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Introduction

Data sets with pronounced fluctuations are commonly encountered
in such diverse disciplines as economic and actuarial sciences,
environmental and earth sciences, among others. Thus,
heavy-tailed models are necessary to perform better modelling in
the presence of extreme values. For example, the normal
distribution does not perform well in modelling data sets with
extreme observations. We must therefore resort to heavy-tailed
distributions. For example, in problems in which the r. v. involved
have high kurtosis, the probability that a rare event occurs can be
highly underestimated if a model without heavy tails is used. In
the economy, practical examples of rare events are pandemics, and
the 2008–09 financial crisis, to name a few. In geology, a rare
event might be a mega earthquake or a sudden eruption of a
volcano that has been dormant for centuries.
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The slash distribution is an extended version of the normal
distribution. It is characterized by the ratio of two separate random
variables: one following a normal distribution and the other
following a power of the uniform distribution. Therefore, we define
a slash distribution for variable S as:

S = U1/U2, (1)

where U1 ∼ N(0, 1), U2 ∼ Beta(q, 1), U1 is independent of U2
and q > 0; its representation can be seen in Johnson et al. [5]. The
distribution in question exhibits heavier tails compared to the
normal distribution, indicating a higher level of kurtosis.
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The characteristics of this particular distribution are explored in
detail in the works of Rogers and Tukey [12] and Mosteller and
Tukey [7]. Kafadar [6] delves into the topic of maximum likelihood
estimation for the location and scale parameters. Wang and
Genton [18] present a multivariate version of the slash distribution
as well as a multivariate skew version. The slash distribution is
further extended by Gomez and Venegas [4] through the
incorporation of the multivariate elliptic distributions.
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This methodology to increase the weight of the queues has also
been used in distributions with positive support. To name a few,
we mention the works of Olmos et al. [9] in the half-normal and
Rivera et al. [10] in the Rayleigh model, among others. Based on
the work of Rivera et al. [10], the scale mixture of Rayleigh (SMR)
model is proposed. We say that Y ∼ SMR(θ, q) with θ > 0 and
q > 0 if the probability density function (pdf) of Y is

fY (y; θ, q) = q y

2θ
(

y2

2θ + 1
) q

2 +1 , y > 0 . (2)
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A necessary distribution in the development of this paper is the
gamma distribution, whose pdf is given by

g(t; a, b) = ba

Γ(a) t
a−1e−bt, (3)

where a, b, t > 0. Its corresponding cumulative distribution
function (cdf) is denoted by:

G(z; a, b) =
∫ z

0
g(t; a, b)dt (4)
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Akash Distribution

Shanker [15] introduced the Akash distribution and applied it to
real lifetime data sets from medical science and engineering. Thus,
we say that a random variable (r.v.) Y has an Akash model (AK)
with shape parameter θ if its pdf is

fY (y; θ) = θ3

θ2 + 2(1 + y2) exp(−θy), (5)

where θ, y > 0 and we denote it by Y ∼ AK(θ). The parameter θ
is a shape parameter, and if we add a scale parameter the pdf is
given by

fY (y;σ, θ) = θ3

σ(θ2 + 2)(1 + y2/σ2) exp(−θy/σ), (6)

where σ > 0 is a scale parameter and θ > 0 is a shape parameter.
We denote it by Y ∼ AK(σ, θ).

Luis Firinguetti joint work with Diego Gallardo, Yolanda Gómez and Héctor GómezAn Extension of the Akash Distribution: Properties, Inference and Application



Introduction

Extensions of the Akash Distribution

Extensions of the AK distribution are carried out by Shanker and
Shukla [16, 17], among others. Both extensions consider adding a
parameter and we will compare them with the new distribution.
The two-parameter Akash distribution (TPAD) introduced by
Shanker and Shukla [16] has the following pdf:

fY (y; θ, α) = θ3

αθ2 + 2(α+ y2) exp(−θy), (7)

where θ, α, y > 0 and we denote it by Y ∼ TPAD(θ, α).
The power Akash distribution (PAD), introduced by Shanker and
Shukla [17], has the following pdf:

fY (y; θ, α) = αθ3

θ2 + 2(1 + αy2α)yα−1 exp(−θyα), (8)

where θ, α, y > 0 and we denote it by Y ∼ PAD(θ, α).
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Alternative Distribution

The main motivation of this work is to introduce an extended
version of the AK distribution given in Equation (6), making use of
the slash methodology, in order to obtain a new distribution with
greater kurtosis to be able to accommodate outliers.

The representation of this new distribution is given by

X = Y

Z
, (9)

where Y ∼ AK(θ), Z ∼ Beta(q, 1), Y and Z are independent
r.v.’s with θ, q > 0. We name the distribution of X slash AK
(SAK) and denote it by X ∼ SAK(θ, q).
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Density Function

Proposition
Let X ∼ SAK(θ, q). Then, the pdf of X is given by

fX (x; θ, q) =
q2Γ(q)x−(q+1)

(θ2 + 2)θq

{
θ

2
G(θx; q + 1, 1) + (q + 1)(q + 2)G(θx; q + 3, 1)

}
, (10)

where θ, q, x > 0 and G is the cdf of the gamma distribution given
in Equation (4).

Table 1 and Figure 1 illustrate that the weight of the right tail
increases. In particular, Table 1 shows P (X > x) for different
values of x in the mentioned distribution.
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Tail Probability Comparison

Table: Tails comparison
Distribution P (X > 5) P (X > 10) Distribution P (X > 15) P (X > 20)
SAK(1,1) 0.443 0.233 SAK(0.5,1) 0.367 0.278
SAK(1,5) 0.162 0.015 SAK(0.5,5) 0.063 0.020
SAK(1,10) 0.120 0.005 SAK(0.5,10) 0.034 0.007

AK(1) 0.085 0.002 AK(0.5) 0.018 0.003
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Figure: Left side: examples of the SAK(1, 1) (in black), SAK(1, 5) (in
blue), SAK(1, 10) (in red). Right side: examples of the SAK(0.5, 1) (in
black), SAK(0.5, 5) (in blue), SAK(0.5, 10) (in red).
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Cumulative Density Function

The following Proposition gives the cdf in closed form. It depends
on G, which is the cdf of the gamma distribution given in Equation
(4).

Proposition
Let X ∼ SAK(θ, q). Then, the cdf of X is given by

FX (x; θ, q) =
(θ2 + 2G(θx; 3, 1))(θx)q − θ3qΓ(q)G(θx; q, 1) − Γ(q + 3)G(θx; q + 3, 1)

(θ2 + 2)(θx)q
, (11)

where θ, q, x > 0 and G is given in Equation (4).
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Reliability and Hazard Function

The reliability function r(t) = 1 − F (t) and the hazard function
h(t) = f(t)

r(t) of the SAK distribution are provided in corollary 1.

Corollary

The reliability and hazard functions of the SAK(θ, q) model are
given by

1 r(t) = 1 − (θ2+2G(θt;3,1))(θt)q−θ3qΓ(q)G(θt;q,1)−Γ(q+3)G(θt;q+3,1)
(θ2+2)(θt)q ,

2 h(t) = q2Γ(q)(θ2G(θt;q+1,1)+(q+1)(q+2)G(θt;q+3,1))
t(2(1−G(θt;3,1))(θt)q+θ3qΓ(q)G(θt;q,1)−Γ(q+3)G(θt;q+3,1)) ,

where θ, q > 0.
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Hazard function

In Figure 2, we present the hazard function of the SAK model for
several values of θ and q.
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Figure: Hazard function of the SAK(0.5, 1) distribution (in black),
SAK(0.5, 2) distribution (in blue), SAK(0.5, 3) distribution (in red).

Luis Firinguetti joint work with Diego Gallardo, Yolanda Gómez and Héctor GómezAn Extension of the Akash Distribution: Properties, Inference and Application



Introduction

Right Tail of the SAK Distribution

From Nair et al. [8], a distribution has a heavy right tail if ∀µ > 0,

lim sup
x→∞

(
r(x)
e−µx

)
= ∞.

The following result shows that the SAK distribution is
heavy-tailed.

Proposition

The r.v. X ∼ SAK(θ, q) is heavy-tailed.

Proof.

lim sup
x→∞

(
r(x)
e−µx

)
≥ lim sup

x→∞

θ3qγ(θx, q) + γ(θx, q + 3)
e−µx(θ2 + 2)(θx)q

= ∞
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Akash as a Special Case of the SAK Distribution

The following proposition illustrates that the AK model is a
particular case of the SAK distribution for q → ∞.

Proposition

Let X ∼ SAK(θ, q) and Y ∼ AK(θ). If q → ∞, then X
converges in law to Y .
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Moments of the SAK Distribution

Proposition

Let X ∼ SAK(θ, q) with θ, q > 0. For r ∈ N, E[Xr] is given by

µr = E[Xr] = E

[(
Y

Z

)r]
=

[
E(Y r) × E

( 1
Z

)r]
(12)

= q
(
r!θ2 + (r + 2)!

)
θr(θ2 + 2)(q − r) , provided that q > r. (13)
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Moments of the SAK Distribution

Corollary

Let X ∼ SAK(θ, q) with θ and q > 0. The noncentral moments
and the variance of X, V ar(X), are obtained

µ1 = qκ6
θκ2(q − 1) , q > 1 , µ2 = 2qκ12

θ2κ2(q − 2) , q > 2 ,

µ3 = 6qκ20
θ3κ2(q − 3) , q > 3 , µ4 = 24qκ30

θ4κ2(q − 4) , q > 4,

V ar(X) = q
[
2κ12κ2(q − 1)2 − qκ2

6(q − 2)
]

θ2κ2
2(q − 1)2(q − 2)

, q > 2.

where κi = θ2 + i.
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Skewness

The next Corollary presents the skewness coefficient,
√
β1, of a

SAK(θ, q) model.

Corollary
Let X ∼ SAK(θ, q), with θ > 0 and q > 3. Then the skewness
coefficient of X is:√

β1 =
E[(X − E(X))3]

(V ar(X))3/2
=

µ3 − 3µ1µ2 + 2µ3
1

(µ2 − µ2
1)3/2

=
2

√
q − 2

[
3κ20κ2

2(q − 1)3(q − 2) − 3qκ2κ6κ12(q − 1)2(q − 3) + q2κ3
6(q − 2)(q − 3)

]
√

q(q − 3)
[

2κ2κ12(q − 1)2 − q(q − 2)κ2
6

]3/2
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Kurtosis

Corollary
Let X ∼ SAK(θ, q) with θ > 0 and q > 4. The kurtosis
coefficient of X is

β2 =
E[(X − E(X))4]

(V ar(X))2
=

µ4 − 4µ1µ3 + 6µ2
1µ2 − 3µ4

1
(µ2 − µ2

1)2

=
3(q − 2)

(
8κ3

2κ30q1 − 8qκ6κ20κ2
2q2 + 4q2κ2

6κ12κ2q3 − q3κ4
6q4

)
q(q − 3)(q − 4)

[
2κ12κ2(q − 1)2 − qκ2

6(q − 2)
]2

.

where q1 = (q − 1)4(q − 2)(q − 3), q2 = (q − 1)3(q − 2)(q − 4),
q3 = (q − 1)2(q − 3)(q − 4) and q4 = (q − 2)(q − 3)(q − 4).
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Skewness and Kurtosis

Table: Skewness and kurtosis of the SAK distribution for various values
of the shape parameters.

θ q

√
β1 β2

0.5 5 1.974 16.574
1 1.952 15.180

0.5 6 1.570 9.039
1 1.596 8.650

0.5 7 1.391 7.009
1 1.438 6.863

0.5 10 1.201 5.460
1 1.271 5.470

0.5 100 1.085 4.788
1 1.166 4.837

0.5 ∞ 1.084 4.785
1 1.165 4.834
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Inference: Method of Moments

Let X1, . . . , Xn be a random sample from X ∼ SAK(θ, q). Let
X =

∑n

i=1 Xi

n and X2 =
∑n

i=1 X2
i

n be the first two sample moments.

Proposition
Given X1, . . . , Xn a random sample from X ∼ SAK(θ, q) with
q > 2, the moment method estimators of θ and q provides the
following estimators

q̂M = Xθ̂M (θ̂2
M + 2)

θ̂M (θ̂2
M + 2)X − θ̂2

M − 6
, (14)

X2θ̂M

[
2(θ̂2

M + 6) − θ̂MX(θ̂2
M + 2)

]
− 2X(θ̂2

M + 12) = 0 ,(15)

where it is necessary to solve Equation (15) numerically to obtain
θ̂M . Then θ̂M is replaced in Equation (14) to obtain q̂M .
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Inference: Maximum likelihood

Let X1, . . . , Xn be a random sample from X ∼ SAK(θ, q). Then
the log-likelihood function is

l(θ, q) = c(θ, q) − (q + 1)

n∑
i=1

log(xi) +

n∑
i=1

log
[

θ
2

G(θxi; q + 1, 1) + (q + 1)(q + 2)G(θxi; q + 3, 1)
]

where c(θ, q) = 2n log(q) + n log(Γ(q)) − n log(θ2 + 2) − nq log(θ).
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Inference: Maximum likelihood

Taking partial derivatives in l(θ, q) in relation to θ and q and
equaling those equations to zero, we obtain

n∑
i=1

2θG(θxi; q + 1, 1) + θ2J(xi, q + 1) + (q + 1)(q + 2)J(xi, q + 3)
θ2G(θxi; q + 1, 1) + (q + 1)(q + 2)G(θxi; q + 3, 1)

=
2nθ

θ2 + 2
+

nq

θ
,

n∑
i=1

θ2H(xi; q + 1) + (2q + 3)G(θxi; q + 3, 1) + (q + 1)(q + 2)H(xi; q + 3)
θ2G(θxi; q + 1, 1) + (q + 1)(q + 2)G(θxi; q + 3, 1)

= η(θ, q) −

n∑
i=1

log(xi),

where J(xi,m) = xig(θxi;m, 1),
H(xi; v) =

∫ θxi
0 log(t)g(t; v, 1)dt− ψ(v)G(θxi; v, 1) and

η(θ, q) = 2n
q + n(ψ(q) − log(θ)).

Since solving this system of equations may be a difficult task, we
resort to implement an EM algorithm (see Dempster et al. [2]).
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EM Algorithm

Using a stochastic approach, the SAK model may be represented
as follows:

Xi | Ui = ui, Zi = zi ∼ G(1 + 2ui, θzi),

Ui ∼ Bernoulli
( 2
θ2 + 2

)
,

Zi ∼ Beta (q, 1) .

where Ui and Zi, i = 1, . . . , n, represent non-observable variables.

This representation can be used to implement the EM algorithm
(Dempster et al. [2]). In this context, the observed data are given
by Do = x⊤, where x⊤ = (x1, . . . , xn). The vectors
z⊤ = (z1, . . . , zn) and u⊤ = (u1, . . . , un) are the latent variables
and the vector Dc = (x⊤, z⊤, u⊤)⊤ are the complete data.
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EM Algorithm

The joint distribution of (Xi, Ui, Zi) is given by

f(xi, ui, zi) = f(xi | ui, zi) × f(ui) × f(zi)

=
(θzi)1+2ui

Γ(1 + 2ui)
x

2ui
i

e
−θzixi ×

(
2

θ2 + 2

)ui
(

θ2

θ2 + 2

)1−ui

× qz
q−1
i

=
qθ3z

2ui+q

i
2ui

(θ2 + 2)Γ(1 + 2ui)
x

2ui
i

e
−θzixi .

Up to a constant that does not depend on the vector of
parameters ψ = (θ, q), the complete log-likelihood function for the
model is given by

ℓc(ψ;Dc) = n
[
log q + 3 log θ − log(θ2 + 2)

]
+

n∑
i=1

[q log zi − θxizi] .
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EM Algorithm

the expected value of ℓc(ψ;Dc), given the observed data, is

Q(ψ | ψ(k)) = n
[
log q + 3 log θ − log(θ2 + 2)

]
+

n∑
i=1

[
qκ̂

(k)
i − θxiẑ

(k)
i

]
,

where ẑ(k)
i = E(Zi | xi, ψ = ψ̂(k)) and

κ̂
(k)
i = E(logZi | xi, ψ = ψ̂(k)).
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EM Algorithm

Note that

f(zi, ui | xi) ∝
(θxi)2ui+q+1

Γ(2ui + q + 1)

z
(2ui+q+1)−1
i

e−θxizi

G(1; 2ui + q + 1, θxi)︸ ︷︷ ︸
Zi|ui,xi∼T G(0,1)(2ui+q+1,θxi)

×
Γ(2ui + q + 1)

Γ(2ui + 1)

(
2

θ2

)ui

G(1; 2ui + q + 1, θxi)︸ ︷︷ ︸
Ui|xi∼Bernoulli(νi)

,

where:
νi = Γ(q + 3)G(θxi; q + 3)/[θ2Γ(q + 1)G(θxi; q + 1) + Γ(q + 3)G(θxi; q + 3)],

G(x; a) =
∫ x

0
1

Γ(a) ta−1e−tdt is the cdf for the gamma model

TG(0,1)(a, b) denotes the gamma distribution with shape a and rate b truncated in the interval (0,1).
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EM Algorithm

Since
E(Zi | xi) = E (E(Zi | Ui, xi) | xi) (16)

=
νi(q + 3)G(θxi, q + 4)

θxiG(θxi, q + 3)
+

(1 − νi)(q + 1)G(θxi, q + 2)
θxiG(θxi, q + 1)

E(log Zi | xi) =
νi

Γ(q + 3)G(1; q + 3, θxi)

∫ θxi

0

log
(

wi

θxi

)
w

q+2
i

e
−wi dwi (17)

+
(1 − νi)

Γ(q + 1)G(1; q + 1, θxi)

∫ θxi

0

log
(

wi

θxi

)
w

q
i

e
−wi dwi.
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EM Algorithm

Therefore, the kth iteration of the algorithm comprises the
following steps:

E-step: given θ̂(k−1) and q̂(k−1), for i = 1, . . . , n compute ẑ(k)
i

and κ̂(k)
i using Equations (16) and (17), respectively.

M1-step: update q̂(k) as

q̂(k) = −n∑n
i=1 κ̂

(k)
i

.

M2-step: update θ̂(k) as the solution for the non-linear
equation

3
θ

− 2θ
θ2 + 2 = 1

n

n∑
i=1

xiẑ
(k)
i .

The E, M1 and M2 steps are iterated until convergence is achieved.
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A Simulation Study

To evaluate the performance of the ML estimators of the SAK
(θ, q), obtained through the EM algorithm, we considered:

Three different values for θ (0.5, 3, and 10),
Three values for q (0.5, 1, and 2),
Five sample sizes (30, 50, 100, 200, and 500).

For each combination of θ, q, and n, we will draw 1000 replicates
and calculate the ML estimators.

The initial values to start the EM algorithm are:
θ̂(0) is obtained from the estimate of θ in the AK model (with
scale fixed at 1)
q̂(0) = 1.

In addition, for each replicate we estimate the standard errors
based on the observed information matrix. reports the empirical
bias (bias),
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A Simulation Study

We report the following statistics:
The average of the estimated bias (Bias),
The mean of the standard errors (SE),
The square root of the mean squared error (RMSE)
The 95% probability that the estimated parameters fall within
the asymptotic distribution (CP).
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Simulation Results

Table: Estimated Bias, SE, RMSE and CP of the ML Estimators of the
Parameters of the SAK Distribution for n = 30.

θ q Estimator Bias SE RMSE CP
0.5 0.5 θ̂ −0.002 0.119 0.124 0.914

q̂ 0.036 0.122 0.139 0.961
1.0 θ̂ −0.004 0.110 0.114 0.918

q̂ −0.159 0.236 0.253 0.924
2.0 θ̂ −0.003 0.105 0.107 0.931

q̂ −0.137 0.597 0.622 0.904
3.0 0.5 θ̂ 0.136 1.063 1.236 0.891

q̂ 0.059 0.156 0.206 0.963
1.0 θ̂ 0.104 0.982 1.112 0.896

q̂ −0.087 0.398 0.446 0.892
2.0 θ̂ 0.145 0.976 1.070 0.922

q̂ −0.105 1.025 1.090 0.915
10.0 0.5 θ̂ 0.595 4.688 5.331 0.882

q̂ 0.069 0.175 0.184 0.964
1.0 θ̂ 0.559 4.440 4.910 0.904

q̂ −0.097 0.508 0.631 0.899
2.0 θ̂ 0.885 4.575 4.757 0.935

q̂ −0.068 1.224 1.222 0.924
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Simulation Results

Table: Estimated Bias, SE, RMSE and CP of the ML Estimators of the
Parameters of the SAK Distribution for n = 50.

θ q Estimator Bias SE RMSE CP
0.5 0.5 θ̂ −0.004 0.092 0.094 0.930

q̂ 0.025 0.092 0.100 0.958
1.0 θ̂ −0.003 0.085 0.086 0.931

q̂ −0.112 0.161 0.171 0.929
2.0 θ̂ −0.003 0.081 0.082 0.939

q̂ −0.125 0.395 0.420 0.924
3.0 0.5 θ̂ 0.095 0.794 0.861 0.915

q̂ 0.030 0.110 0.124 0.958
1.0 θ̂ 0.060 0.729 0.786 0.912

q̂ −0.057 0.245 0.296 0.925
2.0 θ̂ 0.068 0.709 0.747 0.929

q̂ −0.084 0.724 0.790 0.924
10.0 0.5 θ̂ 0.291 3.484 3.709 0.901

q̂ 0.035 0.113 0.128 0.963
1.0 θ̂ 0.102 2.248 2.328 0.926

q̂ −0.051 0.284 0.389 0.903
2.0 θ̂ 0.389 3.286 3.316 0.937

q̂ −0.057 0.834 0.950 0.931
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Simulation Results

Table: Estimated Bias, SE, RMSE and CP of the ML e Estimators of the
Parameters of the SAK Distribution for n = 100.

θ q Estimator Bias SE RMSE CP
0.5 0.5 θ̂ −0.001 0.065 0.066 0.937

q̂ 0.012 0.063 0.065 0.952
1.0 θ̂ −0.002 0.060 0.061 0.940

q̂ −0.087 0.108 0.115 0.939
2.0 θ̂ −0.002 0.057 0.058 0.940

q̂ −0.077 0.233 0.250 0.932
3.0 0.5 θ̂ 0.035 0.537 0.556 0.927

q̂ 0.015 0.075 0.079 0.955
1.0 θ̂ 0.028 0.499 0.517 0.929

q̂ −0.021 0.145 0.188 0.938
2.0 θ̂ 0.018 0.478 0.491 0.934

q̂ −0.069 0.440 0.485 0.935
10.0 0.5 θ̂ 0.126 2.400 2.470 0.925

q̂ 0.016 0.075 0.080 0.957
1.0 θ̂ 0.102 2.248 2.328 0.926

q̂ −0.031 0.152 0.199 0.939
2.0 θ̂ 0.172 2.209 2.217 0.944

q̂ −0.037 0.440 0.483 0.935
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Simulation Results

Table: Estimated Bias, SE, RMSE and CP of the ML Estimators of the
Parameters of the SAK Distribution for n = 200.

θ q Estimator Bias SE RMSE CP
0.5 0.5 θ̂ 0.000 0.046 0.046 0.946

q̂ 0.005 0.043 0.044 0.952
1.0 θ̂ −0.001 0.043 0.043 0.946

q̂ −0.059 0.074 0.081 0.948
2.0 θ̂ −0.001 0.040 0.041 0.945

q̂ −0.041 0.151 0.162 0.942
3.0 0.5 θ̂ 0.013 0.373 0.380 0.940

q̂ 0.009 0.052 0.054 0.953
1.0 θ̂ 0.012 0.347 0.354 0.941

q̂ −0.012 0.097 0.117 0.948
2.0 θ̂ 0.006 0.332 0.339 0.941

q̂ −0.048 0.255 0.282 0.942
10.0 0.5 θ̂ 0.088 1.684 1.706 0.942

q̂ 0.007 0.052 0.053 0.951
1.0 θ̂ 0.059 1.574 1.600 0.941

q̂ −0.023 0.098 0.117 0.948
2.0 θ̂ 0.035 1.533 1.546 0.947

q̂ −0.027 0.305 0.313 0.942
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Simulation Results

Table: Estimated Bias, SE, RMSE and CP of the ML Estimators of the
Parameters of the SAK Distribution for n = 500.

θ q Estimator Bias SE RMSE CP
0.5 0.5 θ̂ 0.000 0.029 0.029 0.947

q̂ 0.001 0.027 0.027 0.951
1.0 θ̂ 0.000 0.027 0.027 0.946

q̂ −0.046 0.046 0.051 0.948
2.0 θ̂ 0.000 0.025 0.026 0.947

q̂ −0.023 0.092 0.095 0.948
3.0 0.5 θ̂ 0.005 0.234 0.235 0.947

q̂ 0.003 0.032 0.033 0.952
1.0 θ̂ 0.003 0.218 0.219 0.948

q̂ −0.002 0.060 0.066 0.947
2.0 θ̂ 0.000 0.208 0.210 0.946

q̂ −0.008 0.140 0.155 0.948
10.0 0.5 θ̂ 0.019 1.056 1.049 0.944

q̂ 0.003 0.032 0.033 0.951
1.0 θ̂ 0.009 0.987 0.980 0.948

q̂ −0.012 0.060 0.080 0.948
2.0 θ̂ −0.006 0.955 0.955 0.947

q̂ −0.018 0.149 0.159 0.943
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An Application

The data correspond to plasma beta-carotene levels (ng/ml) of 314
patients. This data set contains 14 variables and is available online
at http://Lib.stat.cmu.edu/datasets/PlasmaRetinol
(accessed on 31 October 2023).

In this study, we consider the variable Betaplasma. The medical
interest in this variable comes from the fact that low levels of
plasma beta-carotene may be associated with higher risk of
developing certain types of cancer. In Table 8, we present some
descriptive statistics including the sample skewness, b1, and sample
and kurtosis b2. We may observe high kurtosis in this data set.

Table: Summary for betaplasma data.

n x s2 b1 b2
314 190.4968 33480.72 3.536562 16.8145
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An Application

Table: ML estimates for AK, TPAD, PAD, SMR and SAK models
(standard errors are in parenthesis).

Parameter AK TPAD PAD SMR SAK
Estimates

θ 0.387 (0.120) 0.016 (0.004) 0.012 (0.003) 16998.167 (3399.076) 0.027 (0.002)
α − 1.830 (0.133) 1.052 (0.038) − −
q − − − 2.926 (0.385) 2.331 (0.294)
σ 25.767 (8.697) − − − −

log-likelihood −1952.939 −1955.297 −1953.632 −1910.472 −1908.147

Table: AIC and BIC criteria for fitted models.
Criterion AK TPAD PAD SMR SAK

AIC 3909.878 3914.594 3911.264 3824.944 3820.294
BIC 3917.376 3922.092 3918.763 3832.443 3827.793
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Figure: Betaplasma: histogram and fitted pdf for AK, TPAD, PAD, SMR
and SAK distributions.
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Figure: The qqplots of the quantile residuals for the fitted modelscand
p-values of the AD, CVM and SW tests.
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Figure: The qqplots of the quantile residuals for the fitted modelscand
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Some Final Remarks

• The distribution has two stochastic representations, one based
on the quotient of two independent r.v.’s and the other based
on a scale mixture between the AK and Beta distributions.

• The pdf, cdf and hazard function of the SAK distribution are
represented by the cdf of the gamma model.

• The proposed model has a heavy right tail.
• The model contains the AK distribution as a limit when the

parameter q tends to infinity.
• The moments and the skewness and kurtosis coefficient have

an explicit form.
• In the application, observing the AIC and BIC and the AD,

CVM and SW statistical tests, we may conclude that the SAK
distribution fits the Betaplasma data set better than the PAD
and SMR distributions, which are also extensions of the
AK distribution.
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