Normalisation of random linear λ-terms

Alexandros Singh
Based on joint work with Olivier Bodini, Bernhard Gittenberger Michael Wallner, and Noam Zeilberger.

AofA 2023 - Taiwan
Friday, June 302023

What is the λ-calculus?
A calculus of functions taking a single argument: $\mathrm{f}, \mathrm{t}:=\mathrm{x}|\lambda \mathrm{x} . \mathrm{t}|(\mathrm{f} \mathrm{t})$

What is the λ-calculus?
A calculus of functions taking a single argument: $\mathrm{f}, \mathrm{t}:=\mathrm{x}|\lambda \mathrm{x} . \mathrm{t}|(\mathrm{f} \mathrm{t})$ variables

What is the λ-calculus?
A calculus of functions taking a single argument: $\mathrm{f}, \mathrm{t}:=\mathrm{x}|\lambda \mathrm{x} . \mathrm{t}|(\mathrm{f} \mathrm{t})$
variables
abstractions
represent functions " $x \mapsto t$ "

What is the λ-calculus?
A calculus of functions taking a single argument:

What is the λ-calculus?
A calculus of functions taking a single argument:

- Introduced by Church around 1928, developed together with Kleene, Rosser.

What is the λ-calculus?
A calculus of functions taking a single argument:

- Introduced by Church around 1928, developed together with Kleene, Rosser.
- It can encode: arithmetic, data structures, programming ...

Church-Turing thesis: "effectively computable" = definable in λ-calculus (or Turing machines, or recursive functions).

What is the λ-calculus?
A calculus of functions taking a single argument:

- Introduced by Church around 1928, developed together with Kleene, Rosser.
- It can encode: arithmetic, data structures, programming ... Church-Turing thesis: "effectively computable" = definable in λ-calculus (or Turing machines, or recursive functions).
- In its typed form: functional programming, proof theory,...

More on the λ-calculus
Examples of terms:

$$
f(x)=x \rightsquigarrow \lambda x . x
$$

$$
g(x, y)=y \rightsquigarrow \lambda x . \lambda y . y
$$

(Currying: $\mathrm{X} \times \mathrm{Y} \rightarrow \mathrm{Z}$ か $\rightarrow \mathrm{X} \rightarrow \mathrm{Y} \rightarrow \mathrm{Z}$)
$f \circ g \leadsto(\lambda x . x)(\lambda x . \lambda y . y)$

More on the λ-calculus
Examples of terms:
$f(x)=x \rightsquigarrow \lambda x . x$ $g(x, y)=y \rightsquigarrow \lambda x . \lambda y . y$
(Currying: $\mathrm{X} \times \mathrm{Y} \rightarrow \mathrm{Z}$ \& $\rightarrow \mathrm{X} \rightarrow \mathrm{Y} \rightarrow \mathrm{Z}$) $f \circ g \rightsquigarrow(\lambda x . x)(\lambda x . \lambda y . y)$

Some terminology:
$(\lambda x .(x y))$
$(\lambda x .(x x))(\lambda z . z)$
$((\lambda x . \lambda y \cdot(y x)) a)$
open term (has free variables)
closed term (no free variables)
linear term (bound vars. used once)

More on the λ-calculus
Examples of terms:

$$
\begin{aligned}
& f(x)=x \rightsquigarrow \lambda x \cdot x \\
& g(x, y)=y \rightsquigarrow \lambda x \cdot \lambda y \cdot y \\
& f \circ g \rightsquigarrow(\lambda x \cdot x)(\lambda x \cdot \lambda y \cdot y)
\end{aligned}
$$

$$
\text { (Currying: } X \times Y \rightarrow Z \leadsto X \rightarrow Y \rightarrow Z \text {) }
$$

Some terminology:
$(\lambda x .(x y))$
$(\lambda x .(x \quad x))(\lambda z . z)$
$((\lambda x \cdot \lambda y \cdot(y x)) a)$
open term (has free variables)
closed term (no free variables)
linear term (bound vars. used once)

Terms are considered up to careful renaming of variables:

$$
(\lambda x \cdot \lambda y \cdot(x y x)) \stackrel{\alpha}{=}(\lambda z \cdot \lambda y \cdot(z y z)) \stackrel{\alpha}{\neq}(\lambda x \cdot \lambda y \cdot(z y x))
$$

Computing with the λ-calculus

Dynamics of the λ-calculus: β-reductions

$$
\left(\left(\lambda x \cdot t_{1}\right) t_{2}\right) \xrightarrow{\beta} t_{1}\left[x:=t_{2}\right]
$$

Computing with the λ-calculus

Dynamics of the λ-calculus: β-reductions

What it means:
Given a function $\mathrm{f}=\mathrm{x} \mapsto \mathrm{t}_{1}$ and an argument t_{2}, to compute $f\left(t_{2}\right)$, replace x with t_{2} inside t_{1}.

Computing with the λ-calculus

Dynamics of the λ-calculus: β-reductions

What it means:
Given a function $\mathrm{f}=\mathrm{x} \mapsto \mathrm{t}_{1}$ and an argument t_{2}, to compute $f\left(t_{2}\right)$, replace x with t_{2} inside t_{1}.

Examples of reductions:

$$
f \circ g=g \rightsquigarrow(\lambda x \cdot x)(\lambda x \cdot \lambda y \cdot y) \xrightarrow{\beta} x[x:=(\lambda x \cdot \lambda y \cdot y)]=(\lambda x \cdot \lambda y \cdot y)
$$

A term with no redices is called a normal form

Computing with the λ-calculus

Dynamics of the λ-calculus: β-reductions

What it means:
Given a function $\mathrm{f}=\mathrm{x} \mapsto \mathrm{t}_{1}$ and an argument t_{2}, to compute $f\left(t_{2}\right)$, replace x with t_{2} inside t_{1}.

Examples of reductions:

$$
f \circ g=g \rightsquigarrow(\lambda x \cdot x)(\lambda x \cdot \lambda y \cdot y) \xrightarrow{\beta} x[x:=(\lambda x \cdot \lambda y \cdot y)]=(\lambda x \cdot \lambda y \cdot y)
$$

$$
((\lambda x \cdot((\lambda y .(y x)) z))(\text { a b }))
$$

A term with no redices is called a normal form

Computing with the λ-calculus

Dynamics of the λ-calculus: β-reductions

What it means:
Given a function $\mathrm{f}=\mathrm{x} \mapsto \mathrm{t}_{1}$ and an argument t_{2}, to compute $f\left(t_{2}\right)$, replace x with t_{2} inside t_{1}.

Examples of reductions:

$$
f \circ g=g \rightsquigarrow(\lambda x \cdot x)(\lambda x \cdot \lambda y \cdot y) \xrightarrow{\beta} x[x:=(\lambda x \cdot \lambda y \cdot y)]=(\lambda x \cdot \lambda y \cdot y)
$$

$$
((\lambda x \cdot((\lambda y \cdot(y x)) z))(a b))
$$

A term with no redices is called a normal form

Computing with the λ-calculus

Dynamics of the λ-calculus: β-reductions

What it means:
Given a function $\mathrm{f}=\mathrm{x} \mapsto \mathrm{t}_{1}$ and an argument t_{2}, to compute $f\left(t_{2}\right)$, replace x with t_{2} inside t_{1}.

Examples of reductions:

$$
f \circ g=g \rightsquigarrow(\lambda x \cdot x)(\lambda x \cdot \lambda y \cdot y) \xrightarrow{\beta} x[x:=(\lambda x \cdot \lambda y \cdot y)]=(\lambda x \cdot \lambda y \cdot y)
$$

$$
((\lambda x \cdot((\lambda y \cdot(y x)) z))(a \quad b))
$$

A term with no redices is called a normal form

Computing with the λ-calculus

Dynamics of the λ-calculus: β-reductions

What it means:
Given a function $\mathrm{f}=\mathrm{x} \mapsto \mathrm{t}_{1}$ and an argument t_{2}, to compute $f\left(t_{2}\right)$, replace x with t_{2} inside t_{1}.

Examples of reductions:

$$
f \circ g=g \rightsquigarrow(\lambda x \cdot x)(\lambda x \cdot \lambda y \cdot y) \xrightarrow{\beta} x[x:=(\lambda x \cdot \lambda y \cdot y)]=(\lambda x \cdot \lambda y \cdot y)
$$

A term with no redices is called a normal form

Computing with the λ-calculus

Dynamics of the λ-calculus: β-reductions

What it means:
Given a function $\mathrm{f}=\mathrm{x} \mapsto \mathrm{t}_{1}$ and an argument t_{2}, to compute $f\left(t_{2}\right)$, replace x with t_{2} inside t_{1}.

For linear terms: β-reduction is strongly normalising, has strong diamond property.

Computing with the λ-calculus

Dynamics of the λ-calculus: β-reductions

What it means:
Given a function $\mathrm{f}=\mathrm{x} \mapsto \mathrm{t}_{1}$ and an argument t_{2}, to compute $f\left(t_{2}\right)$, replace x with t_{2} inside t_{1}.

For linear terms: β-reduction is strongly normalising, has strong diamond property.

β-normalisation terminates in deterministic number of steps!

Normalisation of random closed linear terms

Q: How many steps does it take for a random closed linear term to reach normal form, on average?

Normalisation of random closed linear terms

\longrightarrow well defined! (strong normalisation + diamond)

Q: How many steps does it take for a random closed linear term to reach normal form, on average?
uniform distribution on terms of size n
Size of a term $t=\#$ of subterms of t. Equivalently, size defined via recursion:
$|x|=1$
$|\lambda x . t|=1+|t|$
$|(f \mathrm{~g})|=1+|f|+|g|$
$\mathrm{n}=2$
$\lambda x . x$

Normalisation of random closed linear terms

Q: How many steps does it take for a random closed linear term to reach normal form, on average?

Normalisation of random closed linear terms

Q: How many steps does it take for a random closed linear term to reach normal form, on average?

Conjecture of N. Zeilberger during CLA 2020:

$$
\text { Expected number of steps } \sim \frac{\mathfrak{n}}{21} \text {. }
$$

curves for 7 random terms of size 3002

Normalisation of random closed linear terms

Q: How many steps does it take for a random closed linear term to reach normal form, on average?

Normalisation of random closed linear terms

Q: How many steps does it take for a random closed linear term to reach normal form, on average?

What are maps?

What are maps?

$$
4 С Т \ldots
$$

- A central object in modern combinatorics, but not only that: probability, algebraic geometry, theoretical physics... scaling limits... matrix integrals, Witten's conjecture, ...

What are maps?

- A central object in modern combinatorics, but not only that: probability, algebraic geometry, theoretical physics...
- Their enumeration was pioneered by Tutte in the 60 s , as part of his approach to the four colour theorem.

Decomposing rooted trivalent maps

7 A

Decomposing rooted trivalent maps

Decomposing rooted trivalent maps

Decomposing rooted trivalent maps

Decomposing rooted trivalent maps and closed linear terms!
$\lambda x . x$

$$
(s t)
$$

$$
\lambda x . t=\lambda x . t \mid u:=(x u)] \text { or }
$$

$$
\backslash \lambda x .[[u:=(u x)]
$$

edges

i
$\mathrm{T}(z)=z^{2}+z \mathrm{~T}(z)^{2}+$ (
subterms

Decomposing rooted trivalent maps

Decomposing rooted trivalent maps

Decomposing rooted trivalent maps

Decomposing rooted trivalent maps

Linking terms and maps

- In 2013, Bodini, Gardy, Jacquot, describe a series of bijections:
rooted trivalent maps \leftrightarrow closed linear terms
rooted (2,3)-valent maps \leftrightarrow closed affine terms
In the same year, together with Gittenberger, they study:
$\operatorname{BCI}(p)$ terms (each bound variable appears p times)
general closed λ-terms

Linking terms and maps

- In 2013, Bodini, Gardy, Jacquot, describe a series of bijections: rooted trivalent maps \leftrightarrow closed linear terms rooted (2,3)-valent maps \leftrightarrow closed affine terms
In the same year, together with Gittenberger, they study:
$\operatorname{BCI}(p)$ terms (each bound variable appears p times) general closed λ-terms
- In 2014, Zeilberger and Giorgetti describe a bijection: rooted planar maps \leftrightarrow normal planar lambda terms

Linking terms and maps

- In 2013, Bodini, Gardy, Jacquot, describe a series of bijections:
rooted trivalent maps \leftrightarrow closed linear terms rooted (2,3)-valent maps \leftrightarrow closed affine terms
In the same year, together with Gittenberger, they study:
$B C I(p)$ terms (each bound variable appears p times)
general closed λ-terms
- In 2014, Zeilberger and Giorgetti describe a bijection:
rooted planar maps \leftrightarrow normal planar lambda terms
Both make use of decompositions in the style of Tutte! (cf. the approach of Arquès-Béraud in 2000)

Our strategy:

1) Track evolution of patterns through decompositions of maps/ λ-terms

Our strategy:

1) Track evolution of patterns through decompositions of maps/ λ-terms
$\bullet T=u z+z L^{2}+z \partial_{\mathfrak{u}} L$

- $\mathrm{T}=u z+z^{2}+z \mathrm{~L}^{2}+2 z^{4} \partial_{z} \mathrm{~L}$

- $\mathrm{T}=u z^{2}+z^{4}+z^{5} \frac{\partial}{\partial z}\left(\ln \left(\exp \left(z^{2} / 2\right) \odot \exp \left(z^{3} / 3+u z\right)\right)\right)$

Our strategy:

1) Track evolution of patterns through decompositions of maps/ λ-terms
different decompositions \rightsquigarrow differential equations, Hadamard products, ...

2) Develop tools for rapidly growing coefficients, based on:

- Moment pumping
- Bender's theorem for compositions $\mathrm{F}(z, \mathrm{G}(z))$
- Coefficient asymptotics of Cauchy products

$$
\left[z^{n}\right](A(z) \cdot B(z)) \sim a_{n} b_{0}+a_{0} b_{n}+O\left(a_{n-1}+b_{n-1}\right)
$$

for A, B, G divergent and F analytic

Mean number of β-redices in closed terms

 Tracking redices: starts off easy...Mean number of β-redices in closed terms Tracking redices: starts off easy...
loops
9

Mean number of β-redices in closed terms
Tracking redices: starts off easy...

Mean number of β-redices in closed terms
Tracking redices: then gets harder!
Abstractions, subcase 1.1

Mean number of β-redices in closed terms
Translating to a differential equation and pumping

$$
\begin{aligned}
\mathrm{T}=z^{2} & \left.+z \mathrm{~T}^{2}+z^{3}(1+(\mathrm{r}-1) z \mathrm{~T})\left(\frac{z(\mathrm{r}+5) \partial_{z} \mathrm{~T}}{3}-\left(\mathrm{r}^{2}-1\right) \partial_{\mathrm{r}} \mathrm{~T}\right)\right) \\
& +\frac{z^{4}(\mathrm{r}-1)^{2} \mathrm{~T}^{2}}{3}+\frac{4 z^{3}(\mathrm{r}-1) \mathrm{T}}{3}
\end{aligned}
$$

Mean number of β-redices in closed terms
Translating to a differential equation and pumping

$$
\begin{aligned}
\mathrm{T}=z^{2} & \left.+z \mathrm{~T}^{2}+z^{3}(1+(\mathrm{r}-1) z \mathrm{~T})\left(\frac{z(\mathrm{r}+5) \partial_{z} \mathrm{~T}}{3}-\left(\mathrm{r}^{2}-1\right) \partial_{\mathrm{r}} \mathrm{~T}\right)\right) \\
& +\frac{z^{4}(\mathrm{r}-1)^{2} \mathrm{~T}^{2}}{3}+\frac{4 z^{3}(\mathrm{r}-1) \mathrm{T}}{3}
\end{aligned}
$$

Let X_{n} be the random variable given by number of redices in a closed linear term of size $n \in 3 \mathbb{N}+2$. Then

$$
\begin{aligned}
& \mathbb{E}\left(X_{n}\right) \sim \frac{n}{24} \\
& \mathbb{V}\left(X_{n}\right) \sim \frac{n}{24}
\end{aligned}
$$

Pretty far from $\frac{n}{21}$!
Expect a linear number of reproducing ones.

A lower bound for normalisation
Refining our counting to track reproducing redices:

A lower bound for normalisation
(see JJ Lévy's thesis)

Refining our counting to track reproducing redices:

$$
\begin{aligned}
& p_{1}=(\lambda x \cdot C[(x u)])(\lambda y \cdot t) \xrightarrow{\beta} C[((\lambda y \cdot t) u)] \\
& p_{2}=(\lambda x \cdot x)\left(\lambda y \cdot t_{1}\right) t_{2} \xrightarrow{\beta}\left(\lambda y \cdot t_{1}\right) t_{2} \\
& p_{3}=\left(\left(\lambda x \cdot \lambda y \cdot t_{1}\right) t_{2}\right) t_{3} \xrightarrow{\beta}\left(\lambda y \cdot t_{1}\left[x:=t_{2}\right]\right) t_{3}
\end{aligned}
$$

Enumerating p_{1}-patterns

- Tracking the creation/destruction of patterns during the recursive decomposition:

Enumerating p_{1}-patterns

- Tracking the creation/destruction of patterns during the recursive decomposition:

Cuts destroying a p_{1}-pattern:

Enumerating p_{1}-patterns

- Tracking the creation/destruction of patterns during the recursive decomposition:

Cuts creating a p_{1}-pattern:

Thus we also need to keep track of:

$$
\left.C_{1}\left[\lambda x . C_{2}\left[\left(t_{1} x\right)\right]\right)\left(\lambda y . t_{2}\right)\right] \quad C_{1}\left[(\lambda x . x)\left(\lambda y . t_{2}\right)\right]
$$

Enumerating p_{1}-patterns

- Tracking the creation/destruction of patterns during the recursive decomposition:

Applications creating p_{1} and auxilliary patterns:

Thus, for an app. of the form ($l_{1} \lambda y . t_{1}$) we need to consider how l_{1} was formed.

Enumerating p_{1}-patterns

-Thus we have the following equations:

$$
S=\Lambda+A
$$

$$
\Lambda=z^{2}+2 z^{4} S_{z}+(v-u+4(1-u)) z^{3} S_{u}+(u-v+4(1-v)) z^{3} S_{v}
$$

$$
A=z S^{2}+(u-1) z\left(z^{4} S_{z}+(v-u+2(1-u)) z^{3} S_{u}+2(1-v) z^{3} S_{v}\right) \cdot \Lambda
$$

$$
+(v-1) z\left(z^{2}+z^{4} S_{z}+(u-v+2(1-v)) z^{3} \mathrm{~S}_{\mathfrak{u}}+2(1-u) z^{3} \mathrm{~S}_{\mathfrak{u}}\right) \cdot \Lambda
$$

- Extracting the mean:
$\left.\partial_{\mathcal{u}} S\right|_{\mathcal{u}=1, v=1}$
$=\left.\left(2 z S \partial_{\mathfrak{u}} S+2 z^{4} \partial_{z, u} S+z^{7} \partial_{z} S+2 z^{9}\left(\partial_{z} S\right)^{2}-5 z^{3} \partial_{\mathfrak{u}} S+z^{3} \partial_{v} S\right)\right|_{\mathfrak{u}=1, v=1}$

Enumerating p_{1}-patterns

-Thus we have the following equations:

$$
S=\Lambda+A
$$

$$
\Lambda=z^{2}+2 z^{4} S_{z}+(v-u+4(1-u)) z^{3} S_{u}+(u-v+4(1-v)) z^{3} S_{v}
$$

$$
A=z S^{2}+(u-1) z\left(z^{4} S_{z}+(v-u+2(1-u)) z^{3} S_{u}+2(1-v) z^{3} S_{v}\right) \cdot \Lambda
$$

$$
+(v-1) z\left(z^{2}+z^{4} S_{z}+(u-v+2(1-v)) z^{3} \mathrm{~S}_{\mathfrak{u}}+2(1-u) z^{3} \mathrm{~S}_{\mathfrak{u}}\right) \cdot \Lambda
$$

- Extracting the mean:
$\left.\partial_{\mathcal{u}} S\right|_{\mathcal{u}=1, v=1}$
$=\left.\left(2 z S \partial_{\mathfrak{u}} S+2 z^{4} \partial_{z, u} S+z^{7} \partial_{z} S+2 z^{9}\left(\partial_{z} S\right)^{2}-5 z^{3} \partial_{\mathfrak{u}} S+z^{3} \partial_{v} S\right)\right|_{\mathfrak{u}=1, v=1}$

Enumerating p_{1}-patterns

-Thus we have the following equations:

$$
S=\Lambda+A
$$

$$
\Lambda=z^{2}+2 z^{4} S_{z}+(v-u+4(1-u)) z^{3} S_{u}+(u-v+4(1-v)) z^{3} S_{v}
$$

$$
\begin{aligned}
A= & z S^{2}+(u-1) z\left(z^{4} S_{z}+(v-u+2(1-u)) z^{3} S_{u}+2(1-v) z^{3} S_{v}\right) \cdot \Lambda \\
& +(v-1) z\left(z^{2}+z^{4} S_{z}+(u-v+2(1-v)) z^{3} \mathbf{S}_{u}+2(1-u) z^{3} S_{u}\right) \cdot \Lambda
\end{aligned}
$$

- Extracting the mean:

$$
\begin{aligned}
& \left.\partial_{\mathfrak{u}} S\right|_{\mathcal{u}=1, v=1} \quad \text { bijection: } \partial_{v} \leftrightarrow \partial_{\mathcal{u}} \\
& =\left.\left(2 z S \partial_{\mathfrak{u}} S+2 z^{4} \partial_{z, \mathfrak{u}} S+z^{7} \partial_{z} S+2 z^{9}\left(\partial_{z} S\right)^{2}-5 z^{3} \partial_{\mathfrak{u}} S+z^{3} \partial_{v} S\right)\right|_{\mathcal{u}=1, v=1}
\end{aligned}
$$

Enumerating p_{1}-patterns

- Finally we obtain a mean number of occurences:

$$
\mathbb{E}\left[\# p_{1} \text { patterns }\right] \sim \frac{1}{6}
$$

Enumerating p_{1}-patterns and p_{2}-patterns

- Finally we obtain a mean number of occurences:

$$
\mathbb{E}\left[\# p_{1} \text { patterns }\right] \sim \frac{1}{6}
$$

- Analogously, we have a mean number of occurences for p_{2} :

$$
\mathbb{E}\left[\# p_{2} \text { patterns }\right] \sim \frac{1}{48}
$$

Both are asymptotically constant in expectation!

Enumerating p_{3}-patterns

- As before, we'll also need to enumerate auxilliary patterns:

$$
\left(\lambda x . \lambda y . t_{1}\right) \quad\left(\lambda x . \lambda y . t_{1}\right) t_{2} \quad\left(\lambda x . \lambda y . t_{1}\right) t_{2} t_{3}
$$

- However we run into a problem:

Enumerating p_{3}-patterns

- Generatingfunctionology fails, we revert to more elementary methods:

$$
\mathbb{E}\left(\mathrm{V}_{n}\right)=\mathbb{E}\left(\mathrm{V}_{n} \mid \Lambda_{n}\right) \cdot \frac{\left|\Lambda_{n}\right|}{\left|\mathrm{L}_{n}\right|}+\mathbb{E}\left(\mathrm{V}_{n} \mid A_{n}\right) \cdot \frac{\left|A_{n}\right|}{\left|\mathrm{L}_{n}\right|}
$$

Enumerating p_{3}-patterns

- Generatingfunctionology fails, we revert to more elementary methods:

$$
\mathbb{E}\left(\mathrm{V}_{\mathrm{n}}\right)=\mathbb{E}\left(\mathrm{V}_{\mathrm{n}} \mid \Lambda_{\mathrm{n}}\right) \cdot \frac{\left|\Lambda_{n}\right|}{\left|\mathrm{L}_{n}\right|}+\mathbb{E}\left(\mathrm{V}_{\mathrm{n}} \mid A_{\mathrm{n}}\right) \cdot \frac{\left|\Lambda_{n}\right|}{\left|\mathrm{L}_{n}\right|}
$$

Enumerating p_{3}-patterns

- Generatingfunctionology fails, we revert to more elementary methods:

$$
\mathbb{E}\left(\mathrm{V}_{n}\right)=\mathbb{E}\left(\mathrm{V}_{n} \mid \Lambda_{n}\right) \cdot \frac{\left|\Lambda_{n}\right|}{\left|\mathrm{L}_{n}\right|}+\mathbb{E}\left(\mathrm{V}_{n} \mid A_{n}\right) \cdot \frac{\left|A_{n}\right|}{\left|\mathrm{L}_{n}\right|}
$$

Magic: linear over families of all possible abstractions created via cuts from a fixed term!

$$
\begin{aligned}
& \bar{X}_{n}=(2 n-12) \bar{X}_{n-3} 2 \bar{Y}_{n-3} \\
& \bar{Y}_{n}=(2 n-6) Y_{n-3}-6 Y_{n-3} \\
& \bar{Z}_{n}=2(n-4)\left(Z+\mathbf{1}_{\Lambda_{n}}\right)
\end{aligned}
$$

where: X_{n} counts $\#$ of p_{3} patt. over terms of size n Y_{n} is the same for the pattern $\left(\lambda x . \lambda y . t_{1}\right) t_{2}$, and Z is the same for the pattern ($\lambda x . \lambda y . \mathrm{t}_{1}$)
The \bar{V} for $V \in\left\{X_{n}, Y_{n}, Z_{n}\right\}$ are cummulatives over families of abstractions

The lower bound

Theorem
Let W_{n} be the random variable given by number of steps required to normalise a linear term of size $\mathfrak{n} \in 3 \mathbb{N}+2$. Then

$$
\mathbb{E}\left(W_{n}\right) \geqslant \frac{11 n}{240}, \text { for } n \text { large enough }
$$

Open problems

- Precise asymptotics for mean number of steps.

Open problems

- Precise asymptotics for mean number of steps.
- Classify patterns according to their expected number of occurences: constant or linear in \mathfrak{n} ? Other behaviours?

Theorem

$$
\begin{aligned}
& \mathbb{E}(\#(\lambda x . t) y) \sim \frac{n}{30} \\
& \mathbb{E}\left(\#(\lambda x . t)\left(\lambda y . t^{\prime}\right)\right) \sim \frac{1}{20} \\
& \mathbb{E}\left(\#\left(\text { a b) }\left(\lambda y . t^{\prime}\right)\right) \sim \frac{n}{120}\right.
\end{aligned}
$$

Open problems

- Precise asymptotics for mean number of steps.
- Classify patterns according to their expected number of occurences: constant or linear in n ? Other behaviours?
- Automatise the process of obtaining specifications tracking occurences of our desired patterns (differential algebra?).

Open problems

- Precise asymptotics for mean number of steps.
- Classify patterns according to their expected number of occurences: constant or linear in n ? Other behaviours?
- Automatise the process of obtaining specifications tracking occurences of our desired patterns (differential algebra?).
- Explore the meaning of β-reduction on maps. Connections to knot theory?

Open problems

- Precise asymptotics for mean number of steps.
- Classify patterns according to their expected number of occurences: constant or linear in n ? Other behaviours?
- Automatise the process of obtaining specifications tracking occurences of our desired patterns (differential algebra?).
- Explore the meaning of β-reduction on maps. Connections to knot theory?

Thank you!

Bibliography

[BGGJ13] Bodini, O., Gardy, D., Gittenberger, B., \& Jacquot, A. (2013). Enumeration of Generalized BCI Lambda-terms.
The Electronic Journal of Combinatorics, P30-P30.
[Z16] Zeilberger, N. (2016).
Linear lambda terms as invariants of rooted trivalent maps.
Journal of functional programming, 26.
[AB00] Arques, D., \& Béraud, J. F. (2000).
Rooted maps on orientable surfaces, Riccati's equation and continued fraction Discrete mathematics, 215(1-3), 1-12.
[BFSS01] Banderier, C., Flajolet, P., Schaeffer, G., \& Soria, M. (2001).
Random maps, coalescing saddles, singularity analysis, and Airy phenomena. Random Structures \& Algorithms, 19(3-4), 194-246.

Bibliography

[BR86] Bender, E. A., \& Richmond, L. B. (1986).
A survey of the asymptotic behaviour of maps.
Journal of Combinatorial Theory, Series B, 40(3), 297-329.
[BGLZ16] Bendkowski, M., Grygiel, K., Lescanne, P., \& Zaionc, M. (2016).
A natural counting of lambda terms.
In International Conference on Current Trends in Theory and Practice of Informatics (pp. 183-194). Springer, Berlin, Heidelberg.
[BBD19] Bendkowski, M., Bodini, O., \& Dovgal, S. (2019).
Statistical Properties of Lambda Terms.
The Electronic Journal of Combinatorics, P4-1.
[BCDH18] Bodini, O., Courtiel, J., Dovgal, S., \& Hwang, H. K. (2018, June).
Asymptotic distribution of parameters in random maps.
In 29th International Conference on Probabilistic, Combinatorial and
Asymptotic Methods for the Analysis of Algorithms (Vol. 110, pp. 13-1)

Bibliography

[B75] Bender, E. A. (1975).
An asymptotic expansion for the coefficients of some formal power series. Journal of the London Mathematical Society, 2(3), 451-458.
[FS93] Flajolet, P., \& Soria, M. (1993).
General combinatorial schemas: Gaussian limit distributions and exponential tails.
Discrete Mathematics, 114(1-3), 159-180.
[B18] Borinsky, M. (2018).
Generating Asymptotics for Factorially Divergent Sequences.
The Electronic Journal of Combinatorics, P4-1.
[BKW21] Banderier, C., Kuba, M., \& Wallner, M. (2021).
Analytic Combinatorics of Composition schemes and phase transitions mixed Poisson distributions.
arXiv preprint arXiv:2103.03751.

Bibliography

[BGJ13] Bodini, O., Gardy, D., \& Jacquot, A. (2013).
Asymptotics and random sampling for BCl and BCK lambda terms
Theoretical Computer Science, 502, 227-238.
[M04] Mairson, H. G. (2004).
Linear lambda calculus and PTIME-completeness
Journal of Functional Programming, 14(6), 623-633.
[DGKRTZ13] Zaionc, M., Theyssier, G., Raffalli, C., Kozic, J., J., Grygiel, K., \& David, R. (2013)

Asymptotically almost all λ-terms are strongly normalizing
Logical Methods in Computer Science, 9
[SAKT17] Sin'Ya, R., Asada, K., Kobayashi, N., \& Tsukada, T. (2017)
Almost Every Simply Typed λ-Term Has a Long β-Reduction Sequence In International Conference on Foundations of Software Science and and Computation Structures (pp. 53-68). Springer, Berlin, Heidelberg.

On the number of β-redices in random closed linear λ-terms - Bodini, Singh, Zeilberger

Bibliography

[B19] Baptiste L. (2019).
A new family of bijections for planar maps Journal of Combinatorial Theory, Series A.

