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Data sets with pronounced fluctuations are commonly encountered
in such diverse disciplines as economic and actuarial sciences,
environmental and earth sciences, among others. Thus,
heavy-tailed models are necessary to perform better modelling in
the presence of extreme values. For example, the normal
distribution does not perform well in modelling data sets with
extreme observations. We must therefore resort to heavy-tailed
distributions. For example, in problems in which the r. v. involved
have high kurtosis, the probability that a rare event occurs can be
highly underestimated if a model without heavy tails is used. In
the economy, practical examples of rare events are pandemics, and
the 2008-09 financial crisis, to name a few. In geology, a rare
event might be a mega earthquake or a sudden eruption of a
volcano that has been dormant for centuries. iz

Luis Firinguetti joint work with Diego Gallardo, Yolanda Gémez g



L

The slash distribution is an extended version of the normal
distribution. It is characterized by the ratio of two separate random
variables: one following a normal distribution and the other
following a power of the uniform distribution. Therefore, we define
a slash distribution for variable S as:

S = U /Us, (1)J

where U; ~ N(0,1), Uy ~ Beta(q, 1), Uy is independent of Us
and ¢ > 0; its representation can be seen in Johnson et al. [5]. The
distribution in question exhibits heavier tails compared to the
normal distribution, indicating a higher level of kurtosis.
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The characteristics of this particular distribution are explored in
detail in the works of Rogers and Tukey [12] and Mosteller and
Tukey [7]. Kafadar [6] delves into the topic of maximum likelihood
estimation for the location and scale parameters. Wang and
Genton [18] present a multivariate version of the slash distribution
as well as a multivariate skew version. The slash distribution is
further extended by Gomez and Venegas [4] through the
incorporation of the multivariate elliptic distributions.
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This methodology to increase the weight of the queues has also
been used in distributions with positive support. To name a few,
we mention the works of Olmos et al. [9] in the half-normal and
Rivera et al. [10] in the Rayleigh model, among others. Based on
the work of Rivera et al. [10], the scale mixture of Rayleigh (SMR)
model is proposed. We say that Y ~ SMR(6,q) with § > 0 and

g > 0 if the probability density function (pdf) of Y is

qy
fr(y;0.q9) = 7 » Y¥>0. (2)

2 (45 +1)
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A necessary distribution in the development of this paper is the
gamma distribution, whose pdf is given by

ta—le—bt

a) : (3)

g(t;a,b) =

where a,b,t > 0. Its corresponding cumulative distribution
function (cdf) is denoted by:

G(z;a,b) = /OZ g(t;a,b)dt (4)
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Introduction
tion

Shanker [15] introduced the Akash distribution and applied it to
real lifetime data sets from medical science and engineering. Thus,
we say that a random variable (r.v.) Y has an Akash model (AK)
with shape parameter 6 if its pdf is

3

fy(y;0) = P

(1+y?) exp(—y), (5)
where 6,y > 0 and we denote it by Y ~ AK (). The parameter 6
is a shape parameter, and if we add a scale parameter the pdf is
given by

3

@t y*Jo?) exp(=by/o),  (6)

fr(y;0,0) =

g
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where ¢ > 0 is a scale parameter and 6 > 0 is a shape parameter.
We denote it by Y ~ AK (0, 0).
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he Akash Distribution

Extensions of the AK distribution are carried out by Shanker and
Shukla [16, 17], among others. Both extensions consider adding a
parameter and we will compare them with the new distribution.
The two-parameter Akash distribution (TPAD) introduced by
Shanker and Shukla [16] has the following pdf:

3
:a02—|—2

fr(y; 6, 0) (o +3?) exp(—0y), (7)
where 6, «,y > 0 and we denote it by Y ~ TPAD(0, ).

The power Akash distribution (PAD), introduced by Shanker and
Shukla [17], has the following pdf:

3

ab _ o
fY(y7 07 Ck) = m(l + ay2a)ya ! eXp<_9y )7 (8)

g
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where 6, «,y > 0 and we denote it by Y ~ PAD(6, o).
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Introduction
istribution

The main motivation of this work is to introduce an extended
version of the AK distribution given in Equation (6), making use of
the slash methodology, in order to obtain a new distribution with
greater kurtosis to be able to accommodate outliers.

The representation of this new distribution is given by

Y
X ==
=, (9)
where Y ~ AK(0), Z ~ Beta(q,1), Y and Z are independent
r.v.'s with 8,q > 0. We name the distribution of X slash AK

(SAK) and denote it by X ~ SAK(6,q).

4
e
N
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Introduction

Let X ~ SAK(6,q). Then, the pdf of X is given by

q2p(q)m—(q+1)

fx(2;0,q) = @2 + 267

{0*Gzia+1,1) + (g + D@+ 2GOq+3,1}, (10

where 0,q,x > 0 and G is the cdf of the gamma distribution given
in Equation (4).

v,
Table 1 and Figure 1 illustrate that the weight of the right tail
increases. In particular, Table 1 shows P(X > xz) for different
values of x in the mentioned distribution.
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ility Comparison

Tails

comparison

Distribution  P(X > 5) P(X > 10)  Distribution  P(X > 15) _ P(X > 20)
SAK(1,1) 0.443 0.233 SAK(0.5.1) 0.367 0.278
SAK(1,5) 0.162 0.015 SAK(0.5,5) 0.063 0.020
SAK(1,10) 0.120 0.005 SAK(0.5,10) 0.034 0.007
AK(1) 0.085 0.002 AK(0.5) 0.018 0.003
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Left side: examples of the SAK(1,1) (in black), SAK(1,5

blue), SAK(1,10) (in red). Right side: examples of the SAK(0.5,1) (in

black), SAK(0.5,5) (in blue), SAK(0.5,10) (in red).
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Introduction
ensity Function

The following Proposition gives the cdf in closed form. It depends
on G, which is the cdf of the gamma distribution given in Equation

(4).

Let X ~ SAK(0,q). Then, the cdf of X is given by

(0% + 2G(0x;3,1)) (92)? — 0°qT(9)G (939, 1) — T'(q + 3)G (959 + 3, 1)

Fx (z;0,q) = (02 + 2)(02)

(11)

where 0,q,x > 0 and G is given in Equation (4).
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Hazard Function

The reliability function r(t) = 1 — F(t) and the hazard function

h(t) = % of the SAK distribution are provided in corollary 1.

The reliability and hazard functions of the SAK (0, q) model are

given by
024+2G(0t;3,1))(6t)1—63 G(0t;9,1)— G(0t;q+3,
Qr(t)=1- (0242G(61;3,1))(61) (%ggg)(é;qq 1)—T'(g+3)G(8t;9+3 1),
hit) — 0°T(q) (02G(0t;0+1,1)+(q+1) (q+2)G(0t:q+3,1))
Q ht) = =c0e3,0) 601105 (@) COtq 1) —T (4T3 GOt
where 0,q > 0. |
&2
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on

In Figure 2, we present the hazard function of the SAK model for
several values of 0 and q.

Y —

t

Hazard function

Hazard function of the SAK(0.5, 1) distribution (in black),
SAK(0.5, 2) distribution (in blue), SAK(0.5,3) distribution (in red).
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2= SAK Distribution

From Nair et al. [8], a distribution has a heavy right tail if Vi > 0,

lim sup (r(x) ) = 00
T—00 e HT
The following result shows that the SAK distribution is
heavy-tailed.

The rv. X ~ SAK(6,q) is heavy-tailed.

. r(z) : 0>qy(0z,q) + (02,9 +3) _ Sz
= (-) = HIsup = (62 1 2) (60 o '3
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pecial Case of the SAK Distribution

The following proposition illustrates that the AK model is a
particular case of the SAK distribution for ¢ — oco.

Let X ~ SAK(0,q) andY ~ AK(0). If ¢ — oo, then X
converges in law to Y .

L
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he SAK Distribution

Let X ~ SAK(0,q) with 8, ¢ > 0. Forr € N, E[X"] is given by

b = E[X7|=E K}Z/ } - [E(Y”) < E (;H (12)

q(ro*+ (r+2) )
= (1) provided that q > r. (13)
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2 SAK Distribution

Let X ~ SAK(0,q) with 6 and ¢ > 0. The noncentral moments
and the variance of X, Var(X), are obtained

qKe 2qk12
___ ks > 1 =2 2
M maa—1) 17 P T g2 T
6qkog 24qk30
_ 5 > 3 5 = 1 7 N ? > 47
e #3k2(q — 3) 4 Ha 0*k2(q — 4) I
q [2k12k2(q — 1)* — qkg(q — 2)]
Var(X) = , q> 2.
) Pr3a—12a—2)
S
where r; = 0% +i. ) '
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The next Corollary presents the skewness coefficient, v/51, of a
SAK(6,q) model.

Let X ~ SAK(0,q), with 6 >0 and q > 3. Then the skewness
coefficient of X is:

\/BT _ BIX —E(X)®]  ps = 3paps + 24§

(Var(X))2/2 " (u2 — u})?/2

2v7 =2 [3r20r3(a — 1)*(a — 2) — 3amameria(a — D(a = 3) + a*x(a — 2)(a = 3)

V(g - 3) [2N2N12(q -2 —q(q - 2)”2] e
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Let X ~ SAK(0,q) with @ > 0 and q > 4. The kurtosis
coefficient of X is
E[(X — E(X)*]  pa — 4paps + 6p3ps — 3u3

P2 = ez (h2 — 12)2

3(qg —2) (Sﬂgfmotn — 8qrer20K3a2 + 4q2f<§f<12'€2q3 = qsnéu)

a(a —3)(q — 4) [2m2~2(q —1)2 — grZ(a — 2)] :

where g1 = (¢ — 1)* (¢ —2)(¢ —3), g2 = (¢ — 1)*(¢ — 2)(¢ — 4),
3=0(q—1)*(¢—3)(¢g—4) and g1 = (¢ — 2)(¢ — 3)(¢ — 4).

)
T 3
TN

Luis Firinguetti joint work with Diego Gallardo, Yolanda Gémez g



Introduction

d Kurtosis

Skewness and kurtosis of the SAK distribution for various values
of the shape parameters.

0 q B1 B2

0.5 5 1.974 16.574
1 1.952 15.180
0.5 6 1.570 9.039
1 1.596 8.650
0.5 7 1.391 7.009
1 1.438 6.863
0.5 10 1.201 5.460
1 1.271 5.470
0.5 100 1.085 4.788
1 1.166 4.837
0.5 %) 1.084 4.785
1 1.165 4.834
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od of Moments

Let X1,..., X, be a random sample from X ~ SAK(0,q). Let
— w . — i 2
X = # and X2 = # be the first two sample moments.

Given X1,..., X, a random sample from X ~ SAK(0,q) with
q > 2, the moment method estimators of 6 and q provides the
following estimators

~ X0y (62, + (14)
5

M (@, +2)X — 92 -
X0 263 +6) - eMXwM +2)| — 2X (83, +12) = A15)

where it is necessary to solve Equation (15) numerically to obtain
Orr. Then 6y is replaced in Equation (14) to obtain ;.

L4
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aximum likelihood

Let Xy,..., X, be a random sample from X ~ SAK(0,q). Then
the log-likelihood function is

10.0) = c(6,0) = (4 +1) Y log(ei) + B log [0°G(0wisa+1,1) + (a+ 1)(a + DG(0ziia + 3f0)]

i=1 i=1

where c(6, q) = 2n log(q) + nlog(I'(q)) — nlog(6? + 2) — nglog(h).
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ximum likelihood

Taking partial derivatives in (6, q) in relation to 6 and ¢ and
equaling those equations to zero, we obtain

n

Z 20G(0z;5q9+1,1) + 02 J(z;, g+ 1) + (g + 1)(g+ 2)J(z;,9+3)  2n0 ng

602G (02459 +1,1) + (g + 1)(q + 2)G (0459 + 3, 1) 0242 6

d=i

- 02 H (z;; 1 2q + 3)G(0x;; 3,1 1 2)H (z; 3 =
Z (wisq+1) + (29 +3)G(0=i;9+3,1) + (¢ + 1)(a +2) ('q+):n(9,q)—zlog('

62G(0z;59+1,1) + (¢ +1)(g +2)G(0z;;9 + 3, 1)
=1 i=1

where J(z;,m) = x;g(0x;;m, 1),
H(z;;v) = foex" log(t)g(t; v, 1)dt — ¥(v)G(fz;v,1) and
(8, 9) = % + n(y(g) — log(6)).

Since solving this system of equations may be a difficult task, we |8
resort to implement an EM algorithm (see Dempster et al. [2]).
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Using a stochastic approach, the SAK model may be represented
as follows:

20 || W = g, Zy =z~ S 2wy, O,
2
U’i ~ Bernoulli <92_|_2) 9
Z; ~ Beta(gq,1).

where U; and Z;, i = 1,...,n, represent non-observable variables.

This representation can be used to implement the EM algorithm
(Dempster et al. [2]). In this context, the observed data are given
by D, =", where 2" = (1,...,2,). The vectors

2" =(21,...,2n) and u” = (uy,...,uy,) are the latent variables | gz
and the vector D. = (27,27, u")" are the complete data.

iz
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The joint distribution of (X;, U;, Z;) is given by

Flmi,ug,25) = fl@s | wg,2i) X f(ug) X f(z;)

AN1+2u; u; 2 1—u,;
= 7(9%) i a:?uie_ezimi X 72 ‘ o ’ X ng—l
(14 2u;) * 02 +2 02 +2 @

q03z.2ui+q2“i
k2

2uy _Hzi,»,:i'

(6% + 2)T(1 + 2u;) @

Up to a constant that does not depend on the vector of
parameters ¥ = (6, q), the complete log-likelihood function for the
model is given by

n

£e(t; D) = n [log g + 3log 6 — log(6” +2)| + Y [qlog i — szl | __
i=1 SE
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the expected value of £.(¢; D.), given the observed data, is

~

QW |v™) =n [logq + 3logf — log(6? + 2)} +> {qﬁgk) — Gazifz\i(l :
i=1
where Egk) =E(Z; | zi, = »®) and

Y =E(log Z: | 2,9 = o).
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Note that

(2ui+q+1)=1 _9a;z;
K

I'(2u; + ¢+ 1) G(1;2u; +q+ 1,0z;)

(gwi>2ui+q+1 z

flzi ug | @) o

Zjlug,ei~TG g 1y (2ui+a+1,02;)

T(2u; +q+ 1) (2

ui
G(1;2u; + g + 1, 0z;),
sttt D (&) ez ot nom

U;|z;~Bernoulli(v;)

v
where:
O v; =T(q+3)G(0xi;q+3)/[0°T(q + 1)G (92539 + 1) + T(q + 3)G (9239 + 3)],
Qo ca) = [T L _ja—1.—tgs
G(z;a) fo o) t e~ “dt is the cdf for the gamma model
Qo TG(p,1) (@, b) denotes the gamma distribution with shape a and rate b truncated in the interval (0,1).
o
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Since

E(Z; | z;) =EE(Z; | Uy, ) | zi)
vi(qg+3)G(0z;,qg+4) (1 —v;)(qg+1)G(0z;,q9+2)
0z;G(0z;,q + 3) 0z;G(0z;,q + 1)

(16)

Oz,
Vi Wi +2 —w;
E(log Z; | ;) = log [ — | wi™%e tdw;
loa Zi [ 20) F<q+3)G(1;q+3,9x@->/0 (ew) : ‘

. 0z,
+ a-vi) log & wle™Yidw;.
I'(g+1)G(1;9+ 1, 0x;) o Oz, !

17)
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Therefore, the kth iteration of the algorithm comprises the
following steps:

o E-step: given 9(=1) and (j(k_l), fori=1,...,n compute ?Zi(k)

and Egk) using Equations (16) and (17), respectively.

o M1-step: update g*) as

k) _ TN
7= o

=1l I‘Q
o M2-step: update 0™®) as the solution for the non-linear

equation

3 A(k
i 792+2 ;Zf”z '

Nz
The E, M1 and M2 steps are iterated until convergence is achieved. | 3
V.

Luis Firinguetti joint work with Diego Gallardo, Yolanda Gémez g



Introduction

To evaluate the performance of the ML estimators of the SAK
(0, q), obtained through the EM algorithm, we considered:

o Three different values for 6 (0.5, 3, and 10),
o Three values for ¢ (0.5, 1, and 2),
o Five sample sizes (30, 50, 100, 200, and 500).

For each combination of 4, ¢, and n, we will draw 1000 replicates
and calculate the ML estimators.

The initial values to start the EM algorithm are:
o 09 is obtained from the estimate of # in the AK model (with
scale fixed at 1)
o g0 =1.
In addition, for each replicate we estimate the standard errors
based on the observed information matrix. reports the empirical

s
L=
<{ifs

Ld
ol £ 4

Luis Firinguetti joint work with Diego Gallardo, Yolanda Gémez g



Introduction
Study

We report the following statistics:

©

The average of the estimated bias (Bias),
o The mean of the standard errors (SE),

©

The square root of the mean squared error (RMSE)

©

The 95% probability that the estimated parameters fall within
the asymptotic distribution (CP).
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Estimated Bias, SE, RMSE and CP of the ML Estimators of the

Parameters of the SAK Distribution for n = 30.

2 q Estimator Bias SE RMSE CP

05 05 0 0002 0119 0124 0914
q 0036 0122 0139  0.961

1.0 ) —0004 0110 0114 0918

g —0159 0236 0253  0.924

2.0 0 0003 0105 0107 0931

4 —0.137 0597 0622  0.904

30 05 ) 0136 1063 1236  0.891
g 0059 056 0206  0.963

1.0 ) 0104 0982 1112  0.896

g —0.087 0398 0446  0.892

2.0 ) 0145 0976 1070  0.022

] —0105 1.025 1090  0.915

00 05 ) 0505 4688 5331  0.882
g 0069 0175 0.184  0.964

1.0 ) 0559 4440 4910  0.004

4 —0.097 0508 0631  0.899

2.0 0 0.885 4.575 4.757 0.935

g 0068 1224 1222  0.924
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Estimated Bias, SE, RMSE and CP of the ML Estimators of the
Parameters of the SAK Distribution for n = 50.

[ q Estimator Bias SE RMSE CP
05 05 0 0004 0092 0094 0930
a 0025 0092 0100  0.958

10 0 0003 0085 008 0031

a —0112 0161 0171 0929

20 0 0003 0081 0082 0939

a —0.125 0395 0420 0924

30 05 0 0095 0794 0861  0.915
a 0030 0110 0124  0.958

1.0 0 0060 0720 0786  0.912

a —0.057 0245 0296  0.925

2.0 0 0068 0709 0747  0.929

a —0.084 0724 0790  0.924

100 05 0 0291 3484 3700  0.901
@ 003 0113 0128  0.963

10 9 0102 2248 2328 0926

@ —0.051 0284 0389  0.903

2.0 0 0380 3286 3316  0.937

@ 0057 0834 0950  0.31
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Estimated Bias, SE, RMSE and CP of the ML e Estimators of the

Parameters of the SAK Distribution for n = 100.

[ q Estimator Bias SE RMSE CP

0.5 0.5 7] —0.001 0.065 0.066 0.937
:1\ 0.012 0.063 0.065 0.952

1.0 7] —0.002 0.060 0.061 0.940

:1\ —0.087 0.108 0.115 0.939

2.0 0 —0.002 0.057 0.058 0.940

;\ —0.077 0.233 0.250 0.932

3.0 0.5 0 0.035 0.537 0.556 0.927
;\ 0.015 0.075 0.079 0.955

1.0 6 0.028 0.499 0.517 0.929

:1\ —0.021 0.145 0.188 0.938

2.0 6 0.018 0.478 0.491 0.934

:1\ —0.069 0.440 0.485 0.935

10.0 0.5 6 0.126 2.400 2.470 0.925
:1\ 0.016 0.075 0.080 0.957

1.0 6 0.102 2.248 2.328 0.926

:]\ —0.031 0.152 0.199 0.939

2.0 6 0.172 2.209 2.217 0.944

@ —0.037 0440 0483 00935
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Estimated Bias, SE, RMSE and CP of the ML Estimators of the
Parameters of the SAK Distribution for n = 200.

[ q Estimator Bias SE RMSE CP
0.5 0.5 7] 0.000 0.046 0.046 0.946
:1\ 0.005 0.043 0.044 0.952
1.0 7] —0.001 0.043 0.043 0.946
:1\ —0.059 0.074 0.081 0.948
2.0 0 —0.001 0.040 0.041 0.945
:1\ —0.041 0.151 0.162 0.942
3.0 0.5 0 0.013 0.373 0.380 0.940
;\ 0.009 0.052 0.054 0.953
1.0 0 0.012 0.347 0.354 0.941
:1\ —0.012 0.097 0.117 0.948
2.0 0 0.006 0.332 0.339 0.941
:1\ —0.048 0.255 0.282 0.942
10.0 0.5 0 0.088 1.684 1.706 0.942
:1\ 0.007 0.052 0.053 0.951
1.0 0 0.059 1.574 1.600 0.941

:1\ —0.023 0.098 0.117 0.948 ﬁ'”,a‘

2.0 ) 0035 1533 1546  0.947 S %2
:1\ —0.027 0.305 0.313 0.942
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Estimated Bias, SE, RMSE and CP of the ML Estimators of the
Parameters of the SAK Distribution for n = 500.

[ q Estimator Bias SE RMSE CP
0.5 0.5 7] 0.000 0.029 0.029 0.947
:1\ 0.001 0.027 0.027 0.951
1.0 7] 0.000 0.027 0.027 0.946
:1\ —0.046 0.046 0.051 0.948
2.0 0 0.000 0.025 0.026 0.947
:1\ —0.023 0.092 0.095 0.948
3.0 0.5 0 0.005 0.234 0.235 0.947
;\ 0.003 0.032 0.033 0.952
1.0 0 0.003 0.218 0.219 0.948
:1\ —0.002 0.060 0.066 0.947
2.0 0 0.000 0.208 0.210 0.946
:1\ —0.008 0.140 0.155 0.948
10.0 0.5 0 0.019 1.056 1.049 0.944
:1\ 0.003 0.032 0.033 0.951
1.0 0 0.009 0.987 0.980 0.948

:1\ —0.012 0.060 0.080 0.948 ﬁ‘”,a‘

2.0 ) —0006 0955 0955  0.947 S %2
@ —0018 0149 0150  0.943
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Introduction

The data correspond to plasma beta-carotene levels (ng/ml) of 314
patients. This data set contains 14 variables and is available online
at http://Lib.stat.cmu.edu/datasets/PlasmaRetinol
(accessed on 31 October 2023).

In this study, we consider the variable Betaplasma. The medical
interest in this variable comes from the fact that low levels of
plasma beta-carotene may be associated with higher risk of
developing certain types of cancer. In Table 8, we present some
descriptive statistics including the sample skewness, b1, and sample
and kurtosis ba. We may observe high kurtosis in this data set.

Summary for betaplasma data.

A7
* =
s

n T 52 by by
314 190.4968 33480.72 3.536562 16.8145
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ML estimates for AK, TPAD, PAD, SMR and SAK models
(standard errors are in parenthesis).

Parameter AK TPAD PAD SMR SAK
Estimates
6 0.387 (0.120) 0.016 (0.004) 0.012 (0.003) 16998.167 (3399.076) 0.027 (0.002)
a = 1.830 (0.133)  1.052 (0.038) = =
q — = = 2.926 (0.385) 2.331 (0.294)
o 25.767 (8.697) = = = =
log-likelihood —1952.939 —1955.297 —1953.632 —1910.472 —1908.147

AIC and BIC criteria for fitted models.

Criterion AK TPAD PAD SMR SAK
AIC 3909.878 3914.594 3911.264 3824.944 3820.294
BIC 3917.376 3922.092 3918.763 3832.443 3827.793
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betaplasma
Betaplasma: histogram and fitted pdf for AK, TPAD, PAD, SMR
and SAK distributions.
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PAD

AD: p-value <0001
CVM: p-value < 0,001
SW: p-value <0.001

r T T T T T 1
] 1

et Qs

The qqplots of the quantile residuals for the fitted modelscand
p-values of the AD, CVM and SW tests. ShE,
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SMR

AD: p-value = 0034
CVM: p-value = 0.025
SW: p-value =0.083

r T T T T T 1
] 1

et Qs

The qqplots of the quantile residuals for the fitted modelscand
p-values of the AD, CVM and SW tests. ShE,
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SAK

AD: p-value = 0160
CVM: p-value =0.145
SW: p-value =033

r T T T T
] 1

et Qs

The qqplots of the quantile residuals for the fitted modelscand
p-values of the AD, CVM and SW tests. ShE,
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Introduction
arks

The distribution has two stochastic representations, one based
on the quotient of two independent r.v.'s and the other based
on a scale mixture between the AK and Beta distributions.

The pdf, cdf and hazard function of the SAK distribution are
represented by the cdf of the gamma model.

The proposed model has a heavy right tail.

The model contains the AK distribution as a limit when the
parameter g tends to infinity.

The moments and the skewness and kurtosis coefficient have
an explicit form.

In the application, observing the AIC and BIC and the AD,

CVM and SW statistical tests, we may conclude that the SAK
distribution fits the Betaplasma data set better than the PAD
and SMR distributions, which are also extensions of the e
AK distribution.
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