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What is the λ-calculus?

f, t := x | λx.t |(f t)
A calculus of functions taking a single argument:
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What is the λ-calculus?

f, t := x | λx.t |(f t)

variables

abstractions
represent functions “x 7→ t”

applications
represent “f(t)”

Introduced by Church around 1928, developed together with
Kleene, Rosser.

Church-Turing thesis: “effectively computable” = definable
in λ-calculus (or Turing machines, or recursive functions).

In its typed form: functional programming, proof theory,...

A calculus of functions taking a single argument:

It can encode: arithmetic, data structures, programming ...
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More on the λ-calculus

Examples of terms:

f(x) = x⇝ λx.x

g(x,y) = y⇝ λx.λy.y

f ◦ g⇝ (λx.x)(λx.λy.y)

(Currying: X× Y → Z↭ X → Y → Z)
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More on the λ-calculus

(λx.(x x))(λz.z)

(λx.(x y)) open term (has free variables)

closed term (no free variables)
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Some terminology:
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More on the λ-calculus

(λx.(x x))(λz.z)

(λx.(x y)) open term (has free variables)

closed term (no free variables)

((λx.λy.(y x)) a) linear term (bound vars. used once)

Terms are considered up to careful renaming of variables:

(λx.λy.(x y x))
α
= (λz.λy.(z y z))

α

̸= (λx.λy.(z y x))

Examples of terms:

f(x) = x⇝ λx.x

g(x,y) = y⇝ λx.λy.y

f ◦ g⇝ (λx.x)(λx.λy.y)

Some terminology:

(Currying: X× Y → Z↭ X → Y → Z)
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Dynamics of the λ-calculus: β-reductions

((λx.t1) t2)
β→ t1[x := t2]
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f ◦ g = g⇝ (λx.x)(λx.λy.y)
β→ x[x := (λx.λy.y)] = (λx.λy.y)

Computing with the λ-calculus

Examples of reductions:

A term with no redices is called a normal form

Dynamics of the λ-calculus: β-reductions

Given a function f = x 7→ t1 and an argument t2,
to compute f(t2), replace x with t2 inside t1.

What it means:

((λx.t1) t2)
β→ t1[x := t2]redex

((λx.((λy.(y x)) z)) (a b))

((λy.(y (a b)) z)

((λx.(z x)) (a b))

(z (a b))
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Computing with the λ-calculus

For linear terms: β-reduction is strongly normalising,

Dynamics of the λ-calculus: β-reductions

Given a function f = x 7→ t1 and an argument t2,
to compute f(t2), replace x with t2 inside t1.

What it means:

has strong diamond property.

((λx.t1) t2)
β→ t1[x := t2]

t
u1

u2

v
β β

ββ

redex
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Computing with the λ-calculus

For linear terms: β-reduction is strongly normalising,

Dynamics of the λ-calculus: β-reductions

Given a function f = x 7→ t1 and an argument t2,
to compute f(t2), replace x with t2 inside t1.

What it means:

β-normalisation terminates in deterministic number of steps!

has strong diamond property.

((λx.t1) t2)
β→ t1[x := t2]

t
u1

u2

v
β β

ββ

redex
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Normalisation of random closed linear terms

Q: How many steps does it take for a random closed linear term
to reach normal form, on average?
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Normalisation of random closed linear terms

Q: How many steps does it take for a random closed linear term
to reach normal form, on average?

uniform distribution on terms of size n

well defined! (strong normalisation + diamond)

Size of a term t = # of subterms of t.
Equivalently, size defined via recursion:
|x| = 1 |λx.t| = 1+ |t| |(f g)| = 1+ |f|+ |g|

n = 2 n = 5

λx.x (λx.x)(λy.y)

λx.λy.(x y)

λx.λy.(y x)

λx.((λy.y) x)

λx.(x (λy.y))

n = 8

60 terms

OEIS: A062980 (spoilers!)
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Normalisation of random closed linear terms

Q: How many steps does it take for a random closed linear term
to reach normal form, on average?

number of redices

number of steps

curves for 7 random terms of size 3002
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Normalisation of random closed linear terms

Q: How many steps does it take for a random closed linear term
to reach normal form, on average?

number of redices

number of steps

curves for 7 random terms of size 3002

Expected number of steps ∼ n
21 .

Conjecture of N. Zeilberger during CLA 2020:
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Normalisation of random closed linear terms

Q: How many steps does it take for a random closed linear term
to reach normal form, on average?

number of redices

number of steps

reducing a redex can create new ones!

((λx.x)(λy.y))(λz.z)
β→ (λy.y)(λz.z)

β→ λz.z

1 redex 1 redex
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Normalisation of random closed linear terms

Q: How many steps does it take for a random closed linear term
to reach normal form, on average?

number of redices

number of steps

Average number of redices gives a lower bound!

To refine it, study reproducing redices!
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What are maps?
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What are maps?

A central object in modern combinatorics, but not only that:
probability, algebraic geometry, theoretical physics...

4CT...

scaling limits... matrix integrals, Witten’s conjecture, . . .
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What are maps?

A central object in modern combinatorics, but not only that:
probability, algebraic geometry, theoretical physics...

Their enumeration was pioneered by Tutte in the 60s, as
part of his approach to the four colour theorem.
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Decomposing rooted trivalent maps
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T(z) = z2

edges

Decomposing rooted trivalent maps
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T(z) = z2 zT(z)2+

edges

Decomposing rooted trivalent maps
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T(z) = z2 zT(z)2+ + 2z4∂uT(z)

edges

Decomposing rooted trivalent maps
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T(z) = z2 zT(z)2+ + 2z4∂uT(z)

edges

subterms

Decomposing rooted trivalent maps and closed linear terms!

λx.x (s t)
λx.t[u := (u x)]

λx.t[u := (x u)] orλx.t

λ

λα

t s
x

t
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Decomposing rooted trivalent maps
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Decomposing rooted trivalent maps

α
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Decomposing rooted trivalent maps

α

λ λλ λ
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Decomposing rooted trivalent maps

λ

λ

λ

λ

λ

(λx.x) (λy.(λz.z y) (λw.λu.w u))

α

α

α

α
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Linking terms and maps

In 2013, Bodini, Gardy, Jacquot, describe a series of bijections:

rooted trivalent maps ↔ closed linear terms

rooted (2,3)-valent maps ↔ closed affine terms

In the same year, together with Gittenberger, they study:

BCI(p) terms (each bound variable appears p times)

general closed λ-terms
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Linking terms and maps

In 2013, Bodini, Gardy, Jacquot, describe a series of bijections:

rooted trivalent maps ↔ closed linear terms

In 2014, Zeilberger and Giorgetti describe a bijection:

rooted planar maps ↔ normal planar lambda terms

rooted (2,3)-valent maps ↔ closed affine terms

In the same year, together with Gittenberger, they study:

BCI(p) terms (each bound variable appears p times)

general closed λ-terms
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Linking terms and maps

In 2013, Bodini, Gardy, Jacquot, describe a series of bijections:

rooted trivalent maps ↔ closed linear terms

In 2014, Zeilberger and Giorgetti describe a bijection:

rooted planar maps ↔ normal planar lambda terms

rooted (2,3)-valent maps ↔ closed affine terms

In the same year, together with Gittenberger, they study:

BCI(p) terms (each bound variable appears p times)

general closed λ-terms

Both make use of decompositions in the style of Tutte!
(cf. the approach of Arquès-Béraud in 2000)
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Our strategy:

1) Track evolution of patterns through decompositions of maps/λ-terms
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Our strategy:

1) Track evolution of patterns through decompositions of maps/λ-terms

T = uz+ zL2 + z∂uL

T = uz+ z2 + zL2 + 2z4∂zL

T = uz2 + z4 + z5 ∂
∂z

(
ln
(
exp(z2/2)⊙ exp(z3/3+ uz)

))

→
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Our strategy:

1) Track evolution of patterns through decompositions of maps/λ-terms

generating functions divergent away from 0

2) Develop tools for rapidly growing coefficients, based on:

Bender’s theorem for compositions F(z,G(z))

Coefficient asymptotics of Cauchy products

[zn](A(z) · B(z)) ∼ anb0 + a0bn +O(an−1 + bn−1)
for A,B,G divergent and F analytic

different decompositions ⇝ differential equations, Hadamard products, . . .

Moment pumping
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Mean number of β-redices in closed terms

Tracking redices: starts off easy...
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Mean number of β-redices in closed terms

Tracking redices: starts off easy...

loops
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Mean number of β-redices in closed terms

Tracking redices: starts off easy...

loops applications

α α

α λ

+0 +1
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Mean number of β-redices in closed terms

Abstractions, subcase 1.1

-1

+0

α

λ

λ
α

λ
α

α

α

Tracking redices: then gets harder!
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Translating to a differential equation and pumping

T = z2 + zT2 + z3(1+ (r− 1)zT)
(

z(r+5)∂zT
3 − (r2 − 1)∂rT)

)
+z4(r−1)2T 2

3 + 4z3(r−1)T
3

Mean number of β-redices in closed terms
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Translating to a differential equation and pumping

T = z2 + zT2 + z3(1+ (r− 1)zT)
(

z(r+5)∂zT
3 − (r2 − 1)∂rT)

)
+z4(r−1)2T 2

3 + 4z3(r−1)T
3

Mean number of β-redices in closed terms

Let Xn be the random variable given by number of redices in a
closed linear term of size n ∈ 3N+ 2. Then

E(Xn) ∼
n
24

V(Xn) ∼
n
24

Pretty far from n
21 !

Expect a linear number of reproducing ones.
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Refining our counting to track reproducing redices:

A lower bound for normalisation
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Refining our counting to track reproducing redices:

A lower bound for normalisation
(see JJ Lévy’s thesis)

p1 = (λx.C[(x u)])(λy.t)
β→ C[((λy.t) u)]

p3 = ((λx.λy.t1) t2) t3
β→ (λy.t1[x := t2]) t3

p2 = (λx.x)(λy.t1)t2
β→ (λy.t1)t2

λ
α

α

α

λ

λ

α

α

α
λ λ

λ
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Enumerating p1-patterns

Tracking the creation/destruction of patterns during the
recursive decomposition:
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Enumerating p1-patterns

Tracking the creation/destruction of patterns during the
recursive decomposition:

⇒
⇒

Cuts destroying a p1-pattern:
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Enumerating p1-patterns

Tracking the creation/destruction of patterns during the
recursive decomposition:

⇒

Cuts creating a p1-pattern:

⇒

Thus we also need to keep track of:

C1[λx.C2[(t1 x)])(λy.t2)] C1[(λx.x)(λy.t2)]
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Enumerating p1-patterns

Tracking the creation/destruction of patterns during the
recursive decomposition:

Applications creating p1 and auxilliary patterns:

Thus, for an app. of the form (l1 λy.t1) we need to consider
how l1 was formed.
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A = zS2 + (u− 1)z(z4Sz + (v− u+ 2(1− u))z3Su + 2(1− v)z3Sv) ·Λ
+(v− 1)z(z2 + z4Sz + (u− v+ 2(1− v))z3Su + 2(1− u)z3Su) ·Λ

S = Λ+A

Λ = z2 + 2z4Sz + (v− u+ 4(1− u))z3Su + (u− v+ 4(1− v))z3Sv

Thus we have the following equations:

Enumerating p1-patterns

Extracting the mean:

=
(
2zS∂uS+ 2z4∂z,uS+ z7∂zS+ 2z9(∂zS)

2 − 5z3∂uS+ z3∂vS
)
|u=1,v=1

∂uS|u=1,v=1
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A = zS2 + (u− 1)z(z4Sz + (v− u+ 2(1− u))z3Su + 2(1− v)z3Sv) ·Λ
+(v− 1)z(z2 + z4Sz + (u− v+ 2(1− v))z3Su + 2(1− u)z3Su) ·Λ

S = Λ+A

Λ = z2 + 2z4Sz + (v− u+ 4(1− u))z3Su + (u− v+ 4(1− v))z3Sv

Thus we have the following equations:

Enumerating p1-patterns

Extracting the mean:

=
(
2zS∂uS+ 2z4∂z,uS+ z7∂zS+ 2z9(∂zS)

2 − 5z3∂uS+ z3∂vS
)
|u=1,v=1

∂uS|u=1,v=1 bijection: ∂v ↔ ∂u

⇔ × ⇔

pointed at abstraction
pointed at p1-pattern
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Finally we obtain a mean number of occurences:

E[# p1 patterns] ∼ 1
6

Enumerating p1-patterns
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Finally we obtain a mean number of occurences:

E[# p1 patterns] ∼ 1
6

Enumerating p1-patterns

Analogously, we have a mean number of occurences for p2:

E[# p2 patterns] ∼ 1
48

Both are asymptotically constant in expectation!

and p2-patterns
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Enumerating p3-patterns

As before, we’ll also need to enumerate auxilliary patterns:

(λx.λy.t1)

(λx.λy.t1) t2

(λx.λy.t1) t2 t3 (p3)

However we run into a problem:

Pointing inside p3

Pointing inside (λx.λy.t1)
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Enumerating p3-patterns

Generatingfunctionology fails, we revert to more elementary
methods:

E(Vn) = E(Vn|Λn) · |Λn|

|Ln|
+ E(Vn|An) · |An|

|Ln|
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Enumerating p3-patterns

Generatingfunctionology fails, we revert to more elementary
methods:

E(Vn) = E(Vn|Λn) · |Λn|

|Ln|
+ E(Vn|An) · |An|

|Ln|

asymptotic contribution ≈ E(Vn−3)
n
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Enumerating p3-patterns

Generatingfunctionology fails, we revert to more elementary
methods:

E(Vn) = E(Vn|Λn) · |Λn|

|Ln|
+ E(Vn|An) · |An|

|Ln|

asymptotic contribution ≈ E(Vn−3)
n

Xn = (2n− 12)Xn−32Yn−3

Yn = (2n− 6)Yn−3 − 6Yn−3

where: Xn counts # of p3 patt. over terms of size n

Yn is the same for the pattern (λx.λy.t1) t2, and

The V for V ∈ {Xn, Yn,Zn} are cummulatives over families

Magic: linear over families of all possible abstractions created via cuts from a fixed term!

Zn = 2(n− 4)(Z+ 1Λn
)

Z is the same for the pattern (λx.λy.t1)

of abstractions
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Let Wn be the random variable given by number of steps req-
uired to normalise a linear term of size n ∈ 3N+ 2. Then

Theorem

E(Wn) ⩾ 11n
240 , for n large enough

The lower bound
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Open problems

Precise asymptotics for mean number of steps.
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Open problems

Classify patterns according to their expected number of
occurences: constant or linear in n? Other behaviours?

Precise asymptotics for mean number of steps.

λ

α

α αλ
λ λ λ

Theorem

E(#(λx.t) y) ∼ n
30

E(#(λx.t) (λy.t ′)) ∼ 1
20

E(#(a b) (λy.t ′)) ∼ n
120

α
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Open problems

Classify patterns according to their expected number of
occurences: constant or linear in n? Other behaviours?

Automatise the process of obtaining specifications tracking
occurences of our desired patterns (differential algebra?).

Precise asymptotics for mean number of steps.



16 D

Open problems

Classify patterns according to their expected number of
occurences: constant or linear in n? Other behaviours?

Automatise the process of obtaining specifications tracking
occurences of our desired patterns (differential algebra?).

Explore the meaning of β-reduction on maps. Connections to
knot theory?

Precise asymptotics for mean number of steps.

α

λ

β
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Open problems

Classify patterns according to their expected number of
occurences: constant or linear in n? Other behaviours?

Automatise the process of obtaining specifications tracking
occurences of our desired patterns (differential algebra?).

Explore the meaning of β-reduction on maps. Connections to
knot theory?

Thank you!

Precise asymptotics for mean number of steps.

α

λ

β
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