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Dominant method for nonlinear prediction in SVMs: Kernels

® Highly nonlinear decision planes are possible.
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1. Introduction

Dominant method for nonlinear prediction in SVMs: Kernels

Highly nonlinear decision planes are possible.
Nonlinearity in the original (primal) problem.

Nonlinearity possible for any linear model (e.g., kernel ridge regression,
kernel logistic regression, etc.)

Kernels are only possible for loss functions with ridge penalty.
So far: no interpretation in terms of the original variables.
Contribution this paper:

7= AU smnsius unniarrer rordesni

roenen & Greenacre Nonlinear Prediction by Kernels Made Explainable 4/29




Introduction

1. Introduction

Dominant method for nonlinear prediction in SVMs: Kernels

Highly nonlinear decision planes are possible.
Nonlinearity in the original (primal) problem.

Nonlinearity possible for any linear model (e.g., kernel ridge regression,
kernel logistic regression, etc.)

Kernels are only possible for loss functions with ridge penalty.
So far: no interpretation in terms of the original variables.

Contribution this paper:
» nonlinear kernels can be interpreted as a linear combination of the original
variables.

Groenen & Greenacre Nonlinear Prediction by Kernels Made Explainable 4/29



Introduction

1. Introduction

Dominant method for nonlinear prediction in SVMs: Kernels

Highly nonlinear decision planes are possible.
Nonlinearity in the original (primal) problem.

Nonlinearity possible for any linear model (e.g., kernel ridge regression,
kernel logistic regression, etc.)

Kernels are only possible for loss functions with ridge penalty.
So far: no interpretation in terms of the original variables.

Contribution this paper:
» nonlinear kernels can be interpreted as a linear combination of the original
variables.
» This is a contribution to explainable Al.
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1. Introduction

Kernels

® Kernels make use of the same trick as polynomial basis expansion or spline
transformations.
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Introduction

1. Introduction

Kernels

Kernels make use of the same trick as polynomial basis expansion or spline
transformations.

Requires a ridge penalty: A\w'w, e.g., in kernel ridge regression (KRR) or
support vector machines (SVM).

Maps x; (row i of X) to ¢; in some high dimensional space.

Fit the model linearly in the high dimensional space.

Then, at most n parameters need to be optimized through a dual approach.
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2. Linear Kernel

Ridge regression

® Loss function ridge regression:

Lridge(WO; W) = ||y — (W()]. + XW)H2 + )\WTW
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® The vector of predicted values is: y = q = wyl + Xw
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Linear Kernels

2. Linear Kernel

Ridge regression

® Loss function ridge regression:

Ligge(wo,w) = [ly — (wol + Xw)||* + \w 'w

® The vector of predicted values is: y = q = wyl + Xw

® The intercept wy complicates things; therefore,
we set = Xw so that

q:W()].—‘rXW:WOl—i-f]
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2. Linear Kernel

A dual approach for KRR:

® Basic idea of the dual approach:
If p>> n (and X has rank n), then switch to the minimization over q (n
parameters) instead of wy and w (p + 1 parameters)
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2. Linear Kernel

Towards a dual approach:

® Example of an X with n < p: n=2p=3

x_ [~25 .75 .50
.50 .50 .50
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Linear Kernels

Towards a dual approach:

2. Linear Kernel

® Example of an X with n < p: n=2p=3

® Choose (e.g.)

(©Groenen & Greenacre
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2. Linear Kernel

Towards a dual approach:

® Example of an X with n < p: n=2p=3

X =

—-25 .75 .50
.50 .50 .50

® Choose (e.g.)

.25
w= |—.50
.50
® Then, the n x 1 =2 x 1 vector g must be in the linear space spanned by
x1 and X»
~ —.1875
4 =Xw =Xw, = [ .1250}
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2. Linear Kernel

Towards a dual approach:
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2. Linear Kernel

Steps to arrive at a dual ridge regression formulation:

1. Decompose w = w; + w; with a part that is in the linear space of X (wy)
and a part that is orthogonal to the linear space of X (wz).
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Linear Kernels

2. Linear Kernel

Steps to arrive at a dual ridge regression formulation:

1.

Decompose w = wy + wy with a part that is in the linear space of X (wy)
and a part that is orthogonal to the linear space of X (wz).

2. q depends only on w; and not on ws.

3. Penalty term has Aw 'w = \w; w; because w, w, = 0.

4. Penalty term equals \w'w = /\ﬁT(XXT)*lﬁ where the n x n matrix XX
has elements x;” x;/.
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4. Penalty term equals \w'w = /\ﬁT(XXT)*lﬁ where the n x n matrix XX
has elements x;” x;/.

5. Without loss of generality, we may optimize directly over the n parameters
g; without any restriction.
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2. Linear Kernel

Steps to arrive at a dual ridge regression formulation:

1. Decompose w = w; + w; with a part that is in the linear space of X (wy)
and a part that is orthogonal to the linear space of X (wz).

2. q depends only on w; and not on ws.
3. Penalty term has Aw 'w = \w; w; because w, w, = 0.

4. Penalty term equals \w'w = /\ﬁT(XXT)*lﬁ where the n x n matrix XX
has elements x;” x;/.

5. Without loss of generality, we may optimize directly over the n parameters
g; without any restriction.

6. Liidge(wo, Q) is now only a function of wy and §;.
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2. Linear Kernel

® The loss of linear KRR Lyigge is now only a function of wy and g;:

Ligge(wo,@) = |y — (wol +@)[> +2a" (XXT) 1§

’ Regression term ‘ ’ Penalty term ‘
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3. Nonlinear Kernels

Kernels for nonlinear prediction:

® Kernels make use of same dual trick for p > n.
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3. Nonlinear Kernels

Kernels for nonlinear prediction:
® Kernels make use of same dual trick for p > n.
® Replace the all the variables in X by their n x k kernel basis ®(X) or ® for
short.
® The equivalent of matrix XX becomes the n x n kernel matrix K = ®& T
with elements k;;; = qﬁ;rqb,-/
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3. Nonlinear Kernels

Kernels for nonlinear prediction:
® Kernels make use of same dual trick for p > n.

® Replace the all the variables in X by their n x k kernel basis ®(X) or ® for
short.

® The equivalent of matrix XX becomes the n x n kernel matrix K = ®& T
with elements k;;; = qﬁ;rqb,-/

® Kernel trick: choose smart ® such that k; can be directly computed from
rows x; and X;.
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3. Nonlinear Kernels

Kernels for nonlinear prediction:

Kernels make use of same dual trick for p > n.

Replace the all the variables in X by their n x k kernel basis ®(X) or @ for
short.

The equivalent of matrix XX becomes the n x n kernel matrix K = ®& T
with elements k;;; = qﬁ;rqb,-/

Kernel trick: choose smart ® such that kj; can be directly computed from
rows x; and X;.

Kernel ridge regression loss equals:

Lkrr(w0, &) = [ly — (wol +@)[> + A§TK 1§
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Nonlinear KRR

3. Nonlinear Kernels

Kernels for nonlinear prediction:

Kernels make use of same dual trick for p > n.

Replace the all the variables in X by their n x k kernel basis ®(X) or @ for
short.

The equivalent of matrix XX becomes the n x n kernel matrix K = ®& T
with elements k;;; = ¢,Tqb,-/

Kernel trick: choose smart ® such that kj; can be directly computed from
rows x; and X;.

Kernel ridge regression loss equals:

Lkrr(w0, &) = [ly — (wol +@)[> + A§TK 1§

For out-of-sample prediction, see

= N st uwnigsrar neressnd
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Nonlinear KRR

3. Nonlinear Kernels

Three examples of kernels:

radial basis function

function (RBF)
ki = e Ixi—xr?

inhomogeneous
linear

polynomial
ki = (1 + X,-TX,'/)d
with fixed d > 0

ki = X! X1

with fixed v > 0

300

anen U,

<ff1‘::-‘4c“4
T\ emaswus unvimsimerr norfenoas
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4. Interpretable Kernels

Kernels

® Kernels in regression or SVM can be used for nonlinear prediction.
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4. Interpretable Kernels

Kernels

® Kernels in regression or SVM can be used for nonlinear prediction.

® Often combined with quadratic ridge penalty against overfitting.
® Problem so far:

» No interpretation in original predictor variables in the n x p matrix X.

Ay
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4. Interpretable Kernels

Kernels
® Kernels in regression or SVM can be used for nonlinear prediction.

® Often combined with quadratic ridge penalty against overfitting.
® Problem so far:

» No interpretation in original predictor variables in the n x p matrix X.
» Use of kernels in, e.g., regression and SVM is a black-box method.
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4. Interpretable Kernels

Contribution this paper

® Introduce approximated kernel ridge regression (AKRR) where kernel
matrix is approximated by X
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® Express the kernel predictions as linear combination in X:

= Eh i

roenen & Greenacre Nonlinear Prediction by Kernels Made Explainable

vvvvvvv

18 /29



4. Interpretable Kernels

Contribution this paper

® Introduce approximated kernel ridge regression (AKRR) where kernel
matrix is approximated by X
® Express the kernel predictions as linear combination in X:
» If n—1 < p (and rank(X) = n— 1) then approximation is exact equivalence.
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4. Interpretable Kernels

Contribution this paper

® Introduce approximated kernel ridge regression (AKRR) where kernel
matrix is approximated by X

® Express the kernel predictions as linear combination in X:

» If n—1 < p (and rank(X) = n— 1) then approximation is exact equivalence.
» If n—1> p (or rank(X) < n — 1) then the kernel solution can be linearly
approximated.
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Contribution this paper
® Introduce approximated kernel ridge regression (AKRR) where kernel
matrix is approximated by X
® Express the kernel predictions as linear combination in X:
» If n—1 < p (and rank(X) = n— 1) then approximation is exact equivalence.
» If n—1> p (or rank(X) < n — 1) then the kernel solution can be linearly
approximated.
» Provide a solution for the interpretation of nonlinear prediction through

kernels.
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4. Interpretable Kernels

Contribution this paper
® Introduce approximated kernel ridge regression (AKRR) where kernel
matrix is approximated by X
® Express the kernel predictions as linear combination in X:

» If n—1 < p (and rank(X) = n— 1) then approximation is exact equivalence.
» If n—1> p (or rank(X) < n — 1) then the kernel solution can be linearly

approximated.
» Provide a solution for the interpretation of nonlinear prediction through
kernels.

¢ Contributes to explainable artificial intelligence (Al).
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Interpretable Kernels

4. Interpretable Kernels

Main result (for KRR and n — 1 < p):

ly — (wol +@)[> + g K™ 1§

Lkrr(wo, @) =
ly = X¥|? + My TAy = Lakrr(7)

with
o A= (XTX) (XTKX) " (XTX)
® ~: p vector with weights.
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5. Approximated KRR

Linearly Approximated KRR:

® Two steps:
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5. Approximated KRR

Linearly Approximated KRR:
® Two steps:

1. Approximate the kernel space ® by XB through (classical) multidimensional
scaling (MDS) through strain loss:

Lswan(B) = |[K—XBB'X'|?
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5. Approximated KRR

Linearly Approximated KRR:
® Two steps:

1. Approximate the kernel space ® by XB through (classical) multidimensional
scaling (MDS) through strain loss:

Lswan(B) = |[K—XBB'X'|?

2. Do a ridge regression with predictors X and adapted ridge penalty
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5. Step 1 of Approximated KRR

Step 1 Linearly Approximated KRR: Minimize Lsain(B) = [|K — XBBTXTH2
® Solution:
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5. Step 1 of Approximated KRR

Step 1 Linearly Approximated KRR: Minimize Lsain(B) = [|K — XBBTXTH2
® Solution:

» Computing the eigendecomposition

—1/2 /2

XTKX(XTX) ™"

(X'X)

_ QFQT _ (er/Z)(QFI/Z)T
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5. Step 1 of Approximated KRR

Step 1 Linearly Approximated KRR: Minimize Lsain(B) = [|K — XBBTXTH2
® Solution:

» Computing the eigendecomposition

—1/2

(XTX) XTKx(xTX)—1/2 _ QFQT — (QF1/2)(QF1/2)T
» and weight matrix B
B* — (XTX)*1/2QF1/2

with (XTX)® = PX*PT and o§ the power a of the nonzero eigenvalues of
XX and 0§ = 0 otherwise.
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5. Step 1 of Approximated KRR

Step 1 Linearly Approximated KRR: Minimize Lsain(B) = [|K — XBBTXTH2
® Solution:

» Computing the eigendecomposition

—1/2

(XTX) XTKx(xTX)—1/2 _ QFQT — (QF1/2)(QF1/2)T

» and weight matrix B
B* — (XTX) 1-\1/2

with (XTX)® = PX*PT and o§ the power a of the nonzero eigenvalues of
XX and 0§ = 0 otherwise.

® If n—1 < p then Lgyain(B*) = 0 (perfect reconstruction of K).
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5. Step 1 of Approximated KRR

Step 1 Linearly Approximated KRR: Minimize Lsain(B) = [|K — XBBTXTH2
® Solution:

» Computing the eigendecomposition

—1/2

(XTX) XTKx(xTX)—1/2 _ QFQT — (QF1/2)(QF1/2)T

» and weight matrix B
B* — (XTX) 1-\1/2

with (XTX)® = PX*PT and o§ the power a of the nonzero eigenvalues of
XX and 0§ = 0 otherwise.
® If n—1 < p then Lgyain(B*) = 0 (perfect reconstruction of K).

® If n—1> p, then Lsiin(B*) > 0 (approximated reconstruction of K)
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5. Step 2 of Approximated KRR

Step 2: We define Approximated KRR (AKRR):
® Do ridge regression with XB as predictor variables:

Lakrr(8) = lly — XBB|* + | 8|
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5. Step 2 of Approximated KRR

Step 2: We define Approximated KRR (AKRR):
® Do ridge regression with XB as predictor variables:

Lakrr(B) = |y — XBB|* + 8|
® let v =B so that
B'y = B'B3
B = (B™B) "By
88 = +'B(B'B) BTy =" (BB) .
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5. Step 2 of Approximated KRR

Step 2: We define Approximated KRR (AKRR):
® Do ridge regression with XB as predictor variables:

Laxrr(8) = |y —XBgB|* + X8|
® let v =B so that
B'y = B'B3
B = (B"B) "By
B'8 = ~+'B(B'B) °BTy=+" (B'B) .
® Then
Lakrr(B) = Laxrr(7)

= Jy=Xv[>+ " (B'B) 'y
=y = Xy[? + AT (XTX) (XTKX) " (XTX)~

= |y = Xv[>+ Xy Ay.
= AL asius vnimsirer nortessnt
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5. Approximated KRR

Properties of Approximated KRR:
® | oss AKRR:

ly = X[ + AT (XTX) (XTKX) " (XTX)~
ly = X7 + Xy Ay

Lakrr(7)
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5. Approximated KRR

Properties of Approximated KRR:
® | oss AKRR:

Lakrr(Y) = [ly = Xv[> + AT (XTX) (XTKX)_I (XTX)~y
= |ly = Xv[* + Ay

® AKRR vyields exactly the same predictions as KRR if n —1 < p and
rank(X) = n — 1 (no approximation).
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5. Approximated KRR

Properties of Approximated KRR:
® | oss AKRR:

Lakrr(Y) = [ly = Xv[> + AT (XTX) (XTKX)_I (XTX)~y
= |ly = Xv[* + Ay

® AKRR vyields exactly the same predictions as KRR if n —1 < p and
rank(X) = n — 1 (no approximation).
o AKRR approximates KRR otherwise.
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® AKRR vyields exactly the same predictions as KRR if n —1 < p and
rank(X) = n — 1 (no approximation).
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5. Approximated KRR

Properties of Approximated KRR:
® | oss AKRR:

Lakrr(Y) = [ly = Xv[> + AT (XTX) (XTKX)_I (XTX)~y
= |ly = Xv[* + Ay

AKRR vyields exactly the same predictions as KRR if n —1 < p and
rank(X) = n — 1 (no approximation).
AKRR approximates KRR otherwise.

Interpretation of AKKR in terms of weights « as in (ridge) regression.

® i-tests for v can be derived as in ridge regression.
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5. Approximated KRR

Quality of approximation of penalty:

® | oss optimal approximation kernel penalty:
LStrain(B*) = ||K — XB*B*TXTH2
= |IK = X(XTX)"XTKX(XTX)~XT|?
= tr(l — X(XTX)" XK1 — X(XTX)~XT)
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5. Approximated KRR

Quality of approximation of penalty:

® | oss optimal approximation kernel penalty:

LStrain(B*) = ||K — XB*B*TXTH2
= |IK = X(XTX)"XTKX(XTX)~XT|?
= tr(l — X(XTX)" XK1 — X(XTX)~XT)

® This loss is equal to the part of K that is not in the space of X.
® Penalty accounted for (PAF) is the proportion of ||K]|? in the space of X:

tr(X(XTX)~XT)K(X(XTX)~XT)

PAF =
IIKIJ?
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Conclusions

® Nonlinearity in orginal variables can be done by nonlinear kernels.

® Any kernel method can be interpreted as a linear combination in original
predictors with a quadratic ridge penalty in specific metric of the weights.

® Approximation is exact if p > n and has PAF = 1.

® Can be used for SVM, Kernel Ridge Regression, Kernel Logistic Regression,
etc.

® Could be used in any software that allows ridge weighted quadratic
penalties such as glmnet (with some pre- and post-processing by linear
algebra).
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A.1 Proof that Aw'w = \g" (XX ')"q

Proof that Aww = Ag' (XX')~1§:
® Let the SVD of X = UDV'. Then

G = Xw=UDV'w
UTg DV 'w
DWU'g = V'w
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Conclusions

A.1 Proof that Aw'w = \g" (XX ')"q

Proof that Aww = Ag' (XX')~1§:
® Let the SVD of X = UDV'. Then

e}

O

UT
D'U'q =

® The penalty term can be written as

w'w = )\WT(l—

= w'(l-

Xw = UDV 'w
DV'w

Viw

VVT 4+ VvV w
VVHw + 2w VW w

The part of w in the space of X is w; = VV "w and the part outside is
wy = (1 -VVTw
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Conclusions

A.1 Proof that Aw'w = \g" (XX ')"q

Proof that Aww = Ag' (XX')~1§:
® Let the SVD of X = UDV'. Then

G = Xw=UDV'w
U'g = DV'w
DWU'g = V'w
® The penalty term can be written as
w'w = dw'(I-VVT +VWhw

Aw (1= VVHw + w VWV Tw

The part of w in the space of X is w; = VV "w and the part outside is
wy = (1 -VVTw
® Thus, w' (I - VVT)w = w, wy =0 and

wlw = Aw'VWiw = )w/w;
= AGUD2UTg = guUD 'VTVD1UTg = g(XX") 1§
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A.2 Prediction for Nonlinear KRR

Final step needed with kernels for predicting the test data X,:
® Let the SVD of & = UDVT. Then &' (&) '® = VV ' because

»"(®®"')'®@ = vDU'(UDV'VDU')'uDV'

(©Groenen & Greenacre

= VvDU'UD ?uTuDVv’
= VDD 2DV’ =vVv'
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A.2 Prediction for Nonlinear KRR

Final step needed with kernels for predicting the test data X,:
® Let the SVD of & = UDVT. Then &' (&) '® = VV ' because

»"(®®"')'®@ = vDU'(UDV'VDU')'uDV'
= VvDU'uD2UTuDV'
= VDD ’DV' =vVv'
® Then the predicted q, for the test set X, is
Q=wl+Pw = wl+®d,VV'w
= wl+®,o (22" 'dw
= wl+ (2,@")(®2") }(Pw)
= wl+K,K1g

with K, is the n, x n kernel matrix with elements kj; where i stands for

row i of X, and j for row j of X.
C= N tRashus umwimsimen sorfensan
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