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Functional data
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Functional data

Usual mathematical framework:

square integrable functions on [0, 1],

generalization of random vectors.

In practice, ‘functional data’ may describe many different setups:

growth functions (observed discretely or smoothed),

random processes (continuous, discrete),

images (in more dimensions).

Statistical methods for FDA (starting from a functional random sample)
are typically generalizations of multivariate methods (often using suitable
basis expansions, e.g., principal components).
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Mean and covariance function

Random sample (or time series): {Xj , j = 1, . . . } iid in L2.

The mean function µ(t) = EX (t) can be estimated by µ̂(t) =
∑

Xj(t)/n.

The covariance operator C (.) = E [〈(X − µ), .〉(X − µ)] can be estimated
by Ĉ (x) =

∑
〈Xj − µ̂, x〉(Xj − µ̂)/n, x ∈ L2.

In L2, C (t)(t) =
∫
c(t, s)y(s)ds and the covariance function

c(t, s) = Cov(X (t),X (s)) is estimated by∑
(Xj(t)− µ̂(t))(Xj(s)− µ̂(s))/n.

Statistical inference is usually based on suitable lower dimensional
characteristics (e.g. norms or integrals) or projections (e.g. functional
principal components).
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Characterization of functional distribution

Generalizations of distribution function
FX (x) ..= Pr[X (t) ≤ x(t), ∀t ∈ [0, 1]], x ∈ H and density are problematic.

More promising: generalizations of the characteristic function
φ(t) = E exp(it>X ) characterizing distribution of random vector X .

The characteristic functional (CFL):

φ(x) = E exp

{
i

∫ 1

0
x(t)X (t)dt

}
can be estimated by the empirical CFL (ECFL):

φ̂(x) =
1

n

∑
exp

{
i

∫ 1

0
x(t)Xj(t)dt

}
.
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Tests based on characteristic functions

CF-based tests have some attractive properties for high-dimensional data,
see the review paper Meintanis (2016).

CFL-based tests for functional data were also already considered: but in
practice, we mostly work with discretized X = (X (t1), ...,X (tp))> and test
statistics based on the empirical CF

ϕ̂n(u1, ..., up) = n−1
n∑

j=1

e i
∑p

`=1 u`Xj (t`).

In the following, we use CFs to characterize independence because
covariance works only for linear dependencies and densities and
distribution functions don’t work well for functional data.
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Functional time series (FTS)

FTS: functional data {Xj , j = 1, . . . } observed sequentially over time.

This talk concerns tests of dependencies in FTS:

serial independence: independence of {Xj , j = 1, . . . },
mutual independence: independence between two simultaneously observed

FTS {Xj , j = 1, . . . } and {Yj , j = 1, . . . }.
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Tests of mutual independence

Testing independence of random vectors in finite dimension: Herwartz,
Maxand, Nonparametric tests for independence: a review and comparative
simulation study with an application to malnutrition data in India,
Statistical Papers 61 (2020) 2175–2201.

Functional data: Horváth, Rice, Testing for independence between
functional time series, Journal of Econometrics 189 (2015) 371–382.

The setup: Observing a pair of stationary random curves
{X1(t),Y1(t)}, . . . , {Xn(t),Yn(t)}, . . . , t ∈ [0, 1], we want to test the null
hypothesis

Υ0 : {Xj}∞j=1 and {Yj}∞j=1 are independent.
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Cryptocurrencies and market indices

DAX, IBEX, BTC, and ETH from November 2nd, 2020 to November 13th,
2020, intraday values (5 minutes) and corresponding cumulative intraday
returns (CIDR) from 9:00 to 17:25, source https://stooq.com/db/h/
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Fully functional approach (not used here)

Characteristic functional (CFL)

ϕX (u) = E(e i〈u,X 〉),

where 〈u,X 〉 =
∫ 1

0 u(t)X (t)dt, u ∈ H

Dependence between a pair Zh(t) = (X (t),Yh(t)) of H–valued random
elements could be measured by

∆
(Q)
h =

∫
H×H
|ϕZh

(U)− ϕX (u1)ϕYh
(u2)|2 dQ(U), (1)

where U = (u1, u2), and Q is a Borel probability measure on H×H.

Problem: choice of the measure Q (chosen as a Gaussian measure in
[Hlávka, Hlubinka, Koňasová, K. (2022). Functional ANOVA based on
empirical characteristic functionals. JMVA, 189, 104878.])
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The notation and the alternative

ϕX ,Y ,h(t1, t2; u1, u2) is the joint CF of X1(t1) and Y1+h(t2)

ϕX (t1; u1) and ϕY ,h(t2; u2): marginal CFs

Denoting

Dh(t1, t2; u1, u2) = ϕX ,Y ,h(t1, t2; u1, u2)− ϕX (t1; u1)ϕY ,h(t2; u2),

we consider the alternative

ΥH : there exists an integer |h0| ≤ H, such that∫ 1

0

∫ 1

0

∫
R

∫
R

∣∣∣Dh0(t1, t2; u1, u2)
∣∣∣2w(u1)w(u2)du1du2dt1dt2 > 0,

where H is an a priori chosen fixed integer 0 ≤ H <∞
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ECF-based test statistic

Defining the marginal and joint ECFs, e.g.,

φ̂X ,Y ,n,h(t, s; u, v) =
1

n − |h|

min(n−h,n)∑
j=max(1,1−h)

e i(uXj (t)+vYj+h(s)),

we propose the test statistic

T
(w)
n,H =

H∑
h=−H

(n − |h|)
∫ 1

0

∫ 1

0
∆

(w)
n,h (t, s)dsdt,

where

∆
(w)
n,h (t, s) =

∫
R

∫
R

∣∣∣Dn,h(t, s; u, v)
∣∣∣2w(u)w(v)dudv

and

Dn,h(t, s; u, v) = φ̂X ,Y ,n,h(t, s; u, v)− φ̂X ,n(t; u)φ̂Y ,n,h(s; v).
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Some remarks

T
(w)
n,H =

H∑
h=−H

(n− |h|)
∫ 1

0

∫ 1

0

∫
R
∫
R

∣∣∣φ̂X ,Y ,n,h(t, s; u, v)− φ̂X ,n(t; u)φ̂Y ,n,h(s; v
∣∣∣2dsdt

Advantages of using CFs: less moment assumptions, true dependence
instead of lack of covariance.

Complicated limit null distribution, need for resampling (in time
series).

In practice: effects of discretization.

In practice, adequate value of H is unknown (we consider H fixed and
rather small).

For asymptotics, the weight function is general but using certain
functional forms of w(·) improve computational expediency.
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Assumptions

(A.1) The sequence {(Xj ,Yj)}∞j=0 is a 2-dimensional strictly stationary
α-mixing with coefficient α(k) such that

∑∞
k=0(k + 1)α(k) ≤ C for some

positive constant C .

(A.2) The random functions satisfy

E
∫ 1

0
|Xj(t)|2 + |Yj(t)|2dt <∞,

E|Xj(t1)− Xj(t2)|2 ≤ C |t1 − t2|κ, E|Yj(t1)− Yj(t2)|2 ≤ C |t1 − t2|κ,

∀(t1, t2) ∈ [0, 1]2, and for some positive constants C and κ.

(A.3) The weight function w : R→ R is nonnegative, measurable, and
such that w(−u) = w(u), u ∈ R, 0 <

∫
R u2w(u)du <∞.
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Null distribution

Under Υ0,as n→∞, T
(w)
n,H is distributed as∫ 1

0

∫ 1

0

∫
R

∫
R

H∑
h=−H

{
Vh(t, s; u, v)

}2
w(u)w(v)dudvdtds

where {Vh(t, s; u, v)} are centered Gaussian processes with

cov(Vh1
(t1, s1; u1, v1),Vh2

(t2, s2; u2, v2)) =

E [g̃{u1X0(t1)}g̃{u2X0(t2)}]E
[
g̃{v1Yh1−h2

(s1)}g̃{v2Y0(s2)}
]

+
∑
q≥1

E [g̃{u1Xq(t1)}g̃{u2X0(t2)}]E
[
g̃{v1Yq+h1−h2

(s1)}g̃{v2Y0(s2)}
]

+

h1−h2∑
q=1

E [g̃{u1X0(t1)}g̃{u2Xq(t2)}]E
[
g̃{v1Y−q+h1−h2

(s1)}g̃{v2Y0(s2)}
]

+
∞∑

q=h1−h2+1

E [g̃{u1X0(t1)}g̃{u2Xq(t2)}]E
[
g̃{v1Y0(s1)}g̃{v2Yq+h2−h1

(s2)}
]
,

where g(x) = sin x + cos x , x ∈ R and g̃(Z ) = g(Z )− Eg(Z ).
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Fixed and local alternatives

The test is consistent under fixed alternatives.

In case of local alternatives satisfying

0 < lim
n→∞

n
H∑

n=H

∫ 1

0

∫ 1

0

∫
R

∫
R
|φXn,Yn;h(u1, u2; t1, t2)

− φXn(u1; t1)φYj+h,n
(u2; t2)|2w(u1)w(u2)dt1dt2 <∞,

the limit distribution is of the same type but the limiting Gaussian process
has nonzero expectation depending on

φXn,Yn;h(u1, u2; t1, t2)− φXn(u1; t1)φYj+h,n
(u2; t2).
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Computations

T
(w ,p)
n,H =

1

p2

H∑
h=−H

nh

p∑
i=1

p∑
j=1

∆
(w)
n,h (ti , sj),

where

∆
(w)
n,h (t, s) =

∫∫ ∣∣∣Dn,h(t, s; u, v)
∣∣∣2w(u)w(v)dudv

=
1

n2
h

∑
j ,k

Iw{Xj ,k(t)}Iw{Yj+h,k+h(s)} − 2

n3
h

∑
j ,k,l

Iw{Xj ,k(t)}Iw{Yj+h,l+h(s)}

+
1

n4
h

∑
j ,k

Iw{Xj ,k(t)}
∑
l ,m

Iw{Yl+h,m+h(s)},

with Iw (x) =
∫
R cos(ux)w(u)du, Xj ,k(t) = Xj(t)− Xk(t), nh = n − |h|.

We choose w(u) = {a/(2π)}1/2 exp{−(a/2)u2}, a > 0, so that
Iw (x) = exp{−x2/(2a)}.
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Simplification

Under independence:

|ϕX ,Y ,h(t1, t2; u1, u2)|2 = |ϕX (t1; u1)|2|ϕY ,h(t2; u2)|2.

Simplified test statistic

T̃
(w ,p)
n,H =

1

p2

H∑
h=−H

√
nh

p∑
i=1

p∑
j=1

∆̃
(w)
n,h (ti , sj),

with

∆̃
(w)
n,h (t, s) =∫∫ (

|φ̂X ,Y ,n,h(t, s; u, v)|2 − |φ̂X ,n(t; u)|2|φ̂Y ,n,h(s; v)|2
)
w(u)w(v)dudv .
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Distance covariance

Setting w(u) = (πu2)−1 leads

TDCov
n,H =

1

p2

H∑
h=−H

nh

p∑
i=1

p∑
j=1

∆
(DCov)
n,h (ti , sj),

where

∆
(DCov)
n,h (t, s) =

1

n2
h

∑
j ,k

|Xj ,k(t)| |Yj+h,k+h(s)| − 2

n3
h

∑
j ,k,l

|Xj ,k(t)| |Yj+h,l+h(s)|

+
1

n4
h

∑
j ,k

|Xj ,k(t)|
∑
l ,m

|Yl+h,m+h(s)|.
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Empirical level

We simulate:

IID two independent samples of IID Brownian motions, say
WX ,j(t) and WY ,j(t), for j = 1, . . . , n,

FARq(1) two independent functional autoregressive models of order
one with autoregressive parameter ψq(t, u) = q min(t, u),
i.e.,

Xj(t) =

∫
ψq(t, u)Xj−1(u)dy + WX ,j(t),

Yj(t) =

∫
ψq(t, u)Yj−1(u)dy + WY ,j(t).

Critical values: block bootstrap vs. dependent wild bootstrap.
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Empirical level, a = 0.5

HR
CF

a = 0.5
b n \ H 0 1 2 5 0 1 2 5

10 5.0 3.8 3.2 4.0 3.8 3.8 5.5 3.5
IID 3

20 4.0 5.8 3.8 5.0 6.5 4.0 4.8 4.2
40 4.8 5.8 4.5 6.0 5.8 4.5 5.0 6.0

FAR0.75(1) 10
80 7.8 6.5 5.8 8.0 3.8 4.8 5.2 6.2
40 6.8 6.8 7.8 10.2 8.0 7.8 7.5 7.8

10
80 6.0 5.5 7.8 8.0 7.8 6.8 9.2 10.0

FAR1.50(1)
40 6.8 7.0 5.8 6.8 6.5 8.2 8.5 6.80

15
80 7.2 7.2 6.5 8.8 6.5 6.5 9.2 8.8
40 18.8 18.2 17.2 24.5 17.8 18.5 22.8 27.0

10
80 23.2 25.0 25.0 31.2 21.5 26.0 27.8 41.5

FAR2.25(1)
120 9.0 7.0 7.2 10.0 8.5 7.5 7.8 8.5

55
200 5.2 8.8 6.2 11.5 8.5 6.5 7.0 9.2
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Nonlinear dependency

First sample: IID Brownian motion Xj(t) = WX ,j(t)

Second sample: Yj(t) = X 2
j (t)/2, for j = 1, . . . , n.

Simulation setup: n = 10, H = 0, block-length b = 3:

HR empirical power 36.25%,

CF empirical power 85.5%, 70%, and 59% (for a ∈ {0.5, 1, 2})
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Level–robustness and power

‘Heavy-tailed’ functional observations

Υ0(Td) two independent processes TX and TY defined as a ratio of
mutually independent Wiener processes (WX and WY ) and
d-dimensional Bessel processes (BX and BY ), i.e.,
TX ,j = d1/2WX ,j/BX ,j and TY ,j = d1/2WY ,j/BY ,j .

The empirical power will be investigated for samples from the following
sequences of functional observations:

Υ1(W ) : two processes Ux and Vx such that UX ,j = (WX ,j +Zj)/
√

2
and VX ,j = (WY ,j + Zj)/

√
2, where WX , WY , and Z are IID

samples of mutually independent Wiener processes,

Υ1(Td) : two processes VX ,j = (d/2)1/2(WX ,j + Zj)/BX ,d ,j and
VY ,j = (d/2)1/2(WY ,j + Zj)/BX ,d ,j .
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Level–robustness and power, b = 5

HR DCov
CF

a = 0.5 a = 1 a = 2
n \ H 0 1 0 1 0 1 0 1 0 1

20 4.8 5.2 5.7 6.0 6.0 5.0 4.2 6.0 4.2 5.0
Υ0(T1)

40 6.5 5.2 4.7 5.0 4.2 3.5 7.0 6.8 4.8 5.0
20 4.8 2.8 4.0 6.2 5.2 6.2 4.8 5.0 6.0 4.2

Υ0(T3)
40 4.0 5.8 3.2 4.2 7.2 5.5 6.0 4.0 6.5 3.5
20 5.5 5.5 8.5 5.2 24.2 13.5 27.5 14.2 32.0 17.8

Υ1(T1)
40 7.2 5.8 7.2 7.0 48.0 28.0 59.5 35.5 62.7 41.2
20 41.2 25.2 51.2 34.7 36.8 21.5 46.0 24.0 50.5 26.8

Υ1(T3)
40 73.8 50.5 90.0 68.7 68.2 44.8 77.5 56.5 85.5 59.2
20 63.5 41.8 63.5 34.7 48.8 32.0 56.2 31.8 60.2 38.8

Υ1(W )
40 95.0 80.0 90.2 79.5 84.5 64.0 87.5 76.0 92.5 77.5
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Application

DAX, IBEX, BTC, and ETH: outlier: November 9th, 2020.

Test of stationarity (Horváth et al, 2014, R library ftsa):
p-values DAX: 0.549, IBEX: 0.387, BTC: 0.192, and ETH: 0.168.
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Application, B=400, b = 3, n = 15

Test of pairwise independence, October 26th to November 13th (n = 15).

H DAX×IBEX IBEX×BTC IBEX ×ETH DAX×BTC DAX×ETH BTC×ETH

HR 0.0025 0.4125 0.6525 0.2850 0.7250 0.0150
DCov 0.0025 0.6350 0.7025 0.3050 0.4500 0.0300

0
CF 0.0000 0.8825 0.7300 0.4700 0.2550 0.0475
CF-S 0.0000 0.6350 0.6100 0.1050 0.1625 0.0000
HR 0.0100 0.6425 0.7950 0.5400 0.9850 0.1150
DCov 0.0100 0.6350 0.6850 0.7100 0.7250 0.2350

1
CF 0.0125 0.6975 0.3950 0.8350 0.1075 0.3200
CF-S 0.0175 0.4450 0.7175 0.2600 0.1400 0.1425
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Mutual independence (H = 0)

Xm;j(t), for m = 1, . . . , 4 and j = 1, . . . , n, for simplicity, extension of the
computationally simpler CF-S test.

For H = 0, the test statistic can be defined as:

T̃
(w ,p)
n,0 =

1

p4

√
n

p∑
j1=1

p∑
j2=1

p∑
j3=1

p∑
j4=1

∆̃
(w ,4)
n (tj1 , tj2 , tj3 , tj4)

with

∆̃
(w)
n (t1, t2, t3, t4) =∫∫∫∫ (

|φ̂X1,X2,X3,X4,n(t1, t2, t3, t4; u1, u2, u3, u4)|2

− |φ̂X1,n(t1; u1)|2|φ̂X2,n(t2; u2)|2|φ̂X3,n(t3; u3)|2|φ̂X4,n(t4; u4)|2
)

w(u1)w(u2)w(u3)w(u4)du1du2du3du4.

Hlávka, Hušková, Meintanis Robust tests of mutual independence 27 / 34



Define the set H(4)
H=1 := {h = (h1, h2, h3, h4)>, hm ∈ {0, 1}; minm hm = 0}

and the test statistic:

T̃
(w ,p)
n,1 =

1

p4

∑
h∈H(4)

1

√
nh

p∑
j1=1

p∑
j2=1

p∑
j3=1

p∑
j4=1

∆̃
(w ,4)
n,h (tj1 , tj2 , tj3 , tj4),

where nh = n −maxm hm (number of summands is 15) and

∆̃
(w)
n,h (t1, t2, t3, t4) =∫∫∫∫ (

|φ̂X1,X2,X3,X4,n,h(t1, t2, t3, t4; u1, u2, u3, u4)|2

− |φ̂X1,n,h1(t1; u1)|2|φ̂X2,n,h2(t2; u2)|2|φ̂X3,n,h3(t3; u3)|2|φ̂X4,n,h4(t4; u4)|2
)

w(u1)w(u2)w(u3)w(u4)du1du2du3du4.

Deviations from the null hypothesis are indicated both by large negative
and large positive values and, therefore, this test is two-sided.
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Application

A computationally feasible expression:

∆̃
(w)
n,h (t1, t2, t3, t4) =

1

n2
h

∑
j ,k

4∏
l=1

Iw{Xl ;j+hl ,k+hl (tl)} −
4∏

l=1

1

n2
h

∑
j ,k

Iw{Xl ;j+hl ,k+hl (tl)},

where Xl ;j ,k(t) = Xl ;j(t)− Xl ;k(t).

For the DAX, IBEX, BTC, ETH dataset, we reject the mutual
independence both for H = 0 and H = 1 (p-value=0.0000).

For n = 10, the p-values are 0.0001 (for H = 0) and 0.0010 (for H = 1).

In practice, pairwise dependencies could be investigated after rejecting the
mutual independence.
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Generalizations: vectorial versions

More general approach is to use a test based on∫ 1

0

∫ 1

0

∫
R2h

∫
R2h

|D̃h(t1, t2; u1,u2)|2w(u1)w(u2)du1du2dt1dt2,

where u1 = (u1,−h, . . . , u1,h)>, u2 = (u2,−h, . . . , u2,h)> and

D̃h(t1, t2; u1,u2) =

E exp

i

 +h∑
v1=−h

{u1,v1Xj+v1(t)}+
+h∑

v2=−h
{u2,v2Yj+v2(s)}


− E exp

i

+h∑
v1=−h

u1,v1Xj+v1(t)

× E exp

i
+h∑

v2=−h
u2,v2Yj+v2(s)

 ,

i.e., independence of (Xj−h(t), . . . ,Xj+h(t)) and (Yj−h(s), . . . ,Yj+h(s)).
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Mutual independence in general

M stationary random curves
{X1,j(t), . . . ,XM,j(t), j = 1, . . . , n, . . . , t ∈ [0, 1]}, the null hypothesis

Υ0 : {Xm,j}∞j=1, are mutually independent, m = 1, ...,M,

against the alternative hypothesis

ΥH : there exists h0 = (h0,1, . . . , h0,M)>, with 0 ≤ h0,m ≤ H,

such that

∫
[0,1]M

∫
RM

∣∣∣Dh0
(t; u)

∣∣∣2W (u)dudt > 0,

where 0 ≤ H <∞ is an apriori chosen integer, and
Dh(t; u) = ϕh(t; u)−

∏M
m=1 ϕm,hm(tm; um), h := (h1, h2, ..., hM)>.
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Mutual independence

Consider set of indices
H(M)

H := {h = (h1, h2, ..., hM)>, hm ∈ {0, . . . ,H}; minm hm = 0}, with
cardinality (H + 1)M − HM , test statistics may be defined similarly as
before.

After rejecting mutual indendence, we recommend to:

1 Investigating pairwise dependencies or dependencies between other
possibly interesting subsets of the M time series,

2 Investigating the effect that H has on the test decision by varying the
value of this parameter,

3 Investigating the effect of H(M)
H by considering smaller subsets

suggested by prior knowledge, such as, e.g., a causal relationship that

might effect a monotonicity condition h1 ≤ · · · ≤ hM on H(M)
H .
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Conclusion

ECF-based tests of independence can be used also for more complicated
functional objects (and also for testing specific types of dependence).
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In general, investigating dependencies between functional time series is
quite complicated.
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