

Nonlinear Prediction by Kernels Made Explainable

Patrick Groenen and Michael Greenacre

September, 2023

Erasmus University Rotterdam

- 1. Introduction
- 2. Linear Kernels
- 3. Nonlinear KRR
- 4. Interpretable Kernels
- 5. Approximated KRR
- 6. Conclusions

Table of Contents

1. Introduction

- 2. Linear Kernels
- 3. Nonlinear KRR
- 4. Interpretable Kernels
- 5. Approximated KRR
- 6. Conclusions

- Highly nonlinear decision planes are possible.
- Nonlinearity in the original (primal) problem.
- Nonlinearity possible for any linear model (e.g., kernel ridge regression, kernel logistic regression, etc.)
- Kernels are only possible for loss functions with ridge penalty.
- So far: no interpretation in terms of the original variables.
- Contribution this paper:
 - nonlinear kernels can be interpreted as a linear combination of the original variables.
 - ▶ This is a contribution to explainable AI.

- Highly nonlinear decision planes are possible.
- Nonlinearity in the original (primal) problem.
- Nonlinearity possible for any linear model (e.g., kernel ridge regression, kernel logistic regression, etc.)
- Kernels are only possible for loss functions with ridge penalty.
- So far: no interpretation in terms of the original variables.
- Contribution this paper:
 - nonlinear kernels can be interpreted as a linear combination of the original variables.
 - This is a contribution to explainable AI.

- Highly nonlinear decision planes are possible.
- Nonlinearity in the original (primal) problem.
- Nonlinearity possible for any linear model (e.g., kernel ridge regression, kernel logistic regression, etc.)
- Kernels are only possible for loss functions with ridge penalty.
- So far: no interpretation in terms of the original variables.
- Contribution this paper:
 - nonlinear kernels can be interpreted as a linear combination of the original variables.
 - This is a contribution to explainable AI.

- Highly nonlinear decision planes are possible.
- Nonlinearity in the original (primal) problem.
- Nonlinearity possible for any linear model (e.g., kernel ridge regression, kernel logistic regression, etc.)
- Kernels are only possible for loss functions with ridge penalty.
- So far: no interpretation in terms of the original variables.
- Contribution this paper:
 - nonlinear kernels can be interpreted as a linear combination of the original variables.
 - ▶ This is a contribution to explainable AI.

- Highly nonlinear decision planes are possible.
- Nonlinearity in the original (primal) problem.
- Nonlinearity possible for any linear model (e.g., kernel ridge regression, kernel logistic regression, etc.)
- Kernels are only possible for loss functions with ridge penalty.
- So far: no interpretation in terms of the original variables.
- Contribution this paper:
 - nonlinear kernels can be interpreted as a linear combination of the original variables.
 - This is a contribution to explainable AI.

- Highly nonlinear decision planes are possible.
- Nonlinearity in the original (primal) problem.
- Nonlinearity possible for any linear model (e.g., kernel ridge regression, kernel logistic regression, etc.)
- Kernels are only possible for loss functions with ridge penalty.
- So far: no interpretation in terms of the original variables.
- Contribution this paper:
 - nonlinear kernels can be interpreted as a linear combination of the original variables.
 - ► This is a contribution to explainable AI.

- Highly nonlinear decision planes are possible.
- Nonlinearity in the original (primal) problem.
- Nonlinearity possible for any linear model (e.g., kernel ridge regression, kernel logistic regression, etc.)
- Kernels are only possible for loss functions with ridge penalty.
- So far: no interpretation in terms of the original variables.
- Contribution this paper:
 - nonlinear kernels can be interpreted as a linear combination of the original variables.
 - ► This is a contribution to explainable AI.

- Highly nonlinear decision planes are possible.
- Nonlinearity in the original (primal) problem.
- Nonlinearity possible for any linear model (e.g., kernel ridge regression, kernel logistic regression, etc.)
- Kernels are only possible for loss functions with ridge penalty.
- So far: no interpretation in terms of the original variables.
- Contribution this paper:
 - nonlinear kernels can be interpreted as a linear combination of the original variables.
 - ► This is a contribution to explainable AI.

- Kernels make use of the same trick as polynomial basis expansion or spline transformations.
- Requires a ridge penalty: λw^Tw, e.g., in kernel ridge regression (KRR) or support vector machines (SVM).
- Maps \mathbf{x}_i (row *i* of \mathbf{X}) to ϕ_i in some high dimensional space.
- Fit the model linearly in the high dimensional space.
- Then, at most *n* parameters need to be optimized through a dual approach.

- Kernels make use of the same trick as polynomial basis expansion or spline transformations.
- Requires a ridge penalty: λw^Tw, e.g., in kernel ridge regression (KRR) or support vector machines (SVM).
- Maps \mathbf{x}_i (row *i* of \mathbf{X}) to ϕ_i in some high dimensional space.
- Fit the model linearly in the high dimensional space.
- Then, at most *n* parameters need to be optimized through a dual approach.

- Kernels make use of the same trick as polynomial basis expansion or spline transformations.
- Requires a ridge penalty: λw^Tw, e.g., in kernel ridge regression (KRR) or support vector machines (SVM).
- Maps \mathbf{x}_i (row *i* of **X**) to ϕ_i in some high dimensional space.
- Fit the model linearly in the high dimensional space.
- Then, at most *n* parameters need to be optimized through a dual approach.

- Kernels make use of the same trick as polynomial basis expansion or spline transformations.
- Requires a ridge penalty: λw^Tw, e.g., in kernel ridge regression (KRR) or support vector machines (SVM).
- Maps \mathbf{x}_i (row *i* of **X**) to ϕ_i in some high dimensional space.
- Fit the model linearly in the high dimensional space.
- Then, at most *n* parameters need to be optimized through a dual approach.

- Kernels make use of the same trick as polynomial basis expansion or spline transformations.
- Requires a ridge penalty: λw^Tw, e.g., in kernel ridge regression (KRR) or support vector machines (SVM).
- Maps \mathbf{x}_i (row *i* of **X**) to ϕ_i in some high dimensional space.
- Fit the model linearly in the high dimensional space.
- Then, at most *n* parameters need to be optimized through a dual approach.

Table of Contents

- 1. Introduction
- 2. Linear Kernels
- 3. Nonlinear KRR
- 4. Interpretable Kernels
- 5. Approximated KRR
- 6. Conclusions

Ridge regression

• Loss function ridge regression:

$$L_{\mathsf{ridge}}(w_0, \mathbf{w}) = \|\mathbf{y} - (w_0 \mathbf{1} + \mathbf{X} \mathbf{w})\|^2 + \lambda \mathbf{w}^\top \mathbf{w}$$

- The vector of predicted values is: $\hat{\mathbf{y}} = \mathbf{q} = w_0 \mathbf{1} + \mathbf{X} \mathbf{w}$
- The intercept w₀ complicates things; therefore, we set q̃ = Xw so that

$$\mathbf{q} = w_0 \mathbf{1} + \mathbf{X} \mathbf{w} = w_0 \mathbf{1} + \tilde{\mathbf{q}}$$

Ridge regression

• Loss function ridge regression:

$$L_{\mathsf{ridge}}(w_0, \mathbf{w}) = \|\mathbf{y} - (w_0 \mathbf{1} + \mathbf{X} \mathbf{w})\|^2 + \lambda \mathbf{w}^\top \mathbf{w}$$

- The vector of predicted values is: $\hat{\mathbf{y}} = \mathbf{q} = w_0 \mathbf{1} + \mathbf{X} \mathbf{w}$
- The intercept w₀ complicates things; therefore, we set q̃ = Xw so that

$$\mathbf{q} = w_0 \mathbf{1} + \mathbf{X} \mathbf{w} = w_0 \mathbf{1} + \tilde{\mathbf{q}}$$

Ridge regression

• Loss function ridge regression:

$$L_{\mathsf{ridge}}(w_0, \mathbf{w}) = \|\mathbf{y} - (w_0 \mathbf{1} + \mathbf{X} \mathbf{w})\|^2 + \lambda \mathbf{w}^\top \mathbf{w}$$

- The vector of predicted values is: $\hat{\mathbf{y}} = \mathbf{q} = w_0 \mathbf{1} + \mathbf{X} \mathbf{w}$
- The intercept w_0 complicates things; therefore, we set $\tilde{\mathbf{q}} = \mathbf{X} \mathbf{w}$ so that

$$\mathbf{q} = w_0 \mathbf{1} + \mathbf{X} \mathbf{w} = w_0 \mathbf{1} + \tilde{\mathbf{q}}$$

2. Linear Kernel

A dual approach for KRR:

 Basic idea of the dual approach: If p ≫ n (and X has rank n), then switch to the minimization over q (n parameters) instead of w₀ and w (p + 1 parameters)

A B >
 A B >

2. Linear Kernel

Towards a dual approach:

• Example of an **X** with n < p: n = 2, p = 3

$$\mathbf{X} = \begin{bmatrix} -.25 & .75 & .50 \\ .50 & .50 & .50 \end{bmatrix}$$

• Choose (e.g.)

$$\mathbf{w} = \begin{bmatrix} .25\\ -.50\\ .50 \end{bmatrix}$$

• Then, the $n \times 1 = 2 \times 1$ vector \tilde{q} must be in the linear space spanned by x_1 and x_2

$$\tilde{\mathbf{q}} = \mathbf{X}\mathbf{w} = \mathbf{X}\mathbf{w}_1 = \begin{bmatrix} -.1875\\.1250 \end{bmatrix}$$

2. Linear Kernel

Towards a dual approach:

• Example of an **X** with n < p: n = 2, p = 3

$$\mathbf{X} = \begin{bmatrix} -.25 & .75 & .50 \\ .50 & .50 & .50 \end{bmatrix}$$

• Choose (e.g.)

$$\mathbf{w} = \begin{bmatrix} .25\\ -.50\\ .50 \end{bmatrix}$$

 Then, the n × 1 = 2 × 1 vector q̃ must be in the linear space spanned by x₁ and x₂

$$\tilde{\mathbf{q}} = \mathbf{X}\mathbf{w} = \mathbf{X}\mathbf{w}_1 = \begin{bmatrix} -.1875\\.1250 \end{bmatrix}$$

2. Linear Kernel

Towards a dual approach:

• Example of an **X** with n < p: n = 2, p = 3

$$\mathbf{X} = \begin{bmatrix} -.25 & .75 & .50 \\ .50 & .50 & .50 \end{bmatrix}$$

• Choose (e.g.)

$$\mathbf{w} = \begin{bmatrix} .25\\ -.50\\ .50 \end{bmatrix}$$

• Then, the $n \times 1 = 2 \times 1$ vector $\tilde{\mathbf{q}}$ must be in the linear space spanned by \mathbf{x}_1 and \mathbf{x}_2

$$\tilde{\mathbf{q}} = \mathbf{X}\mathbf{w} = \mathbf{X}\mathbf{w}_1 = \begin{bmatrix} -.1875\\.1250 \end{bmatrix}$$

2. Linear Kernel

Towards a dual approach:

- 1. Decompose $\mathbf{w} = \mathbf{w}_1 + \mathbf{w}_2$ with a part that is in the linear space of \mathbf{X} (\mathbf{w}_1) and a part that is orthogonal to the linear space of \mathbf{X} (\mathbf{w}_2).
- 2. $\tilde{\mathbf{q}}$ depends only on \mathbf{w}_1 and not on \mathbf{w}_2 .
- 3. Penalty term has $\lambda \mathbf{w}^{\top} \mathbf{w} = \lambda \mathbf{w}_1^{\top} \mathbf{w}_1$ because $\mathbf{w}_2^{\top} \mathbf{w}_2 = 0$.
- 4. Penalty term equals $\lambda \mathbf{w}^{\top} \mathbf{w} = \lambda \tilde{\mathbf{q}}^{\top} (\mathbf{X} \mathbf{X}^{\top})^{-1} \tilde{\mathbf{q}}$ where the $n \times n$ matrix $\mathbf{X} \mathbf{X}^{\top}$ has elements $\mathbf{x}_{i}^{\top} \mathbf{x}_{i'}$. Proof A1
- 5. Without loss of generality, we may optimize directly over the *n* parameters \tilde{q}_i without any restriction.
- 6. $L_{\text{ridge}}(w_0, \tilde{\mathbf{q}})$ is now only a function of w_0 and \tilde{q}_i .

- 1. Decompose $\mathbf{w} = \mathbf{w}_1 + \mathbf{w}_2$ with a part that is in the linear space of \mathbf{X} (\mathbf{w}_1) and a part that is orthogonal to the linear space of \mathbf{X} (\mathbf{w}_2).
- 2. $\tilde{\mathbf{q}}$ depends only on \mathbf{w}_1 and not on \mathbf{w}_2 .
- 3. Penalty term has $\lambda \mathbf{w}^{\top} \mathbf{w} = \lambda \mathbf{w}_1^{\top} \mathbf{w}_1$ because $\mathbf{w}_2^{\top} \mathbf{w}_2 = 0$.
- 4. Penalty term equals $\lambda \mathbf{w}^{\top} \mathbf{w} = \lambda \tilde{\mathbf{q}}^{\top} (\mathbf{X} \mathbf{X}^{\top})^{-1} \tilde{\mathbf{q}}$ where the $n \times n$ matrix $\mathbf{X} \mathbf{X}^{\top}$ has elements $\mathbf{x}_{i}^{\top} \mathbf{x}_{i'}$. Proof A1
- 5. Without loss of generality, we may optimize directly over the *n* parameters \tilde{q}_i without any restriction.
- 6. $L_{\text{ridge}}(w_0, \tilde{\mathbf{q}})$ is now only a function of w_0 and \tilde{q}_i .

- 1. Decompose $\mathbf{w} = \mathbf{w}_1 + \mathbf{w}_2$ with a part that is in the linear space of \mathbf{X} (\mathbf{w}_1) and a part that is orthogonal to the linear space of \mathbf{X} (\mathbf{w}_2).
- 2. $\tilde{\mathbf{q}}$ depends only on \mathbf{w}_1 and not on \mathbf{w}_2 .
- 3. Penalty term has $\lambda \mathbf{w}^{\top} \mathbf{w} = \lambda \mathbf{w}_1^{\top} \mathbf{w}_1$ because $\mathbf{w}_2^{\top} \mathbf{w}_2 = 0$.
- 4. Penalty term equals $\lambda \mathbf{w}^{\top} \mathbf{w} = \lambda \tilde{\mathbf{q}}^{\top} (\mathbf{X} \mathbf{X}^{\top})^{-1} \tilde{\mathbf{q}}$ where the $n \times n$ matrix $\mathbf{X} \mathbf{X}^{\top}$ has elements $\mathbf{x}_{i}^{\top} \mathbf{x}_{i'}$. Proof A1
- 5. Without loss of generality, we may optimize directly over the *n* parameters \tilde{q}_i without any restriction.
- 6. $L_{\text{ridge}}(w_0, \tilde{\mathbf{q}})$ is now only a function of w_0 and \tilde{q}_i .

- 1. Decompose $\mathbf{w} = \mathbf{w}_1 + \mathbf{w}_2$ with a part that is in the linear space of \mathbf{X} (\mathbf{w}_1) and a part that is orthogonal to the linear space of \mathbf{X} (\mathbf{w}_2).
- 2. $\tilde{\mathbf{q}}$ depends only on \mathbf{w}_1 and not on \mathbf{w}_2 .
- 3. Penalty term has $\lambda \mathbf{w}^{\top} \mathbf{w} = \lambda \mathbf{w}_1^{\top} \mathbf{w}_1$ because $\mathbf{w}_2^{\top} \mathbf{w}_2 = 0$.
- 4. Penalty term equals $\lambda \mathbf{w}^{\top} \mathbf{w} = \lambda \tilde{\mathbf{q}}^{\top} (\mathbf{X} \mathbf{X}^{\top})^{-1} \tilde{\mathbf{q}}$ where the $n \times n$ matrix $\mathbf{X} \mathbf{X}^{\top}$ has elements $\mathbf{x}_{i}^{\top} \mathbf{x}_{i'}$. Proof A.1
- 5. Without loss of generality, we may optimize directly over the *n* parameters \tilde{q}_i without any restriction.
- 6. $L_{\text{ridge}}(w_0, \tilde{\mathbf{q}})$ is now only a function of w_0 and \tilde{q}_i .

- 1. Decompose $\mathbf{w} = \mathbf{w}_1 + \mathbf{w}_2$ with a part that is in the linear space of \mathbf{X} (\mathbf{w}_1) and a part that is orthogonal to the linear space of \mathbf{X} (\mathbf{w}_2).
- 2. $\tilde{\mathbf{q}}$ depends only on \mathbf{w}_1 and not on \mathbf{w}_2 .
- 3. Penalty term has $\lambda \mathbf{w}^{\top} \mathbf{w} = \lambda \mathbf{w}_1^{\top} \mathbf{w}_1$ because $\mathbf{w}_2^{\top} \mathbf{w}_2 = 0$.
- 4. Penalty term equals $\lambda \mathbf{w}^{\top} \mathbf{w} = \lambda \tilde{\mathbf{q}}^{\top} (\mathbf{X} \mathbf{X}^{\top})^{-1} \tilde{\mathbf{q}}$ where the $n \times n$ matrix $\mathbf{X} \mathbf{X}^{\top}$ has elements $\mathbf{x}_{i}^{\top} \mathbf{x}_{i'}$. Proof A.1
- 5. Without loss of generality, we may optimize directly over the *n* parameters \tilde{q}_i without any restriction.
- 6. $L_{ridge}(w_0, \tilde{\mathbf{q}})$ is now only a function of w_0 and \tilde{q}_i .

- 1. Decompose $\mathbf{w} = \mathbf{w}_1 + \mathbf{w}_2$ with a part that is in the linear space of \mathbf{X} (\mathbf{w}_1) and a part that is orthogonal to the linear space of \mathbf{X} (\mathbf{w}_2).
- 2. $\tilde{\mathbf{q}}$ depends only on \mathbf{w}_1 and not on \mathbf{w}_2 .
- 3. Penalty term has $\lambda \mathbf{w}^{\top} \mathbf{w} = \lambda \mathbf{w}_1^{\top} \mathbf{w}_1$ because $\mathbf{w}_2^{\top} \mathbf{w}_2 = 0$.
- 4. Penalty term equals $\lambda \mathbf{w}^{\top} \mathbf{w} = \lambda \tilde{\mathbf{q}}^{\top} (\mathbf{X} \mathbf{X}^{\top})^{-1} \tilde{\mathbf{q}}$ where the $n \times n$ matrix $\mathbf{X} \mathbf{X}^{\top}$ has elements $\mathbf{x}_{i}^{\top} \mathbf{x}_{i'}$. Proof A.1
- 5. Without loss of generality, we may optimize directly over the *n* parameters \tilde{q}_i without any restriction.
- 6. $L_{\text{ridge}}(w_0, \tilde{\mathbf{q}})$ is now only a function of w_0 and \tilde{q}_i .

• The loss of linear KRR L_{ridge} is now only a function of w_0 and \tilde{q}_i :

$$L_{\text{ridge}}(w_0, \tilde{\mathbf{q}}) = \|\mathbf{y} - (w_0 \mathbf{1} + \tilde{\mathbf{q}})\|^2 + \lambda \tilde{\mathbf{q}}^\top (\mathbf{X} \mathbf{X}^\top)^{-1} \tilde{\mathbf{q}}$$

$$\uparrow \qquad \uparrow$$
Regression term
Penalty term

Table of Contents

- 1. Introduction
- 2. Linear Kernels
- 3. Nonlinear KRR
- 4. Interpretable Kernels
- 5. Approximated KRR
- 6. Conclusions

3. Nonlinear Kernels

Kernels for nonlinear prediction:

- Kernels make use of same dual trick for $p \gg n$.
- Replace the all the variables in X by their n × k kernel basis Φ(X) or Φ for short.
- The equivalent of matrix $\mathbf{X}\mathbf{X}^{\top}$ becomes the $n \times n$ kernel matrix $\mathbf{K} = \mathbf{\Phi}\mathbf{\Phi}^{\top}$ with elements $k_{ii'} = \phi_i^{\top}\phi_{i'}$
- Kernel trick: choose smart Φ such that k_{ij} can be directly computed from rows \mathbf{x}_i and $\mathbf{x}_{i'}$.
- Kernel ridge regression loss equals:

$$L_{\mathrm{KRR}}(w_0, \tilde{\mathbf{q}}) = \|\mathbf{y} - (w_0 \mathbf{1} + \tilde{\mathbf{q}})\|^2 + \lambda \tilde{\mathbf{q}}^\top \mathbf{K}^{-1} \tilde{\mathbf{q}}$$

• For out-of-sample prediction, see Appendix A.2

3. Nonlinear Kernels

Kernels for nonlinear prediction:

- Kernels make use of same dual trick for $p \gg n$.
- Replace the all the variables in X by their n × k kernel basis Φ(X) or Φ for short.
- The equivalent of matrix XX[⊤] becomes the n × n kernel matrix K = ΦΦ[⊤] with elements k_{ii'} = φ_i[⊤]φ_{i'}
- Kernel trick: choose smart Φ such that k_{ij} can be directly computed from rows \mathbf{x}_i and $\mathbf{x}_{i'}$.
- Kernel ridge regression loss equals:

$$L_{\mathrm{KRR}}(w_0, \tilde{\mathbf{q}}) = \|\mathbf{y} - (w_0 \mathbf{1} + \tilde{\mathbf{q}})\|^2 + \lambda \tilde{\mathbf{q}}^\top \mathbf{K}^{-1} \tilde{\mathbf{q}}$$

• For out-of-sample prediction, see Appendix A.2

3. Nonlinear Kernels

Kernels for nonlinear prediction:

- Kernels make use of same dual trick for $p \gg n$.
- Replace the all the variables in X by their n × k kernel basis Φ(X) or Φ for short.
- The equivalent of matrix **XX**^T becomes the *n* × *n* kernel matrix **K** = ΦΦ^T with elements k_{ii'} = φ_i^Tφ_{i'}
- Kernel trick: choose smart Φ such that k_{ij} can be directly computed from rows \mathbf{x}_i and $\mathbf{x}_{i'}$.
- Kernel ridge regression loss equals:

$$L_{\mathrm{KRR}}(w_0, \tilde{\mathbf{q}}) = \|\mathbf{y} - (w_0 \mathbf{1} + \tilde{\mathbf{q}})\|^2 + \lambda \tilde{\mathbf{q}}^\top \mathbf{K}^{-1} \tilde{\mathbf{q}}$$

• For out-of-sample prediction, see Appendix A.2
Kernels for nonlinear prediction:

- Kernels make use of same dual trick for $p \gg n$.
- Replace the all the variables in X by their n × k kernel basis Φ(X) or Φ for short.
- The equivalent of matrix **XX**^T becomes the *n* × *n* kernel matrix **K** = ΦΦ^T with elements k_{ii'} = φ_i^Tφ_{i'}
- Kernel trick: choose smart Φ such that k_{ij} can be directly computed from rows x_i and x_{i'}.
- Kernel ridge regression loss equals:

$$L_{\mathrm{KRR}}(w_0, \tilde{\mathbf{q}}) = \|\mathbf{y} - (w_0 \mathbf{1} + \tilde{\mathbf{q}})\|^2 + \lambda \tilde{\mathbf{q}}^\top \mathbf{K}^{-1} \tilde{\mathbf{q}}$$

• For out-of-sample prediction, see Appendix A.2

Kernels for nonlinear prediction:

- Kernels make use of same dual trick for $p \gg n$.
- Replace the all the variables in X by their n × k kernel basis Φ(X) or Φ for short.
- The equivalent of matrix **XX**^T becomes the *n* × *n* kernel matrix **K** = ΦΦ^T with elements k_{ii'} = φ_i^Tφ_{i'}
- Kernel trick: choose smart Φ such that k_{ij} can be directly computed from rows x_i and x_{i'}.
- Kernel ridge regression loss equals:

$$L_{\mathsf{KRR}}(w_0, \tilde{\mathbf{q}}) = \|\mathbf{y} - (w_0 \mathbf{1} + \tilde{\mathbf{q}})\|^2 + \lambda \tilde{\mathbf{q}}^\top \mathbf{K}^{-1} \tilde{\mathbf{q}}$$

• For out-of-sample prediction, see Appendix A.2

Kernels for nonlinear prediction:

- Kernels make use of same dual trick for $p \gg n$.
- Replace the all the variables in X by their n × k kernel basis Φ(X) or Φ for short.
- The equivalent of matrix **XX**^T becomes the *n* × *n* kernel matrix **K** = ΦΦ^T with elements k_{ii'} = φ_i^Tφ_{i'}
- Kernel trick: choose smart Φ such that k_{ij} can be directly computed from rows x_i and x_{i'}.
- Kernel ridge regression loss equals:

$$L_{\mathsf{KRR}}(w_0, \tilde{\mathbf{q}}) = \|\mathbf{y} - (w_0 \mathbf{1} + \tilde{\mathbf{q}})\|^2 + \lambda \tilde{\mathbf{q}}^\top \mathbf{K}^{-1} \tilde{\mathbf{q}}$$

• For out-of-sample prediction, see Appendix A.2

Three examples of kernels:

linear

 $k_{ii'} = \mathbf{x}_i^\top \mathbf{x}_{i'}$

radial basis function function (RBF) $k_{ii'} = e^{-\gamma ||\mathbf{x}_i - \mathbf{x}_{i'}||^2}$ with fixed $\gamma > 0$

inhomogeneous polynomial $k_{ii'} = (1 + \mathbf{x}_i^\top \mathbf{x}_{i'})^d$

with fixed d > 0

15/29

Table of Contents

- 1. Introduction
- 2. Linear Kernels
- 3. Nonlinear KRR
- 4. Interpretable Kernels
- 5. Approximated KRR
- 6. Conclusions

- Kernels in regression or SVM can be used for nonlinear prediction.
- Often combined with quadratic ridge penalty against overfitting.
- Problem so far:
 - **•** No interpretation in original predictor variables in the $n \times p$ matrix **X**.
 - Use of kernels in, e.g., regression and SVM is a black-box method.

Kernels

- Kernels in regression or SVM can be used for nonlinear prediction.
- Often combined with quadratic ridge penalty against overfitting.
- Problem so far:

No interpretation in original predictor variables in the n × p matrix X.
 Use of kernels in, e.g., regression and SVM is a black-box method.

A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Kernels in regression or SVM can be used for nonlinear prediction.
- Often combined with quadratic ridge penalty against overfitting.
- Problem so far:
 - **•** No interpretation in original predictor variables in the $n \times p$ matrix **X**.
 - ▶ Use of kernels in, e.g., regression and SVM is a black-box method.

- Kernels in regression or SVM can be used for nonlinear prediction.
- Often combined with quadratic ridge penalty against overfitting.
- Problem so far:
 - No interpretation in original predictor variables in the $n \times p$ matrix **X**.
 - Use of kernels in, e.g., regression and SVM is a black-box method.

- Kernels in regression or SVM can be used for nonlinear prediction.
- Often combined with quadratic ridge penalty against overfitting.
- Problem so far:
 - No interpretation in original predictor variables in the $n \times p$ matrix **X**.
 - ► Use of kernels in, e.g., regression and SVM is a black-box method.

- Introduce approximated kernel ridge regression (AKRR) where kernel matrix is approximated by **X**
- Express the kernel predictions as linear combination in X:
 - ▶ If $n-1 \le p$ (and rank(**X**) = n-1) then approximation is exact equivalence.
 - If n − 1 > p (or rank(X) < n − 1) then the kernel solution can be linearly approximated.</p>
 - Provide a solution for the interpretation of nonlinear prediction through kernels.
- Contributes to explainable artificial intelligence (AI).

< • • • **•** •

- Introduce approximated kernel ridge regression (AKRR) where kernel matrix is approximated by **X**
- Express the kernel predictions as linear combination in X:
 - If n-1 ≤ p (and rank(X) = n 1) then approximation is exact equivalence.
 If n-1 > p (or rank(X) < n 1) then the kernel solution can be linearly approximated.
 - Provide a solution for the interpretation of nonlinear prediction through kernels.
- Contributes to explainable artificial intelligence (AI).

- Introduce approximated kernel ridge regression (AKRR) where kernel matrix is approximated by **X**
- Express the kernel predictions as linear combination in X:
 - ▶ If $n-1 \le p$ (and rank(**X**) = n-1) then approximation is exact equivalence.
 - ▶ If n-1 > p (or rank(**X**) < n-1) then the kernel solution can be linearly approximated.
 - Provide a solution for the interpretation of nonlinear prediction through kernels.
- Contributes to explainable artificial intelligence (AI).

A B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Introduce approximated kernel ridge regression (AKRR) where kernel matrix is approximated by **X**
- Express the kernel predictions as linear combination in X:
 - ▶ If $n-1 \le p$ (and rank(**X**) = n-1) then approximation is exact equivalence.
 - ▶ If n-1 > p (or rank(**X**) < n-1) then the kernel solution can be linearly approximated.
 - Provide a solution for the interpretation of nonlinear prediction through kernels.
- Contributes to explainable artificial intelligence (AI).

- Introduce approximated kernel ridge regression (AKRR) where kernel matrix is approximated by **X**
- Express the kernel predictions as linear combination in X:
 - ▶ If $n-1 \le p$ (and rank(**X**) = n-1) then approximation is exact equivalence.
 - ▶ If n-1 > p (or rank(**X**) < n-1) then the kernel solution can be linearly approximated.
 - Provide a solution for the interpretation of nonlinear prediction through kernels.
- Contributes to explainable artificial intelligence (AI).

- Introduce approximated kernel ridge regression (AKRR) where kernel matrix is approximated by X
- Express the kernel predictions as linear combination in X:
 - ▶ If $n-1 \le p$ (and rank(**X**) = n-1) then approximation is exact equivalence.
 - ▶ If n-1 > p (or rank(**X**) < n-1) then the kernel solution can be linearly approximated.
 - Provide a solution for the interpretation of nonlinear prediction through kernels.
- Contributes to explainable artificial intelligence (AI).

4. Interpretable Kernels

Main result (for KRR and $n-1 \le p$):

$$\begin{aligned} L_{\mathsf{KRR}}(w_0, \tilde{\mathbf{q}}) &= \|\mathbf{y} - (w_0 \mathbf{1} + \tilde{\mathbf{q}})\|^2 + \lambda \tilde{\mathbf{q}}^\top \mathbf{K}^{-1} \tilde{\mathbf{q}} \\ &= \|\mathbf{y} - \mathbf{X} \boldsymbol{\gamma}\|^2 + \lambda \boldsymbol{\gamma}^\top \mathbf{A} \boldsymbol{\gamma} = L_{\mathsf{AKRR}}(\boldsymbol{\gamma}) \end{aligned}$$

with

•
$$\mathbf{A} = (\mathbf{X}^{\mathsf{T}}\mathbf{X}) (\mathbf{X}^{\mathsf{T}}\mathbf{K}\mathbf{X})^{-1} (\mathbf{X}^{\mathsf{T}}\mathbf{X})$$

• γ : *p* vector with weights.

Table of Contents

- 1. Introduction
- 2. Linear Kernels
- 3. Nonlinear KRR
- 4. Interpretable Kernels
- 5. Approximated KRR
- 6. Conclusions

20 129

Linearly Approximated KRR:

- Two steps:
 - 1. Approximate the kernel space Φ by **XB** through (classical) multidimensional scaling (MDS) through strain loss:

$$L_{\text{Strain}}(\mathbf{B}) = \|\mathbf{K} - \mathbf{X} \mathbf{B} \mathbf{B}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \|^2$$

2. Do a ridge regression with predictors \boldsymbol{X} and adapted ridge penalty

Linearly Approximated KRR:

- Two steps:
 - 1. Approximate the kernel space Φ by **XB** through (classical) multidimensional scaling (MDS) through strain loss:

$$L_{\text{Strain}}(\mathbf{B}) = \|\mathbf{K} - \mathbf{X}\mathbf{B}\mathbf{B}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\|^{2}$$

2. Do a ridge regression with predictors **X** and adapted ridge penalty

Linearly Approximated KRR:

- Two steps:
 - 1. Approximate the kernel space Φ by **XB** through (classical) multidimensional scaling (MDS) through strain loss:

$$\mathcal{L}_{\mathsf{Strain}}(\mathbf{B}) \;\; = \;\; \|\mathbf{K} - \mathbf{X} \mathbf{B} \mathbf{B}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \|^{2}$$

2. Do a ridge regression with predictors $\boldsymbol{\mathsf{X}}$ and adapted ridge penalty

Step 1 Linearly Approximated KRR: Minimize $L_{\text{Strain}}(\mathbf{B}) = \|\mathbf{K} - \mathbf{X}\mathbf{B}\mathbf{B}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\|^{2}$ • Solution:

Computing the eigendecomposition

$$(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1/2}\mathbf{X}^{\mathsf{T}}\mathbf{K}\mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1/2} = \mathbf{Q}\Gamma\mathbf{Q}^{\mathsf{T}} = (\mathbf{Q}\Gamma^{1/2})(\mathbf{Q}\Gamma^{1/2})^{\mathsf{T}}$$

▶ and weight matrix **B**

$$\mathbf{B}^* = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1/2}\mathbf{Q}\mathbf{\Gamma}^{1/2}$$

with $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{\alpha} = \mathbf{P}\mathbf{\Sigma}^{\alpha}\mathbf{P}^{\mathsf{T}}$ and σ_{ii}^{α} the power α of the nonzero eigenvalues of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ and $\sigma_{ii}^{\alpha} = 0$ otherwise.

- If n-1 < p then $L_{\text{Strain}}(\mathbf{B}^*) = 0$ (perfect reconstruction of **K**).
- If n-1 > p, then $L_{\text{Strain}}(\mathbf{B}^*) > 0$ (approximated reconstruction of **K**)

Step 1 Linearly Approximated KRR: Minimize $L_{\text{Strain}}(\mathbf{B}) = \|\mathbf{K} - \mathbf{X}\mathbf{B}\mathbf{B}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\|^{2}$

- Solution:
 - Computing the eigendecomposition

$$(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1/2}\mathbf{X}^{\mathsf{T}}\mathbf{K}\mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1/2} = \mathbf{Q}\Gamma\mathbf{Q}^{\mathsf{T}} = (\mathbf{Q}\Gamma^{1/2})(\mathbf{Q}\Gamma^{1/2})^{\mathsf{T}}$$

and weight matrix B

$$\mathbf{B}^* = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1/2}\mathbf{Q}\mathbf{\Gamma}^{1/2}$$

with $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{\alpha} = \mathbf{P}\mathbf{\Sigma}^{\alpha}\mathbf{P}^{\mathsf{T}}$ and σ_{ii}^{α} the power α of the nonzero eigenvalues of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ and $\sigma_{ii}^{\alpha} = 0$ otherwise.

- If n-1 < p then $L_{\text{Strain}}(\mathbf{B}^*) = 0$ (perfect reconstruction of **K**).
- If n-1 > p, then $L_{\text{Strain}}(\mathbf{B}^*) > 0$ (approximated reconstruction of **K**)

Step 1 Linearly Approximated KRR: Minimize $L_{\text{Strain}}(\mathbf{B}) = \|\mathbf{K} - \mathbf{X}\mathbf{B}\mathbf{B}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\|^{2}$

- Solution:
 - Computing the eigendecomposition

$$(\boldsymbol{\mathsf{X}}^{\mathsf{T}}\boldsymbol{\mathsf{X}})^{-1/2}\boldsymbol{\mathsf{X}}^{\mathsf{T}}\boldsymbol{\mathsf{K}}\boldsymbol{\mathsf{X}}{(\boldsymbol{\mathsf{X}}^{\mathsf{T}}\boldsymbol{\mathsf{X}})}^{-1/2} = \boldsymbol{\mathsf{Q}}\boldsymbol{\Gamma}\boldsymbol{\mathsf{Q}}^{\mathsf{T}} = (\boldsymbol{\mathsf{Q}}\boldsymbol{\Gamma}^{1/2})(\boldsymbol{\mathsf{Q}}\boldsymbol{\Gamma}^{1/2})^{\mathsf{T}}$$

▶ and weight matrix **B**

$$\mathbf{B}^* = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1/2}\mathbf{Q}\mathbf{\Gamma}^{1/2}$$

with $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{\alpha} = \mathbf{P}\Sigma^{\alpha}\mathbf{P}^{\mathsf{T}}$ and σ_{ii}^{α} the power α of the nonzero eigenvalues of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ and $\sigma_{ii}^{\alpha} = 0$ otherwise.

• If n-1 < p then $L_{\text{Strain}}(\mathbf{B}^*) = 0$ (perfect reconstruction of **K**).

• If n-1 > p, then $L_{\text{Strain}}(\mathbf{B}^*) > 0$ (approximated reconstruction of **K**)

Step 1 Linearly Approximated KRR: Minimize $L_{\text{Strain}}(\mathbf{B}) = \|\mathbf{K} - \mathbf{X}\mathbf{B}\mathbf{B}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\|^{2}$

- Solution:
 - Computing the eigendecomposition

$$(\boldsymbol{\mathsf{X}}^{\mathsf{T}}\boldsymbol{\mathsf{X}})^{-1/2}\boldsymbol{\mathsf{X}}^{\mathsf{T}}\boldsymbol{\mathsf{K}}\boldsymbol{\mathsf{X}}{(\boldsymbol{\mathsf{X}}^{\mathsf{T}}\boldsymbol{\mathsf{X}})}^{-1/2} = \boldsymbol{\mathsf{Q}}\boldsymbol{\Gamma}\boldsymbol{\mathsf{Q}}^{\mathsf{T}} = (\boldsymbol{\mathsf{Q}}\boldsymbol{\Gamma}^{1/2})(\boldsymbol{\mathsf{Q}}\boldsymbol{\Gamma}^{1/2})^{\mathsf{T}}$$

▶ and weight matrix **B**

$$\mathbf{B}^* = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1/2}\mathbf{Q}\mathbf{\Gamma}^{1/2}$$

with $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{\alpha} = \mathbf{P}\Sigma^{\alpha}\mathbf{P}^{\mathsf{T}}$ and σ_{ii}^{α} the power α of the nonzero eigenvalues of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ and $\sigma_{ii}^{\alpha} = 0$ otherwise.

- If n 1 < p then $L_{\text{Strain}}(\mathbf{B}^*) = 0$ (perfect reconstruction of **K**).
- If n-1 > p, then $L_{\text{Strain}}(\mathbf{B}^*) > 0$ (approximated reconstruction of **K**)

Step 1 Linearly Approximated KRR: Minimize $L_{\text{Strain}}(\mathbf{B}) = \|\mathbf{K} - \mathbf{X}\mathbf{B}\mathbf{B}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\|^{2}$

- Solution:
 - Computing the eigendecomposition

$$(\boldsymbol{\mathsf{X}}^{\mathsf{T}}\boldsymbol{\mathsf{X}})^{-1/2}\boldsymbol{\mathsf{X}}^{\mathsf{T}}\boldsymbol{\mathsf{K}}\boldsymbol{\mathsf{X}}{(\boldsymbol{\mathsf{X}}^{\mathsf{T}}\boldsymbol{\mathsf{X}})}^{-1/2} = \boldsymbol{\mathsf{Q}}\boldsymbol{\Gamma}\boldsymbol{\mathsf{Q}}^{\mathsf{T}} = (\boldsymbol{\mathsf{Q}}\boldsymbol{\Gamma}^{1/2})(\boldsymbol{\mathsf{Q}}\boldsymbol{\Gamma}^{1/2})^{\mathsf{T}}$$

▶ and weight matrix **B**

$$\mathbf{B}^* = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1/2}\mathbf{Q}\Gamma^{1/2}$$

with $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{\alpha} = \mathbf{P}\Sigma^{\alpha}\mathbf{P}^{\mathsf{T}}$ and σ_{ii}^{α} the power α of the nonzero eigenvalues of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ and $\sigma_{ii}^{\alpha} = 0$ otherwise.

- If n 1 < p then $L_{\text{Strain}}(\mathbf{B}^*) = 0$ (perfect reconstruction of **K**).
- If n-1 > p, then $L_{\text{Strain}}(\mathbf{B}^*) > 0$ (approximated reconstruction of **K**)

5. Step 2 of Approximated KRR

Step 2: We define Approximated KRR (AKRR):

 $\bullet\,$ Do ridge regression with \boldsymbol{XB} as predictor variables:

$$L_{\text{AKRR}}(\boldsymbol{\beta}) = \|\mathbf{y} - \mathbf{X}\mathbf{B}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|^2$$

• Let $\gamma = \mathbf{B}\boldsymbol{\beta}$ so that

$$\begin{split} \mathbf{B}^{\mathsf{T}} \boldsymbol{\gamma} &= \mathbf{B}^{\mathsf{T}} \mathbf{B} \boldsymbol{\beta} \\ \boldsymbol{\beta} &= \left(\mathbf{B}^{\mathsf{T}} \mathbf{B} \right)^{-1} \mathbf{B}^{\mathsf{T}} \boldsymbol{\gamma} \\ \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{\beta} &= \boldsymbol{\gamma}^{\mathsf{T}} \mathbf{B} \left(\mathbf{B}^{\mathsf{T}} \mathbf{B} \right)^{-2} \mathbf{B}^{\mathsf{T}} \boldsymbol{\gamma} = \boldsymbol{\gamma}^{\mathsf{T}} \left(\mathbf{B}^{\mathsf{T}} \mathbf{B} \right)^{-1} \boldsymbol{\gamma}. \end{split}$$

• Then

$$L_{AKRR}(\boldsymbol{\beta}) = L_{AKRR}(\boldsymbol{\gamma})$$

$$= \|\mathbf{y} - \mathbf{X}\boldsymbol{\gamma}\|^{2} + \lambda\boldsymbol{\gamma}^{\mathsf{T}} (\mathbf{B}^{\mathsf{T}}\mathbf{B})^{-1} \boldsymbol{\gamma}$$

$$= \|\mathbf{y} - \mathbf{X}\boldsymbol{\gamma}\|^{2} + \lambda\boldsymbol{\gamma}^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}}\mathbf{X}) (\mathbf{X}^{\mathsf{T}}\mathbf{K}\mathbf{X})^{-1} (\mathbf{X}^{\mathsf{T}}\mathbf{X}) \boldsymbol{\gamma}$$

$$= \|\mathbf{y} - \mathbf{X}\boldsymbol{\gamma}\|^{2} + \lambda\boldsymbol{\gamma}^{\mathsf{T}}\mathbf{A}\boldsymbol{\gamma}.$$

5. Step 2 of Approximated KRR

Step 2: We define Approximated KRR (AKRR):

• Do ridge regression with $\boldsymbol{X}\boldsymbol{B}$ as predictor variables:

$$L_{\text{AKRR}}(\boldsymbol{\beta}) = \|\mathbf{y} - \mathbf{X}\mathbf{B}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|^2$$

• Let $\boldsymbol{\gamma} = \mathbf{B} \boldsymbol{\beta}$ so that

$$\begin{split} \mathbf{B}^{\mathsf{T}} \boldsymbol{\gamma} &= \mathbf{B}^{\mathsf{T}} \mathbf{B} \boldsymbol{\beta} \\ \boldsymbol{\beta} &= \left(\mathbf{B}^{\mathsf{T}} \mathbf{B} \right)^{-1} \mathbf{B}^{\mathsf{T}} \boldsymbol{\gamma} \\ \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{\beta} &= \gamma^{\mathsf{T}} \mathbf{B} \left(\mathbf{B}^{\mathsf{T}} \mathbf{B} \right)^{-2} \mathbf{B}^{\mathsf{T}} \boldsymbol{\gamma} = \boldsymbol{\gamma}^{\mathsf{T}} \left(\mathbf{B}^{\mathsf{T}} \mathbf{B} \right)^{-1} \boldsymbol{\gamma}. \end{split}$$

• Then

$$L_{AKRR}(\beta) = L_{AKRR}(\gamma)$$

= $\|\mathbf{y} - \mathbf{X}\gamma\|^2 + \lambda\gamma^{\mathsf{T}} (\mathbf{B}^{\mathsf{T}}\mathbf{B})^{-1} \gamma$
= $\|\mathbf{y} - \mathbf{X}\gamma\|^2 + \lambda\gamma^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}}\mathbf{X}) (\mathbf{X}^{\mathsf{T}}\mathbf{K}\mathbf{X})^{-1} (\mathbf{X}^{\mathsf{T}}\mathbf{X})\gamma$
= $\|\mathbf{y} - \mathbf{X}\gamma\|^2 + \lambda\gamma^{\mathsf{T}}\mathbf{A}\gamma.$

5. Step 2 of Approximated KRR

Step 2: We define Approximated KRR (AKRR):

• Do ridge regression with $\boldsymbol{X}\boldsymbol{B}$ as predictor variables:

$$L_{\text{AKRR}}(\boldsymbol{\beta}) = \|\mathbf{y} - \mathbf{X}\mathbf{B}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|^2$$

• Let $\boldsymbol{\gamma} = \mathbf{B} \boldsymbol{\beta}$ so that

$$\begin{split} \mathbf{B}^{\mathsf{T}} \boldsymbol{\gamma} &= \mathbf{B}^{\mathsf{T}} \mathbf{B} \boldsymbol{\beta} \\ \boldsymbol{\beta} &= \left(\mathbf{B}^{\mathsf{T}} \mathbf{B} \right)^{-1} \mathbf{B}^{\mathsf{T}} \boldsymbol{\gamma} \\ \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{\beta} &= \gamma^{\mathsf{T}} \mathbf{B} \left(\mathbf{B}^{\mathsf{T}} \mathbf{B} \right)^{-2} \mathbf{B}^{\mathsf{T}} \boldsymbol{\gamma} = \boldsymbol{\gamma}^{\mathsf{T}} \left(\mathbf{B}^{\mathsf{T}} \mathbf{B} \right)^{-1} \boldsymbol{\gamma}. \end{split}$$

• Then

$$\begin{aligned} \mathcal{L}_{AKRR}(\boldsymbol{\beta}) &= \mathcal{L}_{AKRR}(\boldsymbol{\gamma}) \\ &= \|\mathbf{y} - \mathbf{X}\boldsymbol{\gamma}\|^2 + \lambda \boldsymbol{\gamma}^{\mathsf{T}} \left(\mathbf{B}^{\mathsf{T}}\mathbf{B}\right)^{-1} \boldsymbol{\gamma} \\ &= \|\mathbf{y} - \mathbf{X}\boldsymbol{\gamma}\|^2 + \lambda \boldsymbol{\gamma}^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}}\mathbf{X}) \left(\mathbf{X}^{\mathsf{T}}\mathbf{K}\mathbf{X}\right)^{-1} (\mathbf{X}^{\mathsf{T}}\mathbf{X}) \boldsymbol{\gamma} \\ &= \|\mathbf{y} - \mathbf{X}\boldsymbol{\gamma}\|^2 + \lambda \boldsymbol{\gamma}^{\mathsf{T}}\mathbf{A}\boldsymbol{\gamma}. \end{aligned}$$

Properties of Approximated KRR:

$$\begin{aligned} \mathcal{L}_{\mathsf{AKRR}}(\boldsymbol{\gamma}) &= \| \mathbf{y} - \mathbf{X} \boldsymbol{\gamma} \|^2 + \lambda \boldsymbol{\gamma}^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{X}) (\mathbf{X}^{\mathsf{T}} \mathbf{K} \mathbf{X})^{-1} (\mathbf{X}^{\mathsf{T}} \mathbf{X}) \boldsymbol{\gamma} \\ &= \| \mathbf{y} - \mathbf{X} \boldsymbol{\gamma} \|^2 + \lambda \boldsymbol{\gamma}^{\mathsf{T}} \mathbf{A} \boldsymbol{\gamma} \end{aligned}$$

- AKRR yields exactly the same predictions as KRR if n − 1 rank(X) = n − 1 (no approximation).
- AKRR approximates KRR otherwise.
- Interpretation of AKKR in terms of weights γ as in (ridge) regression.
- *t*-tests for γ can be derived as in ridge regression.

Properties of Approximated KRR:

$$\begin{aligned} \mathcal{L}_{\mathsf{AKRR}}(\boldsymbol{\gamma}) &= \| \mathbf{y} - \mathbf{X} \boldsymbol{\gamma} \|^2 + \lambda \boldsymbol{\gamma}^\mathsf{T} (\mathbf{X}^\mathsf{T} \mathbf{X}) (\mathbf{X}^\mathsf{T} \mathbf{K} \mathbf{X})^{-1} (\mathbf{X}^\mathsf{T} \mathbf{X}) \boldsymbol{\gamma} \\ &= \| \mathbf{y} - \mathbf{X} \boldsymbol{\gamma} \|^2 + \lambda \boldsymbol{\gamma}^\mathsf{T} \mathbf{A} \boldsymbol{\gamma} \end{aligned}$$

- AKRR yields exactly the same predictions as KRR if n − 1 rank(X) = n − 1 (no approximation).
- AKRR approximates KRR otherwise.
- Interpretation of AKKR in terms of weights γ as in (ridge) regression.
- *t*-tests for γ can be derived as in ridge regression.

Properties of Approximated KRR:

$$\begin{aligned} \mathcal{L}_{\mathsf{AKRR}}(\boldsymbol{\gamma}) &= \| \mathbf{y} - \mathbf{X} \boldsymbol{\gamma} \|^2 + \lambda \boldsymbol{\gamma}^\mathsf{T} (\mathbf{X}^\mathsf{T} \mathbf{X}) (\mathbf{X}^\mathsf{T} \mathbf{K} \mathbf{X})^{-1} (\mathbf{X}^\mathsf{T} \mathbf{X}) \boldsymbol{\gamma} \\ &= \| \mathbf{y} - \mathbf{X} \boldsymbol{\gamma} \|^2 + \lambda \boldsymbol{\gamma}^\mathsf{T} \mathbf{A} \boldsymbol{\gamma} \end{aligned}$$

- AKRR yields exactly the same predictions as KRR if n − 1 rank(X) = n − 1 (no approximation).
- AKRR approximates KRR otherwise.
- Interpretation of AKKR in terms of weights γ as in (ridge) regression.
- *t*-tests for γ can be derived as in ridge regression.

Properties of Approximated KRR:

$$\begin{aligned} \mathcal{L}_{\mathsf{AKRR}}(\boldsymbol{\gamma}) &= \| \mathbf{y} - \mathbf{X} \boldsymbol{\gamma} \|^2 + \lambda \boldsymbol{\gamma}^\mathsf{T} (\mathbf{X}^\mathsf{T} \mathbf{X}) (\mathbf{X}^\mathsf{T} \mathbf{K} \mathbf{X})^{-1} (\mathbf{X}^\mathsf{T} \mathbf{X}) \boldsymbol{\gamma} \\ &= \| \mathbf{y} - \mathbf{X} \boldsymbol{\gamma} \|^2 + \lambda \boldsymbol{\gamma}^\mathsf{T} \mathbf{A} \boldsymbol{\gamma} \end{aligned}$$

- AKRR yields exactly the same predictions as KRR if n − 1 rank(X) = n − 1 (no approximation).
- AKRR approximates KRR otherwise.
- Interpretation of AKKR in terms of weights γ as in (ridge) regression.
- *t*-tests for γ can be derived as in ridge regression.

Properties of Approximated KRR:

$$\begin{aligned} \mathcal{L}_{\mathsf{AKRR}}(\boldsymbol{\gamma}) &= \| \mathbf{y} - \mathbf{X} \boldsymbol{\gamma} \|^2 + \lambda \boldsymbol{\gamma}^\mathsf{T} (\mathbf{X}^\mathsf{T} \mathbf{X}) (\mathbf{X}^\mathsf{T} \mathbf{K} \mathbf{X})^{-1} (\mathbf{X}^\mathsf{T} \mathbf{X}) \boldsymbol{\gamma} \\ &= \| \mathbf{y} - \mathbf{X} \boldsymbol{\gamma} \|^2 + \lambda \boldsymbol{\gamma}^\mathsf{T} \mathbf{A} \boldsymbol{\gamma} \end{aligned}$$

- AKRR yields exactly the same predictions as KRR if n − 1 rank(X) = n − 1 (no approximation).
- AKRR approximates KRR otherwise.
- Interpretation of AKKR in terms of weights γ as in (ridge) regression.
- *t*-tests for γ can be derived as in ridge regression.

Quality of approximation of penalty:

• Loss optimal approximation kernel penalty:

$$\begin{split} \mathcal{L}_{\mathsf{Strain}}(\mathbf{B}^*) &= \|\mathbf{K} - \mathbf{X}\mathbf{B}^*\mathbf{B}^{*\mathsf{T}}\mathbf{X}^{\mathsf{T}}\|^2 \\ &= \|\mathbf{K} - \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-}\mathbf{X}^{\mathsf{T}}\mathbf{K}\mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-}\mathbf{X}^{\mathsf{T}}\|^2 \\ &= \operatorname{tr}(\mathbf{I} - \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-}\mathbf{X}^{\mathsf{T}})\mathbf{K}(\mathbf{I} - \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-}\mathbf{X}^{\mathsf{T}}) \end{split}$$

- This loss is equal to the part of K that is not in the space of X.
- Penalty accounted for (PAF) is the proportion of $\|\mathbf{K}\|^2$ in the space of **X**:

$$\mathsf{PAF} = \frac{\mathrm{tr}(\mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-}\mathbf{X}^{\mathsf{T}})\mathbf{K}(\mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-}\mathbf{X}^{\mathsf{T}})}{\|\mathbf{K}\|^{2}}$$

25 / 29

Quality of approximation of penalty:

• Loss optimal approximation kernel penalty:

$$\begin{split} \mathcal{L}_{\mathsf{Strain}}(\mathbf{B}^*) &= \|\mathbf{K} - \mathbf{X}\mathbf{B}^*\mathbf{B}^{*\mathsf{T}}\mathbf{X}^{\mathsf{T}}\|^2 \\ &= \|\mathbf{K} - \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-}\mathbf{X}^{\mathsf{T}}\mathbf{K}\mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-}\mathbf{X}^{\mathsf{T}}\|^2 \\ &= \operatorname{tr}(\mathbf{I} - \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-}\mathbf{X}^{\mathsf{T}})\mathbf{K}(\mathbf{I} - \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-}\mathbf{X}^{\mathsf{T}}) \end{split}$$

- This loss is equal to the part of K that is not in the space of X.
- Penalty accounted for (PAF) is the proportion of $\|\mathbf{K}\|^2$ in the space of **X**:

$$\mathsf{PAF} = \frac{\mathrm{tr}(\mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-}\mathbf{X}^{\mathsf{T}})\mathbf{K}(\mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-}\mathbf{X}^{\mathsf{T}})}{\|\mathbf{K}\|^{2}}$$

25 / 20
5. Approximated KRR

Quality of approximation of penalty:

• Loss optimal approximation kernel penalty:

$$\begin{split} \mathcal{L}_{\mathsf{Strain}}(\mathbf{B}^*) &= \|\mathbf{K} - \mathbf{X}\mathbf{B}^*\mathbf{B}^{*\mathsf{T}}\mathbf{X}^{\mathsf{T}}\|^2 \\ &= \|\mathbf{K} - \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-}\mathbf{X}^{\mathsf{T}}\mathbf{K}\mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-}\mathbf{X}^{\mathsf{T}}\|^2 \\ &= \operatorname{tr}(\mathbf{I} - \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-}\mathbf{X}^{\mathsf{T}})\mathbf{K}(\mathbf{I} - \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-}\mathbf{X}^{\mathsf{T}}) \end{split}$$

- This loss is equal to the part of K that is not in the space of X.
- Penalty accounted for (PAF) is the proportion of $\|\mathbf{K}\|^2$ in the space of **X**:

$$\mathsf{PAF} = \frac{\mathrm{tr}(\mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-}\mathbf{X}^{\mathsf{T}})\mathbf{K}(\mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-}\mathbf{X}^{\mathsf{T}})}{\|\mathbf{K}\|^{2}}$$

		< 🗗 >	Ecolus sac
--	--	-------	------------

25 / 29

Table of Contents

- 1. Introduction
- 2. Linear Kernels
- 3. Nonlinear KRR
- 4. Interpretable Kernels
- 5. Approximated KRR
- 6. Conclusions

• Nonlinearity in orginal variables can be done by nonlinear kernels.

- Any kernel method can be interpreted as a linear combination in original predictors with a quadratic ridge penalty in specific metric of the weights.
- Approximation is exact if p > n and has PAF = 1.
- Can be used for SVM, Kernel Ridge Regression, Kernel Logistic Regression, etc.
- Could be used in any software that allows ridge weighted quadratic penalties such as glmnet (with some pre- and post-processing by linear algebra).

- Nonlinearity in orginal variables can be done by nonlinear kernels.
- Any kernel method can be interpreted as a linear combination in original predictors with a quadratic ridge penalty in specific metric of the weights.
- Approximation is exact if p > n and has PAF = 1.
- Can be used for SVM, Kernel Ridge Regression, Kernel Logistic Regression, etc.
- Could be used in any software that allows ridge weighted quadratic penalties such as glmnet (with some pre- and post-processing by linear algebra).

- Nonlinearity in orginal variables can be done by nonlinear kernels.
- Any kernel method can be interpreted as a linear combination in original predictors with a quadratic ridge penalty in specific metric of the weights.
- Approximation is exact if p > n and has PAF = 1.
- Can be used for SVM, Kernel Ridge Regression, Kernel Logistic Regression, etc.
- Could be used in any software that allows ridge weighted quadratic penalties such as glmnet (with some pre- and post-processing by linear algebra).

- Nonlinearity in orginal variables can be done by nonlinear kernels.
- Any kernel method can be interpreted as a linear combination in original predictors with a quadratic ridge penalty in specific metric of the weights.
- Approximation is exact if p > n and has PAF = 1.
- Can be used for SVM, Kernel Ridge Regression, Kernel Logistic Regression, etc.
- Could be used in any software that allows ridge weighted quadratic penalties such as glmnet (with some pre- and post-processing by linear algebra).

- Nonlinearity in orginal variables can be done by nonlinear kernels.
- Any kernel method can be interpreted as a linear combination in original predictors with a quadratic ridge penalty in specific metric of the weights.
- Approximation is exact if p > n and has PAF = 1.
- Can be used for SVM, Kernel Ridge Regression, Kernel Logistic Regression, etc.
- Could be used in any software that allows ridge weighted quadratic penalties such as glmnet (with some pre- and post-processing by linear algebra).

A.1 Proof that $\lambda \mathbf{w}^{\top} \mathbf{w} = \lambda \tilde{\mathbf{q}}^{\top} (\mathbf{X} \mathbf{X}^{\top})^{-1} \tilde{\mathbf{q}}$

Proof that $\lambda \mathbf{w}^{\top} \mathbf{w} = \lambda \tilde{\mathbf{q}}^{\top} (\mathbf{X} \mathbf{X}^{\top})^{-1} \tilde{\mathbf{q}}$:

• Let the SVD of $\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$. Then

$$\begin{split} \widetilde{\mathbf{q}} &= \mathbf{X}\mathbf{w} = \mathbf{U}\mathbf{D}\mathbf{V}^{ op}\mathbf{w} \\ \mathbf{U}^{ op}\widetilde{\mathbf{q}} &= \mathbf{D}\mathbf{V}^{ op}\mathbf{w} \\ \mathbf{D}^{-1}\mathbf{U}^{ op}\widetilde{\mathbf{q}} &= \mathbf{V}^{ op}\mathbf{w} \end{split}$$

The penalty term can be written as

$$\lambda \mathbf{w}^{\top} \mathbf{w} = \lambda \mathbf{w}^{\top} (\mathbf{I} - \mathbf{V} \mathbf{V}^{\top} + \mathbf{V} \mathbf{V}^{\top}) \mathbf{w}$$

= $\lambda \mathbf{w}^{\top} (\mathbf{I} - \mathbf{V} \mathbf{V}^{\top}) \mathbf{w} + \lambda \mathbf{w}^{\top} \mathbf{V} \mathbf{V}^{\top} \mathbf{w}$

The part of w in the space of X is $w_1 = VV^\top w$ and the part outside is $w_2 = (I - VV^\top) w$

• Thus,
$$\mathbf{w}^{\top}(\mathbf{I} - \mathbf{V}\mathbf{V}^{\top})\mathbf{w} = \mathbf{w}_2^{\top}\mathbf{w}_2 = 0$$
 and

$$\begin{split} \lambda \mathbf{w}^{\top} \mathbf{w} &= \lambda \mathbf{w}^{\top} \mathbf{V} \mathbf{V}^{\top} \mathbf{w} = \lambda \mathbf{w}_{1}^{\top} \mathbf{w}_{1} \\ &= \lambda \tilde{\mathbf{q}} \mathbf{U} \mathbf{D}^{-2} \mathbf{U}^{\top} \tilde{\mathbf{q}} = \lambda \tilde{\mathbf{q}} \mathbf{U} \mathbf{D}^{-1} \mathbf{V}^{\top} \mathbf{V} \mathbf{D}^{-1} \mathbf{U}^{\top} \tilde{\mathbf{q}} = \lambda \tilde{\mathbf{q}} (\mathbf{X} \mathbf{X}^{\top})^{-1} \tilde{\mathbf{q}} \end{split}$$

A B +
 A B +
 A

A.1 Proof that $\lambda \mathbf{w}^{\top} \mathbf{w} = \lambda \tilde{\mathbf{q}}^{\top} (\mathbf{X} \mathbf{X}^{\top})^{-1} \tilde{\mathbf{q}}$

Proof that $\lambda \mathbf{w}^{\top} \mathbf{w} = \lambda \tilde{\mathbf{q}}^{\top} (\mathbf{X} \mathbf{X}^{\top})^{-1} \tilde{\mathbf{q}}$:

• Let the SVD of $\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$. Then

$$\begin{split} \widetilde{\mathbf{q}} &= \mathbf{X}\mathbf{w} = \mathbf{U}\mathbf{D}\mathbf{V}^{ op}\mathbf{w} \\ \mathbf{U}^{ op}\widetilde{\mathbf{q}} &= \mathbf{D}\mathbf{V}^{ op}\mathbf{w} \\ \mathbf{D}^{-1}\mathbf{U}^{ op}\widetilde{\mathbf{q}} &= \mathbf{V}^{ op}\mathbf{w} \end{split}$$

• The penalty term can be written as

$$\begin{split} \lambda \mathbf{w}^{\top} \mathbf{w} &= \lambda \mathbf{w}^{\top} (\mathbf{I} - \mathbf{V} \mathbf{V}^{\top} + \mathbf{V} \mathbf{V}^{\top}) \mathbf{w} \\ &= \lambda \mathbf{w}^{\top} (\mathbf{I} - \mathbf{V} \mathbf{V}^{\top}) \mathbf{w} + \lambda \mathbf{w}^{\top} \mathbf{V} \mathbf{V}^{\top} \mathbf{w} \end{split}$$

The part of w in the space of X is $w_1 = VV^\top w$ and the part outside is $w_2 = (I - VV^\top) w$

• Thus,
$$\mathbf{w}^{\top}(\mathbf{I} - \mathbf{V}\mathbf{V}^{\top})\mathbf{w} = \mathbf{w}_2^{\top}\mathbf{w}_2 = 0$$
 and

$$\lambda \mathbf{w}^{\top} \mathbf{w} = \lambda \mathbf{w}^{\top} \mathbf{V} \mathbf{V}^{\top} \mathbf{w} = \lambda \mathbf{w}_{1}^{\top} \mathbf{w}_{1}$$
$$= \lambda \tilde{\mathbf{q}} \mathbf{U} \mathbf{D}^{-2} \mathbf{U}^{\top} \tilde{\mathbf{q}} = \lambda \tilde{\mathbf{q}} \mathbf{U} \mathbf{D}^{-1} \mathbf{V}^{\top} \mathbf{V} \mathbf{D}^{-1} \mathbf{U}^{\top} \tilde{\mathbf{q}} = \lambda \tilde{\mathbf{q}} (\mathbf{X} \mathbf{X}^{\top})^{-1} \tilde{\mathbf{q}}$$

A.1 Proof that $\lambda \mathbf{w}^{\top} \mathbf{w} = \lambda \tilde{\mathbf{q}}^{\top} (\mathbf{X} \mathbf{X}^{\top})^{-1} \tilde{\mathbf{q}}$

Proof that $\lambda \mathbf{w}^{\top} \mathbf{w} = \lambda \tilde{\mathbf{q}}^{\top} (\mathbf{X} \mathbf{X}^{\top})^{-1} \tilde{\mathbf{q}}$:

• Let the SVD of $\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$. Then

$$\begin{split} \widetilde{\mathbf{q}} &= \mathbf{X}\mathbf{w} = \mathbf{U}\mathbf{D}\mathbf{V}^{ op}\mathbf{w} \\ \mathbf{U}^{ op}\widetilde{\mathbf{q}} &= \mathbf{D}\mathbf{V}^{ op}\mathbf{w} \\ \mathbf{D}^{-1}\mathbf{U}^{ op}\widetilde{\mathbf{q}} &= \mathbf{V}^{ op}\mathbf{w} \end{split}$$

• The penalty term can be written as

$$\begin{split} \lambda \mathbf{w}^{\top} \mathbf{w} &= \lambda \mathbf{w}^{\top} (\mathbf{I} - \mathbf{V} \mathbf{V}^{\top} + \mathbf{V} \mathbf{V}^{\top}) \mathbf{w} \\ &= \lambda \mathbf{w}^{\top} (\mathbf{I} - \mathbf{V} \mathbf{V}^{\top}) \mathbf{w} + \lambda \mathbf{w}^{\top} \mathbf{V} \mathbf{V}^{\top} \mathbf{w} \end{split}$$

The part of **w** in the space of **X** is $\mathbf{w}_1 = \mathbf{V}\mathbf{V}^\top \mathbf{w}$ and the part outside is $\mathbf{w}_2 = (\mathbf{I} - \mathbf{V}\mathbf{V}^\top)\mathbf{w}_1$

• Thus,
$$\mathbf{w}^{\top}(\mathbf{I} - \mathbf{V}\mathbf{V}^{\top})\mathbf{w} = \mathbf{w}_2^{\top}\mathbf{w}_2 = 0$$
 and

$$\begin{split} \lambda \mathbf{w}^{\top} \mathbf{w} &= \lambda \mathbf{w}^{\top} \mathbf{V} \mathbf{V}^{\top} \mathbf{w} = \lambda \mathbf{w}_{1}^{\top} \mathbf{w}_{1} \\ &= \lambda \tilde{\mathbf{q}} \mathbf{U} \mathbf{D}^{-2} \mathbf{U}^{\top} \tilde{\mathbf{q}} = \lambda \tilde{\mathbf{q}} \mathbf{U} \mathbf{D}^{-1} \mathbf{V}^{\top} \mathbf{V} \mathbf{D}^{-1} \mathbf{U}^{\top} \tilde{\mathbf{q}} = \lambda \tilde{\mathbf{q}} (\mathbf{X} \mathbf{X}^{\top})^{-1} \tilde{\mathbf{q}} \end{split}$$

A.2 Prediction for Nonlinear KRR

Final step needed with kernels for predicting the test data X_u :

• Let the SVD of $\Phi = \mathsf{U}\mathsf{D}\mathsf{V}^{\top}$. Then $\Phi^{\top}(\Phi\Phi^{\top})^{-1}\Phi = \mathsf{V}\mathsf{V}^{\top}$ because

$$\begin{split} \Phi^{\top}(\Phi\Phi^{\top})^{-1}\Phi &= \mathsf{V}\mathsf{D}\mathsf{U}^{\top}(\mathsf{U}\mathsf{D}\mathsf{V}^{\top}\mathsf{V}\mathsf{D}\mathsf{U}^{\top})^{-1}\mathsf{U}\mathsf{D}\mathsf{V}^{\top} \\ &= \mathsf{V}\mathsf{D}\mathsf{U}^{\top}\mathsf{U}\mathsf{D}^{-2}\mathsf{U}^{\top}\mathsf{U}\mathsf{D}\mathsf{V}^{\top} \\ &= \mathsf{V}\mathsf{D}\mathsf{D}^{-2}\mathsf{D}\mathsf{V}^{\top} = \mathsf{V}\mathsf{V}^{\top} \end{split}$$

• Then the predicted \mathbf{q}_u for the test set \mathbf{X}_u is

$$\mathbf{q}_{u} = w_{0}\mathbf{1} + \mathbf{\Phi}_{u}\mathbf{w} = w_{0}\mathbf{1} + \mathbf{\Phi}_{u}\mathbf{V}\mathbf{V}^{\top}\mathbf{w}$$
$$= w_{0}\mathbf{1} + \mathbf{\Phi}_{u}\mathbf{\Phi}^{\top}(\mathbf{\Phi}\mathbf{\Phi}^{\top})^{-1}\mathbf{\Phi}\mathbf{w}$$
$$= w_{0}\mathbf{1} + (\mathbf{\Phi}_{u}\mathbf{\Phi}^{\top})(\mathbf{\Phi}\mathbf{\Phi}^{\top})^{-1}(\mathbf{\Phi}\mathbf{w})$$
$$= w_{0}\mathbf{1} + \mathbf{K}_{u}\mathbf{K}^{-1}\tilde{\mathbf{q}}$$

with \mathbf{K}_u is the $n_u \times n$ kernel matrix with elements k_{ij} where *i* stands for row *i* of \mathbf{X}_u and *j* for row *j* of \mathbf{X} .

A B +
 A B +
 A

A.2 Prediction for Nonlinear KRR

Final step needed with kernels for predicting the test data X_u :

• Let the SVD of $\Phi = \mathsf{U}\mathsf{D}\mathsf{V}^{\top}$. Then $\Phi^{\top}(\Phi\Phi^{\top})^{-1}\Phi = \mathsf{V}\mathsf{V}^{\top}$ because

$$\begin{split} \Phi^{\top} (\Phi \Phi^{\top})^{-1} \Phi &= \mathsf{V} \mathsf{D} \mathsf{U}^{\top} (\mathsf{U} \mathsf{D} \mathsf{V}^{\top} \mathsf{V} \mathsf{D} \mathsf{U}^{\top})^{-1} \mathsf{U} \mathsf{D} \mathsf{V}^{\top} \\ &= \mathsf{V} \mathsf{D} \mathsf{U}^{\top} \mathsf{U} \mathsf{D}^{-2} \mathsf{U}^{\top} \mathsf{U} \mathsf{D} \mathsf{V}^{\top} \\ &= \mathsf{V} \mathsf{D} \mathsf{D}^{-2} \mathsf{D} \mathsf{V}^{\top} = \mathsf{V} \mathsf{V}^{\top} \end{split}$$

• Then the predicted \mathbf{q}_u for the test set \mathbf{X}_u is

$$\mathbf{q}_{u} = w_{0}\mathbf{1} + \boldsymbol{\Phi}_{u}\mathbf{w} = w_{0}\mathbf{1} + \boldsymbol{\Phi}_{u}\mathbf{V}\mathbf{V}^{\top}\mathbf{w}$$

$$= w_{0}\mathbf{1} + \boldsymbol{\Phi}_{u}\boldsymbol{\Phi}^{\top}(\boldsymbol{\Phi}\boldsymbol{\Phi}^{\top})^{-1}\boldsymbol{\Phi}\mathbf{w}$$

$$= w_{0}\mathbf{1} + (\boldsymbol{\Phi}_{u}\boldsymbol{\Phi}^{\top})(\boldsymbol{\Phi}\boldsymbol{\Phi}^{\top})^{-1}(\boldsymbol{\Phi}\mathbf{w})$$

$$= w_{0}\mathbf{1} + \mathbf{K}_{u}\mathbf{K}^{-1}\tilde{\mathbf{q}}$$

with \mathbf{K}_u is the $n_u \times n$ kernel matrix with elements k_{ij} where *i* stands for row *i* of \mathbf{X}_u and *j* for row *j* of \mathbf{X} .

A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A