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Motivation for this talk: Victims of Sexual Abuse

Prof Kathryn Laughon, School of Nursing, UVA

• Victims of abuse require thorough forensic examination

• Sexual Assault only (SA): Attacker free on his own

recognizance

• Evidence of (attempted) Strangulation (ST), with or w/o SA?

Much more serious: attempted murder charge, usually jail time

• Courtroom: “What leads you to believe ST was attempted?”
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• Laughon (forensic nursing): “Well, in my experience, ... ”

• Judge: “Mere ‘impressions’ are inadequate; Verdict = SA”

• Attacker not charged with ST. What does he do?

• What “proof” is needed to establish when ST was attempted?

Need data to quantify features distinguishing ST from SA.
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Simple classification problem?

• Arizona database of 12,099 victims

• 5,784 SA-only; 5,469 ST-only, 846 ST+SA

• ST, with or without SA, is a felony (jail time);

hence, combine (relatively few) ST+SA cases with ST-only

• Lots of data: 46% white, 29% Hisp, 25% other;

∼30 injury types, ∼45 injury locations (disassociated)

• Combined locations (e.g., ears + eyes + nose + face + mouth)

Single-feature screening: Not a single one of these variables showed

significantly different proportions in the 2 classes.

(??? Makes no sense: expect 3-4 by chance alone!)
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OUTLINE

1. Are big data informative or deceiving? [either]

2. With big data, do we need robust methods & statistical

displays? [yes, now more than ever]

3. When do we need efficient statistical computing?

4. How much effort into black-box (AI/ML) algorithms should

statisticians devote? When / When NOT to use them?

5. Statistics Now & Later
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1. Big data: informative or deceiving?

Statistical problems of the Kinsey report, 1953

Cochran, Mosteller, Tukey: JASA 48: 673-716

• Rockfeller Foundation (RF) funded Indiana Univ researcher

Alfred Kinsey’s studies Sexual Behavior in the Human Male

• Unexpected results were widely publicized

• RF, via NRC, asked Cochran, Mosteller, Tukey to examine

“statistical and methodological issues”

• Report was balanced, in reporting aspects of the study that

were done well — but also many others that were not
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Among the problems:

• Self-selected study participants

• Biased, inconsistent data: Oral questionnaire, likely varied

“form of questions to suit the subject and the situation”

• No consideration of obtaining probability sample

• “Statistical analysis” of data as if they came from a

random (!) sample

• Accuracy of results impossible to quantify (surely not 1/
√
n)

• No accounting for, or understanding causes of, refusers

Have these problems multiplied with current data?
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Kinsey Report proposed recommendations:

• Recognize differences among reported, recorded, and observed

behavior. Only reported behavior is available ⇒ analysis has

systematic bias in measurement;

• recorded or observed data likely have systematic errors in

sampling – which may exceed errors in measurement;

• Possible approaches to estimating quantities from

non-probability samples;

• Other metrics for measuring behavior of interest;

• More data checks;

• Adjustment to reduce bias;

• Methods for obtaining more “probability-like” samples

Principles of Sampling: Cochran, Mosteller, Tukey JASA 1954
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NYT Obituary of J.W. Tukey, 28 July 2000:

“In a series of meetings over two years, Mr. Kinsey vigorously

defended his work, which Mr. Tukey believed was seriously flawed,

relying on a sample of people who knew each other. Mr. Tukey

said a random selection of three people would have been better than

a group of 300 chosen by Mr. Kinsey.”

Fast forward to 2018: Xiao-Li Meng, AOAS 2018:
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X-L Meng, “Statistical paradises and paradoxes in big data (I): Law of

large populations, big data paradox, and the 2016 U.S. Presidential

election,” AOAS 2018:12(2),685-726

“Almost since the dawn of statistics, the dominating mathematical

tool for justifying statistical methods has been large-sample

asymptotics. Neither the Law of Large Numbers nor the Central

Limit Theorem, two pillars of the vast statistical palace, could be

established without such asymptotics. Surely then we statisticians

must be thrilled by the explosive growth of data size ...

A statistical paradise would seem to have arrived.

“The reality appears to be the opposite.”
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Which is more trustworthy, a 5% survey sample or 80% sampling

of [tons of] administrative records?

N = population size; n = sample size;

Xj = jth response, j ∈ In ⊂ {1,...,N}; Rj = P{Xj is observed} (binary)

ρR,G ≡ corr(Rj ,G(Xj)) , G(·) = desired function of X

Target: ḠN = Average of G(X) for all X = 1, ..., N .

• Estimate ḠN by Ḡn =
∑N

j=1
RjXj

∑N
j=1

Rj

• Joint distribution of R = {R1, ..., RN}:
– Well-specified for probabilistic random sampling

– No probabilistic mechanism for recorded or self-reported data

• We generally assume that ρR,G = 0. P{Xj is observed | Rj} = 0.

What if ρR,G 6= 0?

To assess bias & MSE of Ḡn, need to incorporate R.
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bias = Ḡn − ḠN = Cov(R,G)/E(R) = ρR,G ×
√

(1− f)/f × σG

⇒ (Ḡn − ḠN )/
√

V arSRS(Ḡn) =
√
N − 1ρR,G

where E(·), Cov(·, ·) is wrt Uniform distribution on {1,...,N};
ER wrt R; f = fpc = [(N − n)/(N − 1)]1/2 (often close to 1).

For SRS: ER(ρ2R,G) = 1/(N − 1)

In general, ∝ 1/N for probability sampling only.

Else, Relative error is ∝ ρ×N .

n = 1M and N = 100M: Tiny ρ = 0.005 ⇒ Relative error is huge
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“Estimates obtained from the Cooperative Congressional Election

Study (CCES) of the 2016 US presidential election suggest a

ρR,X ≈ −0.005 for self-reporting to vote for Donald Trump. ...

This seemingly minuscule data defect correlation implies that the

simple sample proportion of the self-reported voting preference for

Trump from 1% of the US eligible voters [n = 2.3M] has the same

mean squared error as the corresponding sample proportion from a

genuine simple random sample of size n ≈ 400, a 99.98% reduction

of sample size (and hence our confidence).”

“Big” data may be very misleading.
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Sexual assault study: Which SA cases involve Strangulation (ST)?

• AZ database of 12,099 cases; drop 3644 (very incomplete)

• 4,329 (SA-only; 45.8%) + 4,418 (ST-only: 46.7%) + 708

(ST+SA: 7.5%) = 9,455

• 11 injury types × 4 locations (upper/lower body, head, neck)

• Forensic nurse: “petechiae highly indicative of ST”

• Data: petechiae present in nearly equal proportions in ST/SA:

13.5%/16.1% (head); 17.8%/20.8% (neck)

• Nothing even close to significant?

Suspect “scrambling” of rows, impossible to disentangle
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Advice: “Conduct forensic exams using consistent criteria and

simple recording forms directly into computer”

• All 170 exams at UVA Health under guidance of Dr. Laughon

• 77 (SA-only: 45.3%), 74 (ST-only: 43.5%), 19 (ST+SA: 11.2%)

• 77 SA-only vs 93 ST/ST+SA (“ST”)

• Among SA-only: No petechiae in 76 (98.7%); single occurrence in 1

• Among ST: No petechiae in 70 (75.2%); single occurrence in 11

(11.8%), 2+ occurrences on 12 (12.9%)

• ST cases had more injuries than SA-only cases:

16 SA-only (20.7% ) vs 63 ST (67.7%) had 5+ injuries overall

• These results made more sense.
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Note: When injuries exist in SA-only, usually only 1 or 2:

Head+Neck:

#injuries

0 1 2 3+ (% > 0)

SA 65 7 3 2 (16%)

ST 22 17 14 40 (76%)

Face (ears, eyes, nose):

#injuries

0 1 2 3+ (% > 0)

SA 67 6 2 2 (13%)

ST 41 17 8 27 (56%)
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Swelling:

#injuries

0 1 2 3+ (% > 0)

SA 73 4 0 0 ( 5%)

ST 64 21 0 0 (31%)

Petechiae: Very informative

#injuries

0 1 2 3+ (% > 0)

SA 76 1 0 0 ( 1%)

ST 70 11 4 8 (25%)
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“Machine learning” approach?

Tree (rpart in R) indicates only two variables:

Head+neck (0 or > 0), Face (0 or > 0)

• Head+Neck > 0: “ST” (71 correct, 12 incorrect)

• Head+Neck = 0 & Face > 0: “ST” (10 correct, 7 incorrect)

• Head+Neck = 0 & Face = 0: “SA” (58 correct, 12 incorrect)

Algorithm

True “SA” “ST” %Error

SA 58 19 (25%)

ST 12 81 (13%)

FPR: 1 in 4 SA cases falsely accused of ST (too high)
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Statistical analysis: Logistic regression;

Sensible, biology-driven combinations of locations

Assess a case as “ST” if:

1. Petechiae is present or

2. Petechiae is absent but injuries to the mouth, face, head, neck

total L or more, or the number is less than L and the number

of all injuries exceeds 14.

When L = 3, simple algorithm correctly predicts, on average:

68% of 93 ST/ST+SA cases (63 correct, 30 incorrect): FNR = 32.0%

95% of 77 SA-only cases (73 correct, 4 incorrect): FPR = 5.2%.

“LR” = 5.8 (FPR, FNR confirmed by bootstrap & cross-validation)
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Fitting distributions of #injuries in ST/ST cases:

DC Hoaglin, Ch.7 in Exploring Data Tables, Trends, and Shapes

Robust method for fitting Poisson, Binomial, Negative Binomial,...

Negative Binomial(n, p) provided good fit #injuries;

where (n, p) differs for ST vs SA, likely to be a good predictor

SA ST

Head+Neck NB(n = 2, p̂ = 0.887) NB(n = 2, p̂ = 0.457)

Upper Body NB(n = 1

4
, p̂ = 0.172) NB(n = 1, p̂ = 0.262)

Total Injuries NB(n = 1, p̂ = 0.257) NB(n = 1, p̂ = 0.136)
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For this analysis, we relied on:

• Robust methods: Errors in counts of injuries or locations;

possibly misclassified cases (ST ↔ SA)

• Efficient computing (esp with AZ database)

• Reducing high-dimensional data (n = 170, p = 73)

to fewer variables (lower dimensions)

• Sensible biology and medical expertise

Explain algorithm and study results to Judge? (Visual displays)
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Penalized Linear Regression Estimators

β̂L(λ) = argmin Loss(β; y,X) + λ· Penalty(β)
β̂L(t) = argmin L(β; y,X) subject to P (β) ≤ t

Ensure only some βs are ‘active’

• ST/SA case: We expect a specific βj > 0

• Another case: GvHD in stem cell transplants: Dr identified

(A) “I’d be surprised if these variables weren’t in model”

(B) “I’d be surprised if these variables were active”

(C) “I’d not be surprised either way”

• Enforce PA(β) ≥ tA, PB(β) ≤ tB, PC(β) ≤ tC (≥ tB)?

Näıvely: Fit A-variables first ⇒ residuals ⇒ penalized regression

24



2. Robust methods, Statistical displays?

Robust Methods

• Recall: “Robust” to either:

– a small fraction of the data are grossly contaminated

‘One-Wild’ dist’n: (n− 1) from N(0,1), 1 from N(0,100)

– a large fraction of the data slightly contaminated

e.g., rounded, uncalibrated, (large) interval-data

– Possibly records from populations of no interest

(e.g., non-ST/SA cases; external cases among internal ones)

• Robust methods force us to consider: is sample representative

of population of interest, from multiple populations?
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Example from Forensic Science that demonstrates need for, and

importance of, sampling high-dimensional data:

Testing algorithms for identifying source of latent print

The task:

• Develop ID algorithm: Which print in a database

(NGI: millions of prints) is the source?

• Or: Develop algorithm to measure ‘quality’ of evidence

(poor print ⇒ higher probability of error)

• Very high dimensional (fingerprint features)

Testbed of latent print images: NIST Database 302:

Images of fingerprints from many volunteers
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Can we use NIST 302 to test an algorithm?

• Is NIST 302 “representative” of all fingerprints? (NGI)

• Perhaps, if frequency distributions (features, pairs of features, ...)

in NIST 302 are the same as those in NGI

• Challenge: Access to NGI!

• If special people are allowed NGI access: Find frequency of

features; frequency of pairs of features within x mm; etc.

• Do these frequency distributions match?

• If not, what sample of NIST 302 prints is “representative” of NGI?

Same problem when developing algorithms for tumor detection in an

image: When is a ‘sample’ of images “sufficiently representative” of the

population of images?
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Communicating results via informative displays

• KK’s näıve ST/SA “classifier”: “LR” = 5.8

• What does “Likelihood Ratio” mean to a judge (much less jury)?

• Even when we explain it correctly, frequently “LR” is

misunderstood as “posterior odds.” That’s very bad.

• Can we provide a display that illustrates: LR and prior odds

(both have uncertainty) and their consequent posterior odds?

Jordan Rodu: LR=10 (±2), Prior Odds 0.8 (±0.2) or 0.2 (±0.15)
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3. Why Efficient Statistical Computing?

• Efficient stratified sampling from “big” data

• Estimate quantiles in streaming multivariate data

• Immediacy of results: medicine, credit card fraud detection,

culprits, ... wherever time is critical

• Informative displays: Combining boxplots & qqplots in a

single display for comparing multiple batches (Rodu & KK)

• “To ‘Learn’ from data for predicting future”

Prediction using “black-box” computational algorithms?
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Rodu & KK: QQ boxplots (JCGS 2022)

• Multiple batches of data (years, conditions, regions)

• Boxplots: level and rough shape information

• QQ plots: tail behavior relative to a reference (usually

Gaussian but possibly “historical” reference dataset)

• Combine into one plot

• Whiskers ⇒ Deviations between data & theoretical quantiles

• Confidence bands are easy for theoretical quantiles

• For reference dataset, need bootstrap

• Bootstrap will be computationally expensive for very large

datasets; need efficient algorithms or subsampling schemes
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4. To use or Not to use Black-box algorithms?

Jordan Rodu & Michael Baiocchi, “When black box algorithms are

(not) appropriate” Observational Studies 9(2):79-101

(doi.org/10.1353/obs.2023.0018)

• Promises of AI: Accurate, fast predictions

Many AI/ML algorithms use regression, Bayesian methods, ... with

strong beliefs that they will predict well

• Dangers: Too much faith in accuracy, despite often trained on

biased datasets; e.g. MIT Technology Review, 21-Jan-2019:

“AI is sending people to jail – and getting it wrong

Using historical data to train risk assessment tools could mean

that machines are copying the mistakes of the past”
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• “Black-box”: No real sampling statistical methodology

• Our usual statistical framework (model, parameter estimation,

inference, CIs for estimates & predictions) do not apply

• Rodu & Baiocchi:

When are black-box algorithms appropriate?

Focus on aspects of the problem (e.g., consequences of correct

[incorrect] prediction) to which a solution is needed, not on the

algorithm (e.g., functional form, assumptions, etc.)
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Why use AI/black-box algorithms?

• Typical use: classification

Healthy/Unhealthy; Low/Medium/High Credit (Flight) Risk; ...

• Statisticians tend to focus on approaches:

How can we formulate the algorithm as a statistical problem?

• Friedman, Hastie, Tibshirani (2020): Additive logistic

regression:

A statistical view of boosting, Ann Statist 28(2): 337-407
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Rodu and Biaocchi (Observational Studies, 2023)

• Statistical formulation for “black-box” algorithms

may not be possible

• But we can provide a framework for the problem

• Common Task Framework has come to be the “arbiter” of

“best” algorithms via hold-out data; cf. particle physics expts

• CTF appropriate for outcome- (vs model-) based reasoning

When is outcome-based reasoning appropriate?
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Model reasoning (ex: logistic regression):

• focus on model covariates and assumptions

• ensure assumptions are legitimate, estimate model parameters

• Estimates based on existing data

• How will f̂ perform on future data?

• Relate changes in model covariates (e.g., tall vs short) to

changes & variations in outcomes

• Consideration of interaction between properties of data and

properties of algorithm

• Comparison of algorithms: Estimation of parameters (bias,

variance), predictions (accuracy, uncertainty)
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Outcome reasoning: “a new way to reason using data ... that

does not require slow-moving mathematical proofs”

• Trained on existing data

• Performance evaluated on hold-out data

• Focus on correct outcome; i.e., correct prediction

(classification)

• “Add” future data to current data to “tune” the algorithm

• Need neither a functional specification nor an understanding

about the data

Common Task Framework is well-suited for this sort of

development and validation of the algorithm
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Rodu & Baiocchi: Four conditions that a problem must satisfy:

1. Measurement: A function of individual predictions and actual

outcomes on future data (e.g., absolute or relative differences)

can be measured

2. Adaptibility: The algorithm can be adapted to the data on a

useful timescale

3. Resilience: The problem can tolerate, or is resilient to,

accumulated error in predictions

4. Agnosis: Outcome of algorithm can tolerate, or is agnostic to,

potential discrepancies in stakeholders’ prior beliefs
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If the problem falls within MARA framework, “outcome

reasoning” & “black-box” algorithms may be appropriate:

1. Measure discrepancy between algorithm’s output on future

input) and (actual result): Monitor the error function

Health care may not be suitable: No outcome following Rx

2. Adapt (update) the algorithm quickly to changes in input

US Elections not suitable: electorate, priorities change each year

3. Resilience: Problem can tolerate errors

Recommender systems: Bad recommendation not harmful;

AI for sentencing or predicting recidivism/criminal risk not suitable

4. Agnosis: All stakeholders are comfortable with not knowing if

algorithm did/didn’t incorporate certain data features

SA/ST: does algorithm include “presence of petechaie”?
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Rodu & Baiocchi argue that, if the problem does not meet all

four MARA conditions:

Measurement, Adaptability, Resilience, Agnosis

then Outcome Reasoning is not a good idea:

• It is bound to fail when it encounters data that the algorithm

has never seen before —

• even if trained to predict such data well as soon as it sees them

• Subpopulations or exotic data will continue to arise

• So “black-box” algorithms will continue to fail

Model reasoning is a better (safer, more quantifiable) choice on

such problems - the majority of problems we face.
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5. Summary: Statistics Now & Later

Some critical “Statistical Milestones”

• Stigler’s The Seven Pillars of Statistical Wisdom:

summaries, 1/
√
n, likelihood, comparison (via internal variation),

regression, design, residuals

• Hypothesis testing framework (Neyman-Pearson 1933):

Null/Alternative hypotheses

• Robust methods (Hampel 1974): Estimator, T , as a functional

applied to an assumed distribution function, F0; metric space

on F s, assess “robustness” via T (F ′) for F ′ “near” F0 ⇒
framework for evaluating robust estimators
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• Bootstrap framework (Efron 1979) for estimation & inference

based only on empirical F̂ , not on assumed F

• False Discovery Rate (FDR; Benjamini & Hochberg 1995):

Multiple testing framework by changing criterion, from

“control probability of at most 1 false rejection” to

“control fraction of false declared rejections”

• (Future? Candes’ Knockoffs?)

They are so commonplace today that we forget how revolutionary

they were for statistical practice at the time they were proposed.
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Do we need a new framework for “big-data” analysis?

Meng 2018 AOAS:

“[I]t appears that the more we lament how our nutritious recipes

are increasingly being ignored, the more fast food is being produced,

consumed and even celebrated as the cuisine of a coming age.

Indeed, some of our most seasoned chefs are working tirelessly to

preserve our time-honored culinary skills, while others are

preparing themselves for the game of speed cooking.”

Can we reduce this blind devotion to “big data”?

Pandemic enhanced the reputation of Statistics discipline
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Bradley Efron, 2004 ASA President
2019 International Prize in Statistics Laureate Bradley Efron

“People have been predicting the demise of statistics for years.
First it was Computer Science. Then Operations Research. Then AI.
Then Expert Systems. Then Systems Engineering.  Guess what - we’re still here.”



Statistical concepts needed for proper inferences in ‘big data’

• Repetitious data vs Informative knowledge:

“We are drowning in information and starving for knowledge. —

R.D. Roger, from Hastie, Tibshirani, Friedman (2008), p.xi

• Sampling strategies

• Efficient computing: what to compute & display

• Informative displays of massive, streaming, data

• Robust methods to help flag “exotic” data segments

• Quantify steps of MARA framework in statistical terms:

– Measurement: measure d(ypred, yobs)

– Adaptibility: tolerate large d(DatasetA, DatasetB)?

– Resilience: Define “consequence” of error?

– Agnosis: Measure importance of variable inclusion/exclusion?
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AI/ML, “Data Science” still need Statistics

Meng 2018:

“Fast food will always exist because of the demand ... this is the

very reason that we need more people to work on understanding

and warning about the ingredients that make fast food (methods)

harmful; to study how to reduce the harm without unduly affecting

their appeal; and to supply healthier and tastier meals (more

principled and efficient methods) that are affordable (applicable) by

the general public (users).”

We have work to do.

Thank you!

49



Some References

Donoho D (2017), 50 years of data science, JCGS 26(4):756-766

Efron B (2020), Prediction, Estimation, and Attribution, JASA

115(530):636-655

Meng X-L (2018), Statistical paradises and paradoxes in big data (I):

Law of large populations, big data paradox, and the 2016

U.S. Presidential election, AOAS 12(2),685-726

Rodu J, Baiocchi M (2023), When black box algorithms are (not)

appropriate, Observational Studies 9(2):79-101

(doi.org/10.1353/obs.2023.0018)

Rodu J, Kafadar K (2022), The qq boxplot, JCGS 31(1):26-39

(doi.org/10.1080/10618600.2021.1938586)

Stigler SM (2016), The Seven Pillars of Statistical Wisdom, Harvard

Univ Press.

50


