)) \xrightarrow{((\lambda x.(z \ x)) \ (a \ b))} (z \ (a \ b))$$

Dynamics of the λ -calculus: β -reductions

$$((\lambda x.t_1) t_2) \xrightarrow{\beta} t_1[x := t_2]$$

What it means: Given a function $f = x \mapsto t_1$ and an argument t_2 , to compute $f(t_2)$, replace x with t_2 inside t_1 .

For linear terms: β -reduction is strongly normalising, has strong diamond property.

Dynamics of the λ -calculus: β -reductions

$$((\lambda x.t_1) t_2) \xrightarrow{\beta} t_1[x := t_2]$$

What it means: Given a function $f = x \mapsto t_1$ and an argument t_2 , to compute $f(t_2)$, replace x with t_2 inside t_1 .

For linear terms: β -reduction is strongly normalising, has strong diamond property.

 β -normalisation terminates in deterministic number of steps!

Normalisation of random closed linear terms
well defined! (strong normalisation + diamond)
Q: How many steps does it take for a random closed linear term
to reach normal form, on average?
uniform distribution on terms of size n
Size of a term t = # of subterms of t.
Equivalently, size defined via recursion:

$$|x| = 1$$

 $n = 5$
 $\lambda x.x$
 $\lambda x.\lambda y.(\lambda y.y) \lambda x.((\lambda y.y) x)$
 $\lambda x.\lambda y.(x y) \lambda x.(x (\lambda y.y))$
 $\lambda x.\lambda y.(x y)$
 $\lambda x.\lambda y.(y x)$
OEIS: A062980 (spoilers!)

What are maps?

What are maps?

• A central object in modern combinatorics, but not only that: probability, algebraic geometry, theoretical physics... scaling limits... matrix integrals, Witten's conjecture, ...

What are maps?

- A central object in modern combinatorics, but not only that: probability, algebraic geometry, theoretical physics...
- Their enumeration was pioneered by Tutte in the 60s, as part of his approach to the four colour theorem.

Decomposing rooted trivalent maps and closed linear terms!

Decomposing rooted trivalent maps

Decomposing rooted trivalent maps

Linking terms and maps

 In 2013, Bodini, Gardy, Jacquot, describe a series of bijections: rooted trivalent maps ↔ closed linear terms rooted (2,3)-valent maps ↔ closed affine terms
 In the same year, together with Gittenberger, they study: BCI(p) terms (each bound variable appears p times) general closed λ-terms

Linking terms and maps

 In 2013, Bodini, Gardy, Jacquot, describe a series of bijections: rooted trivalent maps ↔ closed linear terms rooted (2,3)-valent maps ↔ closed affine terms
 In the same year, together with Gittenberger, they study: BCI(p) terms (each bound variable appears p times) general closed λ-terms

In 2014, Zeilberger and Giorgetti describe a bijection:
 rooted planar maps ↔ normal planar lambda terms

Linking terms and maps

 In 2013, Bodini, Gardy, Jacquot, describe a series of bijections: rooted trivalent maps ↔ closed linear terms rooted (2,3)-valent maps ↔ closed affine terms

In the same year, together with Gittenberger, they study:

BCI(p) terms (each bound variable appears p times)

general closed λ -terms

• In 2014, Zeilberger and Giorgetti describe a bijection:

rooted planar maps \leftrightarrow normal planar lambda terms

Both make use of decompositions in the style of Tutte! (cf. the approach of Arquès-Béraud in 2000)

Our strategy:

1) Track evolution of patterns through decompositions of maps/ λ -terms

Our strategy:

1) Track evolution of patterns through decompositions of maps/ λ -terms

Our strategy:

1) Track evolution of patterns through decompositions of maps/ λ -terms

different decompositions ~> differential equations, Hadamard products, ...

generating functions divergent away from 0

2) Develop tools for rapidly growing coefficients, based on:

- Moment pumping
- Bender's theorem for compositions F(z, G(z))
- Coefficient asymptotics of Cauchy products

 $[z^n](\mathsf{A}(z) \cdot \mathsf{B}(z)) \sim \mathfrak{a}_n \mathfrak{b}_0 + \mathfrak{a}_0 \mathfrak{b}_n + \mathcal{O}(\mathfrak{a}_{n-1} + \mathfrak{b}_{n-1})$

for $A\,,\,B\,,\,G\,$ divergent and F analytic

Mean number of β -redices in closed terms Tracking redices: starts off easy... Mean number of β -redices in closed terms Tracking redices: starts off easy...

loops

Å

Mean number of β -redices in closed terms Tracking redices: starts off easy...

Mean number of β-redices in closed terms Tracking redices: then gets harder! Abstractions, subcase 1.1

Mean number of β -redices in closed terms

Translating to a differential equation and pumping

$$\begin{split} \mathsf{T} &= z^2 + z \mathsf{T}^2 + z^3 (1 + (\mathsf{r} - 1)z\mathsf{T}) \left(\frac{z(\mathsf{r} + 5) \eth_z \mathsf{T}}{3} - (\mathsf{r}^2 - 1) \eth_r \mathsf{T} \right) \right) \\ &+ \frac{z^4 (\mathsf{r} - 1)^2 \mathsf{T}^2}{3} + \frac{4z^3 (\mathsf{r} - 1)\mathsf{T}}{3} \end{split}$$

Mean number of β -redices in closed terms

Translating to a differential equation and pumping

$$T = z^{2} + zT^{2} + z^{3}(1 + (r - 1)zT)\left(\frac{z(r+5)\partial_{z}T}{3} - (r^{2} - 1)\partial_{r}T\right)\right)$$
$$+ \frac{z^{4}(r-1)^{2}T^{2}}{3} + \frac{4z^{3}(r-1)T}{3}$$

Let X_n be the random variable given by number of redices in a closed linear term of size $n\in 3\mathbb{N}+2.$ Then

$$\mathbb{E}(X_n) \sim \frac{n}{24}$$
$$\mathbb{V}(X_n) \sim \frac{n}{24}$$

Pretty far from $\frac{n}{21}$! Expect a linear number of reproducing ones.

A lower bound for normalisation

Refining our counting to track reproducing redices:

A lower bound for normalisation

(see JJ Lévy's thesis)

Refining our counting to track reproducing redices:

$$p_{1} = (\lambda x.C[(x u)])(\lambda y.t) \xrightarrow{\beta} C[((\lambda y.t) u)]$$
$$p_{2} = (\lambda x.x)(\lambda y.t_{1})t_{2} \xrightarrow{\beta} (\lambda y.t_{1})t_{2}$$
$$p_{3} = ((\lambda x.\lambda y.t_{1}) t_{2}) t_{3} \xrightarrow{\beta} (\lambda y.t_{1}[x := t_{2}]) t_{3}$$

Enumerating p_1 -patterns

Enumerating p_1 -patterns

Cuts destroying a p_1 -pattern:

Enumerating p_1 -patterns

Cuts creating a p_1 -pattern:

Thus we also need to keep track of:

 $C_1[\lambda x.C_2[(t_1 \ x)])(\lambda y.t_2)] \qquad C_1[(\lambda x.x)(\lambda y.t_2)]$

Enumerating p_1 -patterns

Applications creating p_1 and auxilliary patterns:

Thus, for an app. of the form $(l_1 \lambda y.t_1)$ we need to consider how l_1 was formed.

• Thus we have the following equations:

$$\begin{split} & S = \Lambda + A \\ & \Lambda = z^2 + 2z^4 S_z + (\nu - u + 4(1 - u))z^3 S_u + (u - \nu + 4(1 - \nu))z^3 S_\nu \\ & A = zS^2 + (u - 1)z(z^4 S_z + (\nu - u + 2(1 - u))z^3 S_u + 2(1 - \nu)z^3 S_\nu) \cdot \Lambda \\ & + (\nu - 1)z(z^2 + z^4 S_z + (u - \nu + 2(1 - \nu))z^3 S_u + 2(1 - u)z^3 S_u) \cdot \Lambda \end{split}$$

• Extracting the mean:

$$\begin{aligned} \partial_{\mathbf{u}} S|_{\mathbf{u}=1,\mathbf{v}=1} \\ &= \left(2zS\partial_{\mathbf{u}}S + 2z^{4}\partial_{z,\mathbf{u}}S + z^{7}\partial_{z}S + 2z^{9}(\partial_{z}S)^{2} - 5z^{3}\partial_{\mathbf{u}}S + z^{3}\partial_{\mathbf{v}}S\right)|_{\mathbf{u}=1,\mathbf{v}=1} \end{aligned}$$

• Thus we have the following equations:

$$\begin{split} & S = \Lambda + A \\ & \Lambda = z^2 + 2z^4 S_z + (\nu - u + 4(1 - u))z^3 S_u + (u - \nu + 4(1 - \nu))z^3 S_\nu \\ & A = zS^2 + (u - 1)z(z^4 S_z + (\nu - u + 2(1 - u))z^3 S_u + 2(1 - \nu)z^3 S_\nu) \cdot \Lambda \\ & + (\nu - 1)z(z^2 + z^4 S_z + (u - \nu + 2(1 - \nu))z^3 S_u + 2(1 - u)z^3 S_u) \cdot \Lambda \end{split}$$

• Extracting the mean:

$$\begin{aligned} \partial_{\mathbf{u}} S|_{\mathbf{u}=1,\mathbf{v}=1} \\ &= \left(2zS\partial_{\mathbf{u}}S + 2z^{4}\partial_{z,\mathbf{u}}S + z^{7}\partial_{z}S + 2z^{9}(\partial_{z}S)^{2} - 5z^{3}\partial_{\mathbf{u}}S + z^{3}\partial_{\mathbf{v}}S\right)|_{\mathbf{u}=1,\mathbf{v}=1} \end{aligned}$$

• Thus we have the following equations:

$$\begin{split} S &= \Lambda + A \\ \Lambda &= z^2 + 2z^4 S_z + (\nu - u + 4(1 - u))z^3 S_u + (u - \nu + 4(1 - \nu))z^3 S_\nu \\ A &= zS^2 + (u - 1)z(z^4 S_z + (\nu - u + 2(1 - u))z^3 S_u + 2(1 - \nu)z^3 S_\nu) \cdot \Lambda \\ &+ (\nu - 1)z(z^2 + z^4 S_z + (u - \nu + 2(1 - \nu))z^3 S_u + 2(1 - u)z^3 S_u) \cdot \Lambda \end{split}$$

• Extracting the mean:

• Finally we obtain a mean number of occurences:

 $\mathbb{E}[\# p_1 \text{ patterns}] \sim \frac{1}{6}$

Enumerating p_1 -patterns and p_2 -patterns

• Finally we obtain a mean number of occurences:

 $\mathbb{E}[\# p_1 \text{ patterns}] \sim \frac{1}{6}$

• Analogously, we have a mean number of occurences for p_2 :

$$\mathbb{E}[\# p_2 \text{ patterns}] \sim \frac{1}{48}$$

Both are asymptotically constant in expectation!

• As before, we'll also need to enumerate auxilliary patterns:

 $(\lambda x.\lambda y.t_1)$ $(\lambda x.\lambda y.t_1) t_2 t_3 (p_3)$ $(\lambda x.\lambda y.t_1) t_2$

• However we run into a problem:

Enumerating p_3 -patterns

• Generatingfunctionology fails, we revert to more elementary methods:

$$\mathbb{E}(V_n) = \mathbb{E}(V_n | \Lambda_n) \cdot \frac{|\Lambda_n|}{|L_n|} + \mathbb{E}(V_n | \Lambda_n) \cdot \frac{|\Lambda_n|}{|L_n|}$$

Enumerating p_3 -patterns

• Generating function logy fails, we revert to more elementary methods: $\sum_{asymptotic \ contribution} \approx \frac{\mathbb{E}(V_{n-3})}{n}$

$$\mathbb{E}(V_n) = \mathbb{E}(V_n | \Lambda_n) \cdot \frac{|\Lambda_n|}{|L_n|} + \mathbb{E}(V_n | \Lambda_n) \cdot \frac{|\Lambda_n|}{|L_n|}$$

Enumerating p_3 -patterns

• Generating function logy fails, we revert to more elementary methods: $\frac{\mathbb{E}(V_{n-3})}{\mathbb{E}(V_{n-3})}$

$$\mathbb{E}(V_n) = \mathbb{E}(V_n | \Lambda_n) \cdot \frac{|\Lambda_n|}{|L_n|} + \mathbb{E}(V_n | \Lambda_n) \cdot \frac{|\Lambda_n|}{|L_n|}$$

Magic: linear over *families* of all possible abstractions created via cuts from a fixed term!

$$\begin{split} \overline{X}_n &= (2n-12)\overline{X}_{n-3}2\overline{Y}_{n-3} \\ \overline{Y}_n &= (2n-6)Y_{n-3} - 6Y_{n-3} \\ \overline{Z}_n &= 2(n-4)(Z+\mathbf{1}_{\Lambda_n}) \end{split}$$

where: X_n counts # of p_3 patt. over terms of size n Y_n is the same for the pattern $(\lambda x.\lambda y.t_1)$ t_2 , and Z is the same for the pattern $(\lambda x.\lambda y.t_1)$

The \overline{V} for $V \in \{X_n, Y_n, Z_n\}$ are cummulatives over families of abstractions

Theorem Let W_n be the random variable given by number of steps required to normalise a linear term of size $n \in 3\mathbb{N} + 2$. Then

 $\mathbb{E}(W_n) \ge \frac{11n}{240}$, for n large enough

• Precise asymptotics for mean number of steps.

- Precise asymptotics for mean number of steps.
- Classify patterns according to their expected number of occurences: constant or linear in n? Other behaviours?

Theorem

 $\mathbb{E}(\#(\lambda x.t) y) \sim \frac{n}{30}$ $\mathbb{E}(\#(\lambda x.t) (\lambda y.t')) \sim \frac{1}{20}$ $\mathbb{E}(\#(a b) (\lambda y.t')) \sim \frac{n}{120}$

- Precise asymptotics for mean number of steps.
- Classify patterns according to their expected number of occurences: constant or linear in n? Other behaviours?
- Automatise the process of obtaining specifications tracking occurences of our desired patterns (differential algebra?).

- Precise asymptotics for mean number of steps.
- Classify patterns according to their expected number of occurences: constant or linear in n? Other behaviours?
- Automatise the process of obtaining specifications tracking occurences of our desired patterns (differential algebra?).
- Explore the meaning of β -reduction on maps. Connections to knot theory?

- Precise asymptotics for mean number of steps.
- Classify patterns according to their expected number of occurences: constant or linear in n? Other behaviours?
- Automatise the process of obtaining specifications tracking occurences of our desired patterns (differential algebra?).
- Explore the meaning of β -reduction on maps. Connections to knot theory?

Thank you!

Bibliography

[BGGJ13] Bodini, O., Gardy, D., Gittenberger, B., & Jacquot, A. (2013). Enumeration of Generalized BCI Lambda-terms. The Electronic Journal of Combinatorics, P30-P30.

[Z16] Zeilberger, N. (2016).

Linear lambda terms as invariants of rooted trivalent maps. Journal of functional programming, 26.

[AB00] Arques, D., & Béraud, J. F. (2000). Rooted maps on orientable surfaces, Riccati's equation and continued fractions Discrete mathematics, 215(1-3), 1-12.

[BFSS01] Banderier, C., Flajolet, P., Schaeffer, G., & Soria, M. (2001). Random maps, coalescing saddles, singularity analysis, and Airy phenomena. Random Structures & Algorithms, 19(3-4), 194-246.

Bibliography

- [BR86] Bender, E. A., & Richmond, L. B. (1986). A survey of the asymptotic behaviour of maps. Journal of Combinatorial Theory, Series B, 40(3), 297-329.
- [BGLZ16] Bendkowski, M., Grygiel, K., Lescanne, P., & Zaionc, M. (2016). A natural counting of lambda terms.
- In International Conference on Current Trends in Theory and Practice of Informatics (pp. 183-194). Springer, Berlin, Heidelberg.
- [BBD19] Bendkowski, M., Bodini, O., & Dovgal, S. (2019). Statistical Properties of Lambda Terms.
- The Electronic Journal of Combinatorics, P4-1.
- [BCDH18] Bodini, O., Courtiel, J., Dovgal, S., & Hwang, H. K. (2018, June).
 Asymptotic distribution of parameters in random maps.
 In 29th International Conference on Probabilistic, Combinatorial and
 Asymptotic Methods for the Analysis of Algorithms (Vol. 110, pp. 13-1)

Bibliography

[B75] Bender, E. A. (1975).

An asymptotic expansion for the coefficients of some formal power series. Journal of the London Mathematical Society, 2(3), 451-458.

[FS93] Flajolet, P., & Soria, M. (1993).

General combinatorial schemas: Gaussian limit distributions and exponential tails. Discrete Mathematics, 114(1-3), 159-180.

[B18] Borinsky, M. (2018).

Generating Asymptotics for Factorially Divergent Sequences. The Electronic Journal of Combinatorics, P4-1.

[BKW21] Banderier, C., Kuba, M., & Wallner, M. (2021).

Analytic Combinatorics of Composition schemes and phase transitions mixed Poisson distributions.

arXiv preprint arXiv:2103.03751.

Bibliography

[BGJ13] Bodini, O., Gardy, D., & Jacquot, A. (2013). Asymptotics and random sampling for BCI and BCK lambda terms Theoretical Computer Science, 502, 227-238.

[M04] Mairson, H. G. (2004).

Linear lambda calculus and PTIME-completeness Journal of Functional Programming, 14(6), 623-633.

[DGKRTZ13] Zaionc, M., Theyssier, G., Raffalli, C., Kozic, J., J., Grygiel, K., & David, R. (2013) Asymptotically almost all λ-terms are strongly normalizing Logical Methods in Computer Science, 9

[SAKT17] Sin'Ya, R., Asada, K., Kobayashi, N., & Tsukada, T. (2017) Almost Every Simply Typed λ -Term Has a Long β -Reduction Sequence In International Conference on Foundations of Software Science and and Computation Structures (pp. 53-68). Springer, Berlin, Heidelberg. Bibliography

[B19] Baptiste L. (2019).

A new family of bijections for planar maps

Journal of Combinatorial Theory, Series A.