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Introduction

1. Introduction

Dominant method for nonlinear prediction in SVMs: Kernels

• Highly nonlinear decision planes are possible.

• Nonlinearity in the original (primal) problem.

• Nonlinearity possible for any linear model (e.g., kernel ridge regression,
kernel logistic regression, etc.)

• Kernels are only possible for loss functions with ridge penalty.

• So far: no interpretation in terms of the original variables.

• Contribution this paper:
I nonlinear kernels can be interpreted as a linear combination of the original

variables.
I This is a contribution to explainable AI.
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Introduction

1. Introduction

Kernels

• Kernels make use of the same trick as polynomial basis expansion or spline
transformations.

• Requires a ridge penalty: λw>w, e.g., in kernel ridge regression (KRR) or
support vector machines (SVM).

• Maps xi (row i of X) to φi in some high dimensional space.

• Fit the model linearly in the high dimensional space.

• Then, at most n parameters need to be optimized through a dual approach.
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Linear Kernels

2. Linear Kernel

Ridge regression

• Loss function ridge regression:

Lridge(w0,w) = ‖y − (w01 + Xw)‖2 + λw>w

• The vector of predicted values is: ŷ = q = w01 + Xw

• The intercept w0 complicates things; therefore,
we set q̃ = Xw so that

q = w01 + Xw = w01 + q̃
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• The intercept w0 complicates things; therefore,
we set q̃ = Xw so that

q = w01 + Xw = w01 + q̃

©Groenen & Greenacre Nonlinear Prediction by Kernels Made Explainable 7 / 29



Linear Kernels

2. Linear Kernel

Ridge regression

• Loss function ridge regression:

Lridge(w0,w) = ‖y − (w01 + Xw)‖2 + λw>w

• The vector of predicted values is: ŷ = q = w01 + Xw
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Linear Kernels

2. Linear Kernel

A dual approach for KRR:

• Basic idea of the dual approach:
If p � n (and X has rank n), then switch to the minimization over q (n
parameters) instead of w0 and w (p + 1 parameters)
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Linear Kernels

2. Linear Kernel

Towards a dual approach:

• Example of an X with n < p: n = 2, p = 3

X =

[
−.25 .75 .50
.50 .50 .50

]
• Choose (e.g.)

w =

 .25
−.50
.50


• Then, the n × 1 = 2× 1 vector q̃ must be in the linear space spanned by
x1 and x2

q̃ = Xw = Xw1 =

[
−.1875
.1250

]
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Linear Kernels

2. Linear Kernel

Towards a dual approach:
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Linear Kernels

2. Linear Kernel

Steps to arrive at a dual ridge regression formulation:

1. Decompose w = w1 + w2 with a part that is in the linear space of X (w1)
and a part that is orthogonal to the linear space of X (w2).

2. q̃ depends only on w1 and not on w2.

3. Penalty term has λw>w = λw>1 w1 because w>2 w2 = 0.

4. Penalty term equals λw>w = λq̃>(XX>)−1q̃ where the n× n matrix XX>

has elements x>i xi ′ . Proof A.1

5. Without loss of generality, we may optimize directly over the n parameters
q̃i without any restriction.

6. Lridge(w0, q̃) is now only a function of w0 and q̃i .
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Linear Kernels

2. Linear Kernel

• The loss of linear KRR Lridge is now only a function of w0 and q̃i :

Lridge(w0, q̃) = ‖y − (w01 + q̃)‖2 +λq̃>(XX>)−1q̃
↑ ↑

Regression term Penalty term
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Nonlinear KRR

3. Nonlinear Kernels

Kernels for nonlinear prediction:

• Kernels make use of same dual trick for p � n.

• Replace the all the variables in X by their n× k kernel basis Φ(X) or Φ for
short.

• The equivalent of matrix XX> becomes the n× n kernel matrix K = ΦΦ>

with elements kii ′ = φ>i φi ′

• Kernel trick: choose smart Φ such that kij can be directly computed from
rows xi and xi ′ .

• Kernel ridge regression loss equals:

LKRR(w0, q̃) = ‖y − (w01 + q̃)‖2 + λq̃>K−1q̃

• For out-of-sample prediction, see Appendix A.2
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Nonlinear KRR

3. Nonlinear Kernels

Three examples of kernels:

radial basis function inhomogeneous
linear function (RBF) polynomial

kii ′ = x>i xi ′ kii ′ = e−γ‖xi−xi′‖
2

kii ′ = (1 + x>i xi ′)
d

with fixed γ > 0 with fixed d > 0

x1

−3
−2

−1
0

1
2

3

x2

−3

−2

−1
0
1
2
3

kernel value

−5

0

5

x1

−3
−2

−1
0

1
2

3
x2

−3

−2

−1
0
1
2
3

kernel value

−1.0

−0.5

0.0

0.5

1.0

x1

−3
−2

−1
0

1
2

3

x2

−3

−2

−1
0
1
2
3

kernel value

−100

0

100

200

300
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Interpretable Kernels

4. Interpretable Kernels

Kernels

• Kernels in regression or SVM can be used for nonlinear prediction.

• Often combined with quadratic ridge penalty against overfitting.

• Problem so far:
I No interpretation in original predictor variables in the n × p matrix X.
I Use of kernels in, e.g., regression and SVM is a black-box method.
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Interpretable Kernels

4. Interpretable Kernels

Contribution this paper

• Introduce approximated kernel ridge regression (AKRR) where kernel
matrix is approximated by X

• Express the kernel predictions as linear combination in X:
I If n− 1 ≤ p (and rank(X) = n− 1) then approximation is exact equivalence.
I If n − 1 > p (or rank(X) < n − 1) then the kernel solution can be linearly

approximated.
I Provide a solution for the interpretation of nonlinear prediction through

kernels.

• Contributes to explainable artificial intelligence (AI).
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Interpretable Kernels

4. Interpretable Kernels

Main result (for KRR and n − 1 ≤ p):

LKRR(w0, q̃) = ‖y − (w01 + q̃)‖2 + λq̃>K−1q̃

= ‖y − Xγ‖2 + λγTAγ = LAKRR(γ)

with

• A =
(
XTX

) (
XTKX

)−1 (
XTX

)
• γ: p vector with weights.
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5. Approximated KRR

Linearly Approximated KRR:

• Two steps:

1. Approximate the kernel space Φ by XB through (classical) multidimensional
scaling (MDS) through strain loss:

LStrain(B) = ‖K− XBBTX
T‖2

2. Do a ridge regression with predictors X and adapted ridge penalty
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Approximated KRR

5. Step 1 of Approximated KRR

Step 1 Linearly Approximated KRR: Minimize LStrain(B) = ‖K− XBBTX
T‖2

• Solution:
I Computing the eigendecomposition

(XTX)
−1/2

XTKX(XTX)
−1/2

= QΓQT = (QΓ1/2)(QΓ1/2)T

I and weight matrix B

B∗ = (XTX)
−1/2

QΓ1/2

with (XTX)α = PΣαPT and σαii the power α of the nonzero eigenvalues of
XTX and σαii = 0 otherwise.

• If n − 1 < p then LStrain(B∗) = 0 (perfect reconstruction of K).

• If n − 1 > p, then LStrain(B∗) > 0 (approximated reconstruction of K)
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Approximated KRR

5. Step 2 of Approximated KRR

Step 2: We define Approximated KRR (AKRR):
• Do ridge regression with XB as predictor variables:

LAKRR(β) = ‖y − XBβ‖2 + λ‖β‖2

• Let γ = Bβ so that

BTγ = BTBβ

β =
(
BTB

)−1
BTγ

βTβ = γTB
(
BTB

)−2
BTγ = γT

(
BTB

)−1
γ.

• Then

LAKRR(β) = LAKRR(γ)

= ‖y − Xγ‖2 + λγT
(
BTB

)−1
γ

= ‖y − Xγ‖2 + λγT
(
XTX

) (
XTKX

)−1 (
XTX

)
γ

= ‖y − Xγ‖2 + λγTAγ.
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Approximated KRR

5. Approximated KRR

Properties of Approximated KRR:

• Loss AKRR:

LAKRR(γ) = ‖y − Xγ‖2 + λγT
(
XTX

) (
XTKX

)−1 (
XTX

)
γ

= ‖y − Xγ‖2 + λγTAγ

• AKRR yields exactly the same predictions as KRR if n − 1 < p and
rank(X) = n − 1 (no approximation).

• AKRR approximates KRR otherwise.

• Interpretation of AKKR in terms of weights γ as in (ridge) regression.

• t-tests for γ can be derived as in ridge regression.
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Approximated KRR

5. Approximated KRR

Quality of approximation of penalty:

• Loss optimal approximation kernel penalty:

LStrain(B∗) = ‖K− XB∗B∗TXT‖2

= ‖K− X(XTX)−XTKX(XTX)−XT‖2

= tr(I− X(XTX)−XT)K(I− X(XTX)−XT)

• This loss is equal to the part of K that is not in the space of X.

• Penalty accounted for (PAF) is the proportion of ‖K‖2 in the space of X:

PAF =
tr(X(XTX)−XT)K(X(XTX)−XT)

‖K‖2

©Groenen & Greenacre Nonlinear Prediction by Kernels Made Explainable 25 / 29



Approximated KRR

5. Approximated KRR

Quality of approximation of penalty:

• Loss optimal approximation kernel penalty:

LStrain(B∗) = ‖K− XB∗B∗TXT‖2

= ‖K− X(XTX)−XTKX(XTX)−XT‖2

= tr(I− X(XTX)−XT)K(I− X(XTX)−XT)

• This loss is equal to the part of K that is not in the space of X.

• Penalty accounted for (PAF) is the proportion of ‖K‖2 in the space of X:

PAF =
tr(X(XTX)−XT)K(X(XTX)−XT)

‖K‖2

©Groenen & Greenacre Nonlinear Prediction by Kernels Made Explainable 25 / 29



Approximated KRR

5. Approximated KRR

Quality of approximation of penalty:

• Loss optimal approximation kernel penalty:

LStrain(B∗) = ‖K− XB∗B∗TXT‖2

= ‖K− X(XTX)−XTKX(XTX)−XT‖2

= tr(I− X(XTX)−XT)K(I− X(XTX)−XT)

• This loss is equal to the part of K that is not in the space of X.

• Penalty accounted for (PAF) is the proportion of ‖K‖2 in the space of X:

PAF =
tr(X(XTX)−XT)K(X(XTX)−XT)

‖K‖2

©Groenen & Greenacre Nonlinear Prediction by Kernels Made Explainable 25 / 29



Conclusions

Table of Contents

1. Introduction

2. Linear Kernels

3. Nonlinear KRR

4. Interpretable Kernels

5. Approximated KRR

6. Conclusions

©Groenen & Greenacre Nonlinear Prediction by Kernels Made Explainable 26 / 29



Conclusions

Conclusions

• Nonlinearity in orginal variables can be done by nonlinear kernels.

• Any kernel method can be interpreted as a linear combination in original
predictors with a quadratic ridge penalty in specific metric of the weights.

• Approximation is exact if p > n and has PAF = 1.

• Can be used for SVM, Kernel Ridge Regression, Kernel Logistic Regression,
etc.

• Could be used in any software that allows ridge weighted quadratic
penalties such as glmnet (with some pre- and post-processing by linear
algebra).
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Conclusions

A.1 Proof that λw>w = λq̃>(XX>)−1q̃

Proof that λw>w = λq̃>(XX>)−1q̃:
• Let the SVD of X = UDV>. Then

q̃ = Xw = UDV>w

U>q̃ = DV>w

D−1U>q̃ = V>w

• The penalty term can be written as

λw>w = λw>(I− VV> + VV>)w

= λw>(I− VV>)w + λw>VV>w

The part of w in the space of X is w1 = VV>w and the part outside is
w2 = (I− VV>)w

• Thus, w>(I− VV>)w = w>2 w2 = 0 and

λw>w = λw>VV>w = λw>1 w1

= λq̃UD−2U>q̃ = λq̃UD−1V>VD−1U>q̃ = λq̃(XX>)−1q̃

Back
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Conclusions

A.2 Prediction for Nonlinear KRR

Final step needed with kernels for predicting the test data Xu:

• Let the SVD of Φ = UDV>. Then Φ>(ΦΦ>)−1Φ = VV> because

Φ>(ΦΦ>)−1Φ = VDU>(UDV>VDU>)−1UDV>

= VDU>UD−2U>UDV>

= VDD−2DV> = VV>

• Then the predicted qu for the test set Xu is

qu = w01 + Φuw = w01 + ΦuVV
>w

= w01 + ΦuΦ
>(ΦΦ>)−1Φw

= w01 + (ΦuΦ
>)(ΦΦ>)−1(Φw)

= w01 + KuK
−1q̃

with Ku is the nu × n kernel matrix with elements kij where i stands for
row i of Xu and j for row j of X. Back
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