Fundamentals of Prequential Analysis

Philip Dawid

Statistical Laboratory

University of Cambridge

▶ Forecasting

Context and purpose One-step Forecasts Time development Some comments

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Forecasting

Forecasting

Context and

→ purpose

One-step Forecasts

Time development

Some comments

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Prequential = [Probabilistic]/Predictive/Sequential

— a general framework for assessing and comparing the predictive performance of a FORECASTING SYSTEM.

Forecasting

Context and
purpose
One-step Forecasts
Time development

Some comments

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Prequential = [Probabilistic]/Predictive/Sequential

- a general framework for assessing and comparing the predictive performance of a FORECASTING SYSTEM.
 - We assume reasonably extensive data, that either arrive in a time-ordered stream, or can be can be arranged into such a form:

$$\mathbf{X} = (X_1, X_2, \ldots).$$

Forecasting

Context and purpose
One-step Forecasts

Time development
Some comments

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Prequential = [Probabilistic]/Predictive/Sequential

- a general framework for assessing and comparing the predictive performance of a FORECASTING SYSTEM.
- We assume reasonably extensive data, that either arrive in a time-ordered stream, or can be can be arranged into such a form:

$$\mathbf{X}=(X_1,X_2,\ldots).$$

 \Box There may be patterns in the sequence of values.

Forecasting

Context and purpose

One-step Forecasts
Time development

Some comments

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Prequential = [Probabilistic]/Predictive/Sequential

- a general framework for assessing and comparing the predictive performance of a FORECASTING SYSTEM.
- We assume reasonably extensive data, that either arrive in a time-ordered stream, or can be can be arranged into such a form:

$$\mathbf{X}=(X_1,X_2,\ldots).$$

- ☐ There may be patterns in the sequence of values.
- We try to identify these patterns, so as to use currently available data to form good forecasts of future values.

Forecasting

Context and
purpose
One-step Forecasts
Time development

Some comments

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Prequential = [Probabilistic]/Predictive/Sequential

- a general framework for assessing and comparing the predictive performance of a FORECASTING SYSTEM.
- We assume reasonably extensive data, that either arrive in a time-ordered stream, or can be can be arranged into such a form:

$$\mathbf{X}=(X_1,X_2,\ldots).$$

- ☐ There may be patterns in the sequence of values.
- ☐ We try to identify these patterns, so as to use currently available data to form good forecasts of future values.

Basic idea: Assess our future predictive performance by means of our past predictive performance.

Forecasting

Context and purpose One-step

▶ Forecasts

Time development

Some comments

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Introduce the data-points (x_1, \ldots, x_n) one by one.

Forecasting

Context and purpose One-step

▶ Forecasts

Time development

Some comments

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

- \square Introduce the data-points (x_1,\ldots,x_n) one by one.
- \square At time i, we have observed values \mathbf{x}^i of $\mathbf{X}^i := (X_1, \dots, X_i)$.

Forecasting

Context and purpose One-step

> Forecasts

Time development

Some comments

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

- \square Introduce the data-points (x_1,\ldots,x_n) one by one.
- \square At time i, we have observed values \mathbf{x}^i of $\mathbf{X}^i := (X_1, \dots, X_i)$.
- \square We now produce some sort of forecast, f_{i+1} , for X_{i+1} .

Forecasting

Context and purpose One-step

> Forecasts

Time development

Some comments

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

- \square Introduce the data-points (x_1,\ldots,x_n) one by one.
- \square At time i, we have observed values \mathbf{x}^i of $\mathbf{X}^i := (X_1, \dots, X_i)$.
- \square We now produce some sort of forecast, f_{i+1} , for X_{i+1} .
- \square Next, observe value x_{i+1} of X_{i+1} .

Forecasting

Context and purpose One-step

> Forecasts

Time development

Some comments

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

- \square Introduce the data-points (x_1,\ldots,x_n) one by one.
- \square At time i, we have observed values \mathbf{x}^i of $\mathbf{X}^i := (X_1, \dots, X_i)$.
- \square We now produce some sort of forecast, f_{i+1} , for X_{i+1} .
- \square Next, observe value x_{i+1} of X_{i+1} .
- \square Step up i by 1 and repeat.

Forecasting

Context and purpose One-step

> Forecasts

Time development

Some comments

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

- \square Introduce the data-points (x_1,\ldots,x_n) one by one.
- \square At time i, we have observed values \mathbf{x}^i of $\mathbf{X}^i := (X_1, \dots, X_i)$.
- \square We now produce some sort of forecast, f_{i+1} , for X_{i+1} .
- \square Next, observe value x_{i+1} of X_{i+1} .
- \square Step up i by 1 and repeat.
- When done, form overall assessment of quality of forecast sequence $\mathbf{f}^n = (f_1, \dots, f_n)$ in the light of outcome sequence $\mathbf{x}^n = (x_1, \dots, x_n)$.

Forecasting

Context and purpose One-step

Time development

Some comments

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Conclusions

- \square Introduce the data-points (x_1,\ldots,x_n) one by one.
- \square At time i, we have observed values \mathbf{x}^i of $\mathbf{X}^i := (X_1, \dots, X_i)$.
- \square We now produce some sort of forecast, f_{i+1} , for X_{i+1} .
- \square Next, observe value x_{i+1} of X_{i+1} .
- \square Step up i by 1 and repeat.
- When done, form overall assessment of quality of forecast sequence $\mathbf{f}^n = (f_1, \dots, f_n)$ in the light of outcome sequence $\mathbf{x}^n = (x_1, \dots, x_n)$.

We can assess forecast quality either in absolute terms, or by comparison of alternative sets of forecasts.

Forecasting

Context and purpose

One-step Forecasts

Time

Some comments

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

t	1	2	3	
f				
\boldsymbol{x}				

Forecasting

Context and purpose

One-step Forecasts

Time

Some comments

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

t	1	2	3	
\overline{f}	f_1			
x				

Forecasting

Context and purpose

One-step Forecasts

Time

Some comments

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

t	1	2	3	
\overline{f}	f_1			
\boldsymbol{x}	x_1			

Forecasting

Context and purpose

One-step Forecasts

Time

Some comments

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

t	1	2	3	
\overline{f}	f_1	f_2		
\boldsymbol{x}	x_1			

Forecasting

Context and purpose

One-step Forecasts
Time

Some comments

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

t	1	2	3	
\overline{f}	f_1	f_2		
x	x_1	x_2		

Forecasting

Context and purpose

One-step Forecasts

Time

Some comments

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

t	1	2	3	
\overline{f}	f_1	f_2	f_3	
\boldsymbol{x}	x_1	x_2		

Forecasting

Context and purpose

One-step Forecasts

Time

Some comments

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

t	1	2	3	
\overline{f}	f_1	f_2	f_3	
\boldsymbol{x}	x_1	x_2	x_3	

Forecasting

Context and purpose

One-step Forecasts

Time

Some comments

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

t	1	2	3	
\overline{f}	f_1	f_2	f_3	
\boldsymbol{x}	x_1	x_2	x_3	

Forecasting

Context and purpose

One-step Forecasts

Time

Some comments

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

t	1	2	3	
\int	f_1	f_2	f_3	
\boldsymbol{x}	x_1	x_2	x_3	

Forecasting
Context and purpose
One-step Forecasts
Time development

➤ Some comments

Forecasting systems

Absolute assessment
Comparative assessment

Prequential efficiency

Model choice

Conclusions

Forecast type: Pretty arbitrary: *e.g.*□ Point forecast
□ Action
□ Probability distribution

Forecasting

Context and purpose One-step Forecasts Time development

Forecasting systems

Some comments

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Forecast type: Pretty arbitrary: *e.g.*

□ Point forecast

□ Action

□ Probability distribution

Black-box: Not interested in the truth/beauty/... of any theory underlying our forecasts—only in their performance

Forecasting

Context and purpose One-step Forecasts Time development

Forecasting systems

Some comments

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Forecast type: Pretty arbitrary: *e.g.*

- □ Point forecast
- □ Action
- □ Probability distribution

Black-box: Not interested in the truth/beauty/...of any theory underlying our forecasts—only in their performance

Close to the data: Concerned only with realized data and forecasts — not with their provenance, what might have happened in other circumstances, hypothetical repetitions, . . .

Forecasting

Context and purpose
One-step Forecasts
Time development

Some comments

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Forecast type: Pretty arbitrary: *e.g.*

- □ Point forecast
- □ Action
- □ Probability distribution

Black-box: Not interested in the truth/beauty/...of any theory underlying our forecasts—only in their performance

Close to the data: Concerned only with realized data and forecasts — not with their provenance, what might have happened in other circumstances, hypothetical repetitions,...

No peeping: Forecast of X_{i+1} made before its value is observed — unbiased assessment

Forecasting

Forecasting

> systems

Probability

Forecasting Systems

Statistical

Forecasting Systems

Prequential consistency

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Forecasting systems

Forecasting

Forecasting systems

Probability Forecasting

> Systems

Statistical

Forecasting Systems

Prequential consistency

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Very general idea, e.g.:

Forecasting

Forecasting systems

Probability Forecasting

Statistical

Forecasting Systems

Prequential consistency

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Very general idea, e.g.:

No system: *e.g.* day-by-day weather forecasts

Forecasting

Forecasting systems

Probability Forecasting

Systems
 Systems

Statistical Forecasting Systems

Prequential consistency

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Very general idea, e.g.:

No system: *e.g.* day-by-day weather forecasts

Probability model: Fully specified joint distribution P for X

(allow arbitrary dependence)

Forecasting

Forecasting systems

Probability Forecasting

Statistical

Forecasting Systems

Prequential consistency

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Very general idea, e.g.:

No system: *e.g.* day-by-day weather forecasts **Probability model:** Fully specified joint distribution P for \mathbf{X} (allow arbitrary dependence)

 \square probability forecast $f_{i+1} = P(X_{i+1} \mid \mathbf{X}^i = \mathbf{x}^i)$

Forecasting

Forecasting systems

Probability Forecasting

Statistical

Forecasting Systems Prequential consistency

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Very general idea, e.g.:

No system: *e.g.* day-by-day weather forecasts

Probability model: Fully specified joint distribution P for \mathbf{X} (allow arbitrary dependence)

 \square probability forecast $f_{i+1} = P(X_{i+1} \mid \mathbf{X}^i = \mathbf{x}^i)$

Statistical model: Family $\mathcal{P} = \{P_{\theta}\}$ of joint distributions for \mathbf{X}

Forecasting

Forecasting systems

Probability Forecasting

> Systems

Statistical

Forecasting Systems

Prequential consistency

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Very general idea, e.g.:

No system: *e.g.* day-by-day weather forecasts

Probability model: Fully specified joint distribution P for \mathbf{X} (allow arbitrary dependence)

 \square probability forecast $f_{i+1} = P(X_{i+1} \mid \mathbf{X}^i = \mathbf{x}^i)$

Statistical model: Family $\mathcal{P} = \{P_{\theta}\}$ of joint distributions for \mathbf{X}

forecast $f_{i+1} = P^*(X_{i+1} \mid \mathbf{X}^i = \mathbf{x}^i)$, where P^* is formed from \mathcal{P} by somehow estimating/eliminating θ , using the currently available data $\mathbf{X}^i = \mathbf{x}^i$

Forecasting

Forecasting systems

Probability Forecasting

Systems
 Systems

Statistical

Forecasting Systems

Prequential consistency

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Very general idea, e.g.:

No system: *e.g.* day-by-day weather forecasts

Probability model: Fully specified joint distribution P for \mathbf{X} (allow arbitrary dependence)

 \square probability forecast $f_{i+1} = P(X_{i+1} \mid \mathbf{X}^i = \mathbf{x}^i)$

Statistical model: Family $\mathcal{P} = \{P_{\theta}\}$ of joint distributions for \mathbf{X}

forecast $f_{i+1} = P^*(X_{i+1} \mid \mathbf{X}^i = \mathbf{x}^i)$, where P^* is formed from \mathcal{P} by somehow estimating/eliminating θ , using the currently available data $\mathbf{X}^i = \mathbf{x}^i$

Collection of models e.g. forecast X_{i+1} using model that has performed best up to time i

Statistical Forecasting Systems

Forecasting

Forecasting systems

Probability

Forecasting Systems

Statistical

Forecasting

> Systems

Prequential

consistency

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Conclusions

—based on a statistical model $\mathcal{P} = \{P_{\theta}\}$ for \mathbf{X} .

Statistical Forecasting Systems

Forecasting

Forecasting systems

Probability
Forecasting Systems
Statistical
Forecasting
Systems

Prequential consistency

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Conclusions

—based on a statistical model $\mathcal{P} = \{P_{\theta}\}$ for \mathbf{X} .

Plug-in forecasting system Given the past data \mathbf{x}^i , construct some estimate $\hat{\theta}_i$ of θ (e.g., by maximum likelihood), and proceed as if this were the true value:

$$P_{i+1}^*(X_{i+1}) = P_{\hat{\theta}_i}(X_{i+1} \mid \mathbf{x}^i).$$

NB: This requires re-estimating θ with each new observation!

Statistical Forecasting Systems

Forecasting

Forecasting systems

Probability
Forecasting Systems
Statistical
Forecasting
Systems

Absolute assessment

Comparative assessment

Prequential consistency

Prequential efficiency

Model choice

Conclusions

—based on a statistical model $\mathcal{P} = \{P_{\theta}\}$ for \mathbf{X} .

Plug-in forecasting system Given the past data \mathbf{x}^i , construct some estimate $\hat{\theta}_i$ of θ (e.g., by maximum likelihood), and proceed as if this were the true value:

$$P_{i+1}^*(X_{i+1}) = P_{\hat{\theta}_i}(X_{i+1} \mid \mathbf{x}^i).$$

NB: This requires re-estimating θ with each new observation! Bayesian forecasting system (BFS) Let $\pi(\theta)$ be a prior density for θ , and $\pi_i(\theta)$ the posterior based on the past data \mathbf{x}^i . Use this to mix the various θ -specific forecasts:

$$P_{i+1}^*(X_{i+1}) = \int P_{\theta}(X_{i+1} \mid \mathbf{x}^i) \, \pi_i(\theta) \, d\theta.$$

Statistical Forecasting Systems

Forecasting

Forecasting systems

Probability
Forecasting Systems
Statistical
Forecasting
Systems

Prequential consistency

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Conclusions

—based on a statistical model $\mathcal{P} = \{P_{\theta}\}$ for \mathbf{X} .

Plug-in forecasting system Given the past data \mathbf{x}^i , construct some estimate $\hat{\theta}_i$ of θ (e.g., by maximum likelihood), and proceed as if this were the true value:

$$P_{i+1}^*(X_{i+1}) = P_{\hat{\theta}_i}(X_{i+1} \mid \mathbf{x}^i).$$

NB: This requires re-estimating θ with each new observation! Bayesian forecasting system (BFS) Let $\pi(\theta)$ be a prior density for θ , and $\pi_i(\theta)$ the posterior based on the past data \mathbf{x}^i . Use this to mix the various θ -specific forecasts:

$$P_{i+1}^*(X_{i+1}) = \int P_{\theta}(X_{i+1} | \mathbf{x}^i) \, \pi_i(\theta) \, d\theta.$$

Other *e.g.* fiducial predictive distribution, . . .

Forecasting

Forecasting systems

Probability

Forecasting Systems

Statistical

Forecasting Systems

 ${\sf Prequential}$

> consistency

Absolute assessment

Comparative

assessment

Prequential efficiency

Model choice

Conclusions

Gaussian process: $X_i \sim \mathcal{N}(\mu, \sigma^2)$, $\operatorname{corr}(X_i, X_j) = \rho$

Forecasting

Forecasting systems

Probability

Forecasting Systems

Statistical

Forecasting Systems

Prequential

Absolute assessment

Comparative

assessment

Prequential efficiency

Model choice

Conclusions

Gaussian process: $X_i \sim \mathcal{N}(\mu, \sigma^2)$, $\operatorname{corr}(X_i, X_j) = \rho$

MLEs:

$$\hat{\mu}_n = \overline{X}_n \qquad \xrightarrow{L} \mathcal{N}(0, \rho \sigma^2)
\hat{\sigma}_n^2 = n^{-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 \xrightarrow{p} (1 - \rho) \sigma^2
\hat{\rho}_n = 0$$

Forecasting

Forecasting systems

Probability

Forecasting Systems

Statistical

Forecasting Systems

Prequential

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Gaussian process: $X_i \sim \mathcal{N}(\mu, \sigma^2)$, $\operatorname{corr}(X_i, X_j) = \rho$

MLEs:

$$\hat{\mu}_n = \overline{X}_n \qquad \xrightarrow{L} \mathcal{N}(0, \rho\sigma^2)$$

$$\hat{\sigma}_n^2 = n^{-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 \xrightarrow{p} (1 - \rho)\sigma^2$$

$$\hat{\rho}_n = 0$$

— not classically consistent.

Forecasting

Forecasting systems

Probability
Forecasting Systems
Statistical

Forecasting Systems
Prequential

consistency

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Gaussian process: $X_i \sim \mathcal{N}(\mu, \sigma^2)$, $\operatorname{corr}(X_i, X_j) = \rho$

MLEs:

$$\hat{\mu}_n = \overline{X}_n \qquad \xrightarrow{L} \mathcal{N}(0, \rho\sigma^2)
\hat{\sigma}_n^2 = n^{-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 \xrightarrow{p} (1 - \rho)\sigma^2
\hat{\rho}_n = 0$$

— not classically consistent.

But the estimated predictive distribution $\hat{P}_{n+1} = \mathcal{N}(\hat{\mu}_n, \hat{\sigma}_n^2)$ does approximate the true predictive distribution P_{n+1} : normal with mean $\overline{x}_n + (1-\rho)(\mu - \overline{x}_n)/\{n\rho + (1-\rho)\}$ and variance $(1-\rho)\sigma^2 + \sigma^2/\{n\rho + (1-\rho)\}$.

Forecasting systems

Absolute

Weak Prequential Principle

Calibration

Example

Calibration plot

 ${\sf Computable}$

calibration

Well-calibrated

forecasts are essentially unique

Significance test

Recursive residuals

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Absolute assessment

Weak Prequential Principle

Forecasting

Forecasting systems

Absolute assessment Weak Prequential

▶ Principle Calibration

Example Calibration plot Computable calibration Well-calibrated forecasts are essentially unique Significance test Recursive residuals

Comparative assessment

Prequential efficiency

Model choice

Conclusions

The assessment of the quality of a forecasting system in the light of a sequence of observed outcomes should depend only on the forecasts it in fact delivered for that sequence

Weak Prequential Principle

Forecasting

Forecasting systems

Absolute assessment
Weak Prequential

▶ Principle

Calibration

Example
Calibration plot
Computable
calibration
Well-calibrated
forecasts are
essentially unique
Significance test
Recursive residuals

Comparative assessment

Prequential efficiency

Model choice

Conclusions

The assessment of the quality of a forecasting system in the light of a sequence of observed outcomes should depend only on the forecasts it in fact delivered for that sequence

— and not, for example, on how it might have behaved for other sequences.

Calibration

Forecasting Binary variables (X_i) Forecasting systems Realized values (x_i) Absolute assessment Emitted probability forecasts (p_i) Weak Prequential Principle Calibration Example Calibration plot Computable calibration Well-calibrated forecasts are essentially unique Significance test Recursive residuals Comparative assessment Prequential efficiency Model choice Conclusions

Calibration

Forecasting

Forecasting systems

Absolute assessment
Weak Prequential
Principle

Calibration

Example

Calibration plot

Computable calibration

Well-calibrated

forecasts are essentially unique

Significance test

Recursive residuals

Comparative assessment

Prequential efficiency

Model choice

Conclusions

- \supset Binary variables (X_i)
- \square Realized values (x_i)
- \square Emitted probability forecasts (p_i)

Want (??) the (p_i) and (x_i) to be close "on average":

$$\overline{x}_n - \overline{p}_n \to 0$$

where \overline{x}_n is the average of all the (x_i) up to time n, etc.

Calibration

Forecasting

Forecasting systems

Absolute assessment
Weak Prequential
Principle

Calibration

Example

Calibration plot Computable

calibration
Well-calibrated

forecasts are essentially unique

Significance test

Recursive residuals

Comparative assessment

Prequential efficiency

Model choice

Conclusions

- \supset Binary variables (X_i)
- \square Realized values (x_i)
- \square Emitted probability forecasts (p_i)

Want (??) the (p_i) and (x_i) to be close "on average":

$$\overline{x}_n - \overline{p}_n \to 0$$

where \overline{x}_n is the average of all the (x_i) up to time n, etc.

Probability calibration: Fix $\pi \in [0, 1]$, average over only those times i when p_i is "close to" π :

$$\overline{x}'_n - \pi \to 0$$

Example

Forecasting

Forecasting systems

Absolute assessment

Weak Prequential Principle

Calibration

Calibration plot

Computable

calibration

Well-calibrated

forecasts are

essentially unique

Significance test

Recursive residuals

Comparative

assessment

Prequential efficiency

Model choice

Conclusions

Probability	0.4	0.6	0.3	0.2	0.6	0.3	0.4	0.5	0.6	0.2	0.6	0.4	0.3	0.5
Outcome	0	0	1	0	1	0	1	1	1	0	1	0	0	1

Example

Forecasting

Forecasting systems

Absolute assessment

Weak Prequential Principle

Calibration

> Example

Calibration plot

 ${\sf Computable}$

calibration

Well-calibrated

forecasts are

essentially unique

Significance test

Recursive residuals

Comparative

assessment

Prequential efficiency

Model choice

Conclusions

Probability	0.4	0.6	0.3	0.2	0.6	0.3	0.4	0.5	0.6	0.2	0.6	0.4	0.3	0.5
Outcome	0	0	1	0	1	0	1	1	1	0	1	0	0	1

Probability	0.2	0.3	0.4	0.5	0.6
р					
Instances n	2	3	3	2	4
Successes	0	1	1	2	3
Γ					
Proportion	0	0.33	0.33	1	0.75
ρ					

Calibration plot

Forecasting

Forecasting systems

Absolute assessment

Weak Prequential Principle

Calibration

Example

Calibration plot

Computable calibration

Well-calibrated

forecasts are essentially unique

Significance test

Recursive residuals

Comparative

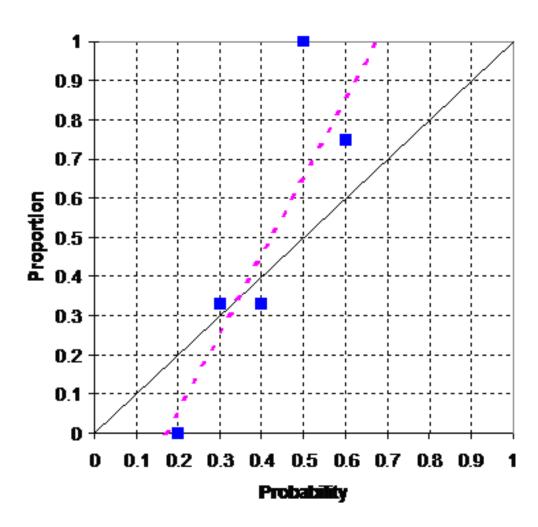
assessment

Prequential efficiency

Model choice

Conclusions

CALIBRATION PLOT



Forecasting

Forecasting systems

Absolute assessment Weak Prequential

Principle

Calibration

Example

Calibration plot

Computable

> calibration

Well-calibrated forecasts are

essentially unique

Significance test

Recursive residuals

Comparative

assessment

Prequential efficiency

Model choice

Conclusions

Let σ be a computable strategy for selecting trials in the light of previous outcomes and forecasts

Forecasting

Forecasting systems

Absolute assessment
Weak Prequential
Principle

Calibration

Example

Calibration plot
Computable
Calibration
Well-calibrated
forecasts are
essentially unique
Significance test

Recursive residuals

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Let σ be a computable strategy for selecting trials in the light of previous outcomes and forecasts

— *e.g.* third day following two successive rainy days, where forecast is below 0.5.

Forecasting

Forecasting systems

Absolute assessment
Weak Prequential
Principle
Calibration
Example
Calibration plot

Computable

calibration

Well-calibrated

forecasts are

essentially unique

Significance test

Recursive residuals

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Let σ be a computable strategy for selecting trials in the light of previous outcomes and forecasts

— e.g. third day following two successive rainy days, where forecast is below 0.5.

Then require asymptotic equality of averages, \overline{p}_{σ} and \overline{x}_{σ} , of the (p_i) and (x_i) over those trials selected by σ .

Forecasting

Forecasting systems

Absolute assessment
Weak Prequential
Principle
Calibration
Example
Calibration plot
Computable

Computable
Calibration
Well-calibrated
forecasts are
essentially unique
Significance test

Recursive residuals

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Let σ be a computable strategy for selecting trials in the light of previous outcomes and forecasts

— *e.g.* third day following two successive rainy days, where forecast is below 0.5.

Then require asymptotic equality of averages, \overline{p}_{σ} and \overline{x}_{σ} , of the (p_i) and (x_i) over those trials selected by σ .

Why?

Forecasting

Forecasting systems

Absolute assessment Weak Prequential Principle

Calibration

Example Calibration plot Computable > calibration Well-calibrated forecasts are essentially unique Significance test Recursive residuals

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Let σ be a computable strategy for selecting trials in the light of previous outcomes and forecasts

— e.g. third day following two successive rainy days, where forecast is below 0.5.

Then require asymptotic equality of averages, \overline{p}_{σ} and \overline{x}_{σ} , of the (p_i) and (x_i) over those trials selected by σ .

Why?

Can show following. Let P be a distribution for \mathbf{X} , and $P_i := P(X_i = 1 \mid \mathbf{X}^{i-1})$. Then

$$\overline{P}_{\sigma} - \overline{X}_{\sigma} \to 0$$

P-almost surely, for any distribution P.

Well-calibrated forecasts are essentially unique

Forecasting

Forecasting systems

Absolute assessment
Weak Prequential
Principle

Calibration

Example

Calibration plot
Computable
calibration

Well-calibrated forecasts are

 \triangleright essentially unique

Significance test

Recursive residuals

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Suppose \mathbf{p} and \mathbf{q} are computable forecast sequences, each computably calibrated for the same outcome sequence \mathbf{x} .

Well-calibrated forecasts are essentially unique

Forecasting

Forecasting systems

Absolute assessment Weak Prequential

Principle

Calibration

Example

Calibration plot

Computable calibration

Well-calibrated

forecasts are

> essentially unique

Significance test

Recursive residuals

Comparative

assessment

Prequential efficiency

Model choice

Conclusions

Suppose \mathbf{p} and \mathbf{q} are computable forecast sequences, each computably calibrated for the same outcome sequence \mathbf{x} .

Then
$$p_i - q_i \rightarrow 0$$
.

Forecasting

Forecasting systems

Absolute assessment

Weak Prequential Principle

Calibration

Example

Calibration plot

Computable

calibration

Well-calibrated

forecasts are

essentially unique

▷ Significance test

Recursive residuals

Comparative

assessment

Prequential efficiency

Model choice

Conclusions

Consider e.g.

$$Z_n := \frac{\sum (X_i - P_i)}{\sum P_i (1 - P_i)}$$

where $P_i = P(X_i = 1 \mid X^{i-1})$.

Forecasting

Forecasting systems

Absolute assessment

Weak Prequential Principle

Calibration

Example

Calibration plot

Computable

calibration

Well-calibrated

forecasts are

essentially unique

Significance test

> Significance tes

Recursive residuals

Comparative

assessment

Prequential efficiency

Model choice

Conclusions

Consider e.g.

$$Z_n := \frac{\sum (X_i - P_i)}{\sum P_i (1 - P_i)}$$

where $P_i = P(X_i = 1 \mid X^{i-1})$.

Then

$$Z_n \stackrel{L}{\to} \mathcal{N}(0,1)$$

for (almost) any P.

Forecasting

Forecasting systems

Absolute assessment Weak Prequential

Principle

Calibration

Example

Calibration plot

Computable calibration

Well-calibrated

forecasts are essentially unique

Recursive residuals

Comparative

assessment

Prequential efficiency

Model choice

Conclusions

Consider e.g.

$$Z_n := \frac{\sum (X_i - P_i)}{\sum P_i (1 - P_i)}$$

where $P_i = P(X_i = 1 \mid X^{i-1})$.

Then

$$Z_n \stackrel{L}{\to} \mathcal{N}(0,1)$$

for (almost) any P.

So can refer value of \mathbb{Z}_n to standard normal tables to test departure from calibration, even without knowing generating distribution P

Forecasting

Forecasting systems

Absolute assessment

Weak Prequential Principle

Calibration

Example

Calibration plot

Computable

calibration

Well-calibrated

forecasts are

essentially unique

Significance test

> Significance tes

Recursive residuals

Comparative

assessment

Prequential efficiency

Model choice

Conclusions

Consider e.g.

$$Z_n := \frac{\sum (X_i - P_i)}{\sum P_i (1 - P_i)}$$

where $P_i = P(X_i = 1 \mid X^{i-1})$.

Then

$$Z_n \stackrel{L}{\to} \mathcal{N}(0,1)$$

for (almost) any P.

So can refer value of \mathbb{Z}_n to standard normal tables to test departure from calibration, even without knowing generating distribution P

— "Strong Prequential Principle"

Recursive residuals

Forecasting

Forecasting systems

Absolute assessment

Weak Prequential Principle

Calibration

Example

Calibration plot

Computable

calibration
Well-calibrated

forecasts are

essentially unique

Significance test

Recursive

> residuals

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Suppose the X_i are continuous variables, and the forecast for X_i has the form of a continuous cumulative distribution function $F_i(\cdot)$.

Recursive residuals

Forecasting

Forecasting systems

Absolute assessment Weak Prequential

Principle Principle

Calibration

Example

Calibration plot

Computable

calibration

Well-calibrated

forecasts are essentially unique

Significance test

Recursive

residuals

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Suppose the X_i are continuous variables, and the forecast for X_i has the form of a continuous cumulative distribution function $F_i(\cdot)$.

If $X \sim P$, and the forecasts are obtained from P:

$$F_i(x) := P(X_i \le x \mid \mathbf{X}^{i-1} = \mathbf{x}^{i-1})$$

then, defining

$$U_i := F_i(X_i)$$

we have

$$U_i \sim U[0,1]$$

independently, for any P.

Forecasting systems

Absolute assessment Weak Prequential

Principle

Calibration

Example

Calibration plot

Computable

calibration
Well-calibrated

forecasts are

essentially unique

Significance test

Recursive residuals

 \triangleright

Comparative

assessment

Prequential efficiency

Model choice

Conclusions

So we can apply various tests of uniformity and/or independence to the observed values

$$u_i := F_i(x_i)$$

to test the validity of the forecasts made

Forecasting systems

Absolute assessment Weak Prequential Principle

Calibration

Example

Calibration plot

Computable calibration Well-calibrated forecasts are essentially unique

Significance test

Recursive residuals

 \triangleright

Comparative assessment

Prequential efficiency

Model choice

Conclusions

So we can apply various tests of uniformity and/or independence to the observed values

$$u_i := F_i(x_i)$$

to test the validity of the forecasts made

— again, without needing to know the generating distribution P.

Forecasting systems

Absolute assessment

Comparative > assessment

Loss function

Examples:

Single distribution P

Likelihood

Bayesian forecasting system

DI : 65

Plug-in SFS

Prequential efficiency

Model choice

Conclusions

Comparative assessment

Loss function

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

▶ Loss function

Examples:

Single distribution P

Likelihood

Bayesian forecasting system

DI : CE

Plug-in SFS

Prequential efficiency

Model choice

Conclusions

Measure inadequacy of forecast f of outcome x by

loss function: L(x, f)

Loss function

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Examples:

Single distribution ${\cal P}$

Likelihood

Bayesian forecasting system

Plug-in SFS

Prequential efficiency

Model choice

Conclusions

Measure inadequacy of forecast f of outcome x by

loss function:
$$L(x, f)$$

Then measure of overall inadequacy of forecast sequence \mathbf{f}^n for outcome sequence \mathbf{x}^n is cumulative loss:

$$L^n = \sum_{i=1}^n L(x_i, f_i)$$

We can use this to compare different forecasting systems.

Examples:

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Loss function

Examples:

Single distribution P

Likelihood Bayesian fore

Bayesian forecasting system

Plug-in SFS

Prequential efficiency

Model choice

Conclusions

Squared error: f a point forecast of real-valued X

$$L(x,f) = (x-f)^2.$$

Examples:

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Loss function

Examples:

Single distribution P

Likelihood

Bayesian forecasting system

System

Plug-in SFS

Prequential efficiency

Model choice

Conclusions

Squared error: f a point forecast of real-valued X

$$L(x,f) = (x-f)^2.$$

Logarithmic score: f a probability density $q(\cdot)$ for X

$$L(x,q) = -\log q(x).$$

Single distribution P

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Loss function

Examples:

Single

 \triangleright distribution P

Likelihood

Bayesian forecasting system

Dive in CE

Plug-in SFS

Prequential efficiency

Model choice

Conclusions

At time i, having observed \mathbf{x}^i , probability forecast for X_{i+1} is its conditional distribution $P_{i+1}(X_{i+1}) := P(X_{i+1} \mid \mathbf{X}^i = \mathbf{x}^i)$.

Single distribution P

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Loss function

Examples:

Single

 \triangleright distribution P

Likelihood Bayesian forecasting system

Plug-in SFS

Prequential efficiency

Model choice

Conclusions

At time i, having observed \mathbf{x}^i , probability forecast for X_{i+1} is its conditional distribution $P_{i+1}(X_{i+1}) := P(X_{i+1} \mid \mathbf{X}^i = \mathbf{x}^i)$. When we then observe $X_{i+1} = x_{i+1}$, the associated logarithmic score is

$$-\log p(x_{i+1} \mid \mathbf{x}^i).$$

Single distribution P

score is

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Loss function

Examples:

Single

 \triangleright distribution P

Likelihood Bayesian forecasting system

Plug-in SFS

Prequential efficiency

Model choice

Conclusions

At time i, having observed \mathbf{x}^i , probability forecast for X_{i+1} is its conditional distribution $P_{i+1}(X_{i+1}) := P(X_{i+1} \mid \mathbf{X}^i = \mathbf{x}^i)$. When we then observe $X_{i+1} = x_{i+1}$, the associated logarithmic

$$-\log p(x_{i+1} \mid \mathbf{x}^i).$$

So the cumulative score is

$$L_n(P) = \sum_{i=0}^{n-1} -\log p(x_{i+1} \mid \mathbf{x}^i)$$

$$= -\log \prod_{i=1}^n p(x_i \mid \mathbf{x}^{i-1})$$

$$= -\log p(\mathbf{x}^n)$$

where $p(\cdot)$ is the joint density of **X** under P.

Likelihood

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Loss function

Examples:

Single distribution P

Likelihood
Bayesian forecasting
system

Plug-in SFS

Prequential efficiency

Model choice

Conclusions

 $L_n(P)$ is just the (negative) log-likelihood of the joint distribution P for the observed data-sequence \mathbf{x}^n .

Likelihood

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Loss function Examples:

Single distribution ${\cal P}$

Likelihood
Bayesian forecasting
system

Plug-in SFS

Prequential efficiency

Model choice

Conclusions

 $L_n(P)$ is just the (negative) log-likelihood of the joint distribution P for the observed data-sequence \mathbf{x}^n .

If P and Q are alternative joint distributions, considered as forecasting systems, then the excess score of Q over P is just the log likelihood ratio for comparing P to Q for the full data \mathbf{x}^n .

Likelihood

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Loss function Examples:

Single distribution ${\cal P}$

Likelihood
Bayesian forecasting
system

Plug-in SFS

Prequential efficiency

Model choice

Conclusions

 $L_n(P)$ is just the (negative) log-likelihood of the joint distribution P for the observed data-sequence \mathbf{x}^n .

If P and Q are alternative joint distributions, considered as forecasting systems, then the excess score of Q over P is just the log likelihood ratio for comparing P to Q for the full data \mathbf{x}^n .

This gives an interpretation to and use for likelihood that does not rely on the assuming the truth of any of the models considered

Bayesian forecasting system

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Loss function

Examples:

Single distribution P

Likelihood Bayesian forecasting

> system

Plug-in SFS

Prequential efficiency

Model choice

Conclusions

For a BFS:

$$P_{i+1}^*(X_{i+1}) = \int P_{\theta}(X_{i+1} \mid \mathbf{x}^i) \, \pi_i(\theta) \, d\theta$$
$$= P_B(X_{i+1} \mid \mathbf{x}^i)$$

where $P_B := \int P_{\theta} \pi(\theta) d\theta$ is the Bayes mixture joint distribution.

Bayesian forecasting system

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Loss function

Examples:

Single distribution ${\cal P}$

Likelihood Bayesian forecasting

> system

Plug-in SFS

Prequential efficiency

Model choice

Conclusions

For a BFS:

$$P_{i+1}^*(X_{i+1}) = \int P_{\theta}(X_{i+1} \mid \mathbf{x}^i) \, \pi_i(\theta) \, d\theta$$
$$= P_B(X_{i+1} \mid \mathbf{x}^i)$$

where $P_B := \int P_{\theta} \pi(\theta) d\theta$ is the Bayes mixture joint distribution.

This is equivalent to basing all forecasts on the single distribution P_B . The total logarithmic score is thus

$$L_n(\mathcal{P}) = L_n(P_B)$$

$$= -\log p_B(\mathbf{x}^n)$$

$$= -\log \int p_{\theta}(\mathbf{x}^n) \, \pi(\theta) \, d\theta$$

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Loss function

Examples:

Single distribution P

Likelihood

Bayesian forecasting system

▶ Plug-in SFS

Prequential efficiency

Model choice

Conclusions

For a plug-in system: $L_n = -\log \prod_{i=0}^{n-1} p_{\hat{\theta}_i}(x_{i+1} \mid \mathbf{x}^i)$.

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Loss function Examples:

Single distribution P

Likelihood Bayesian forecasting system

▶ Plug-in SFS

Prequential efficiency

Model choice

Conclusions

For a plug-in system: $L_n = -\log \prod_{i=0}^{n-1} p_{\hat{\theta}_i}(x_{i+1} \mid \mathbf{x}^i)$.

- The data (x_{i+1}) used to evaluate performance, and the data (\mathbf{x}^i) used to estimate θ , do not overlap
 - "unbiased" assessments (like cross-validation)

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Loss function Examples:

Single distribution ${\cal P}$

Likelihood Bayesian forecasting system

▶ Plug-in SFS

Prequential efficiency

Model choice

Conclusions

For a plug-in system: $L_n = -\log \prod_{i=0}^{n-1} p_{\hat{\theta}_i}(x_{i+1} \mid \mathbf{x}^i)$.

- The data (x_{i+1}) used to evaluate performance, and the data (\mathbf{x}^i) used to estimate θ , do not overlap
 - "unbiased" assessments (like cross-validation)
- \square If x_i is used to forecast x_j , then x_j is *not* used to forecast x_i
 - "uncorrelated" assessments (unlike cross-validation)

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Loss function Examples:

Single distribution P

Likelihood Bayesian forecasting system

▶ Plug-in SFS

Prequential efficiency

Model choice

Conclusions

For a plug-in system: $L_n = -\log \prod_{i=0}^{n-1} p_{\hat{\theta}_i}(x_{i+1} \mid \mathbf{x}^i)$.

- The data (x_{i+1}) used to evaluate performance, and the data (\mathbf{x}^i) used to estimate θ , do not overlap
 - "unbiased" assessments (like cross-validation)
- \square If x_i is used to forecast x_j , then x_j is *not* used to forecast x_i
 - "uncorrelated" assessments (unlike cross-validation)

Both under- and over-fitting automatically and appropriately penalized.

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Prequential Prequential

Efficiency

Model testing

Model choice

Conclusions

Prequential efficiency

Efficiency

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Efficiency

Model testing

Model choice

Conclusions

Let P be a SFS. P is prequentially efficient for $\{P_{\theta}\}$ if, for any PFS Q:

 $L_n(P) - L_n(Q)$ remains bounded above as $n \to \infty$, with P_{θ} probability 1, for almost all θ .

[In particular, the losses of any two efficient SFS's differ by an amount that remains asymptotically bounded under almost all P_{θ} .]

Efficiency

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Efficiency

Model testing

Model choice

Conclusions

Let P be a SFS. P is prequentially efficient for $\{P_{\theta}\}$ if, for any PFS Q:

 $L_n(P) - L_n(Q)$ remains bounded above as $n \to \infty$, with P_{θ} probability 1, for almost all θ .

[In particular, the losses of any two efficient SFS's differ by an amount that remains asymptotically bounded under almost all P_{θ} .]

 \Box A BFS with $\pi(\theta) > 0$ is prequentially efficient.

Efficiency

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Efficiency

Model testing

Model choice

Conclusions

Let P be a SFS. P is prequentially efficient for $\{P_{\theta}\}$ if, for any PFS Q:

 $L_n(P)-L_n(Q)$ remains bounded above as $n\to\infty$, with P_{θ} probability 1, for almost all θ .

[In particular, the losses of any two efficient SFS's differ by an amount that remains asymptotically bounded under almost all P_{θ} .]

- \Box A BFS with $\pi(\theta) > 0$ is prequentially efficient.
- A plug-in SFS based on a Fisher efficient estimator sequence is prequentially efficient.

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Efficiency

▶ Model testing

Model choice

Conclusions

Model:

$$\mathbf{X} \sim P_{\theta} \quad (\theta \in \Theta)$$

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Efficiency

▶ Model testing

Model choice

Conclusions

Model:

$$\mathbf{X} \sim P_{\theta} \quad (\theta \in \Theta)$$

Let P be prequentially efficient for $\mathcal{P} = \{P_{\theta}\}$, and define:

$$\mu_i = \mathsf{E}_P(X_i \mid \mathbf{X}^{i-1})$$
 $\sigma_i^2 = \mathsf{var}_P(X_i \mid \mathbf{X}^{i-1})$
 $Z_n = \frac{\sum_{i=1}^n (X_i - \mu_i)}{\left(\sum_{i=1}^n \sigma_i^2\right)^{\frac{1}{2}}}$

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Efficiency

▶ Model testing

Model choice

Conclusions

Model:

$$\mathbf{X} \sim P_{\theta} \quad (\theta \in \Theta)$$

Let P be prequentially efficient for $\mathcal{P} = \{P_{\theta}\}$, and define:

$$\mu_{i} = \mathsf{E}_{P}(X_{i} \mid \mathbf{X}^{i-1})$$

$$\sigma_{i}^{2} = \mathsf{var}_{P}(X_{i} \mid \mathbf{X}^{i-1})$$

$$Z_{n} = \frac{\sum_{i=1}^{n} (X_{i} - \mu_{i})}{\left(\sum_{i=1}^{n} \sigma_{i}^{2}\right)^{\frac{1}{2}}}$$

Then $Z_n \stackrel{L}{\to} \mathcal{N}(0,1)$ under any $P_{\theta} \in \mathcal{P}$.

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Efficiency

▶ Model testing

Model choice

Conclusions

Model:

$$\mathbf{X} \sim P_{\theta} \quad (\theta \in \Theta)$$

Let P be prequentially efficient for $\mathcal{P} = \{P_{\theta}\}$, and define:

$$\mu_i = \mathsf{E}_P(X_i \mid \mathbf{X}^{i-1})$$
 $\sigma_i^2 = \mathsf{var}_P(X_i \mid \mathbf{X}^{i-1})$
 $Z_n = \frac{\sum_{i=1}^n (X_i - \mu_i)}{\left(\sum_{i=1}^n \sigma_i^2\right)^{\frac{1}{2}}}$

Then $Z_n \stackrel{L}{\to} \mathcal{N}(0,1)$ under any $P_{\theta} \in \mathcal{P}$.

So refer Z_n to standard normal tables to test the model \mathcal{P} .

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

▶ Model choice

Prequential consistency
Out-of-model performance

Conclusions

Model choice

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

▶ Prequential▶ consistency

Out-of-model performance

Conclusions

Probability models Collection $C = \{P_j : j = 1, 2, \ldots\}$.

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Prequential consistency
Out-of-model

Conclusions

performance

Probability models Collection $C = \{P_j : j = 1, 2, ...\}$.

Both BFS and (suitable) plug-in SFS are prequentially consistent: with probability 1 under any $P_j \in \mathcal{C}$, their forecasts will come to agree with those made by P_j .

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Prequential consistency
Out-of-model performance

Conclusions

Probability models Collection $C = \{P_j : j = 1, 2, ...\}$.

Both BFS and (suitable) plug-in SFS are prequentially consistent: with probability 1 under any $P_j \in \mathcal{C}$, their forecasts will come to agree with those made by P_j .

Parametric models Collection $C = \{P_j : j = 1, 2, ...\}$, where each P_j is itself a parametric model: $P_j = \{P_{j,\theta_j}\}$. Can have different dimensionalities.

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Prequential consistency Out-of-model performance

Conclusions

Probability models Collection $C = \{P_j : j = 1, 2, ...\}$.

- Both BFS and (suitable) plug-in SFS are prequentially consistent: with probability 1 under any $P_j \in \mathcal{C}$, their forecasts will come to agree with those made by P_j .
- **Parametric models** Collection $C = \{P_j : j = 1, 2, ...\}$, where each P_j is itself a parametric model: $P_j = \{P_{j,\theta_j}\}$. Can have different dimensionalities.
 - \square Replace each \mathcal{P}_j by a prequentially efficient single distribution P_i and proceed as above.

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Prequential consistency Out-of-model performance

Conclusions

- **Probability models** Collection $C = \{P_j : j = 1, 2, ...\}$.
 - Both BFS and (suitable) plug-in SFS are prequentially consistent: with probability 1 under any $P_j \in \mathcal{C}$, their forecasts will come to agree with those made by P_j .
- **Parametric models** Collection $C = \{P_j : j = 1, 2, ...\}$, where each P_j is itself a parametric model: $P_j = \{P_{j,\theta_j}\}$. Can have different dimensionalities.
 - \square Replace each \mathcal{P}_j by a prequentially efficient single distribution P_j and proceed as above.
 - \square For each j, for almost all θ_j , with probability 1 under P_{j,θ_j} the resulting forecasts will come to agree with those made by P_{j,θ_j} .

Out-of-model performance

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice
Prequential
consistency
Out-of-model
performance

Conclusions

Suppose we use a model $\mathcal{P} = \{P_{\theta}\}$ for \mathbf{X} , but the data are generated from a distribution $Q \notin \mathcal{P}$. For an observed data-sequence \mathbf{x} , we have sequences of probability forecasts $P_{\theta,i} := P_{\theta}(X_i \mid \mathbf{x}^{i-1})$, based on each $P_{\theta} \in \mathcal{P}$: and "true" predictive distributions $Q_i := Q(X_i \mid \mathbf{x}^{i-1})$. The "best" value of θ , for predicting \mathbf{x}^n , might be defined as:

$$\theta_n^Q := \arg\min_{\theta} \sum_{i=1}^n K(Q_i, P_{\theta,i}).$$

NB: This typically depends on the observed data

Out-of-model performance

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice
Prequential
consistency
Out-of-model
performance

Conclusions

Suppose we use a model $\mathcal{P} = \{P_{\theta}\}$ for \mathbf{X} , but the data are generated from a distribution $Q \notin \mathcal{P}$. For an observed data-sequence \mathbf{x} , we have sequences of probability forecasts $P_{\theta,i} := P_{\theta}(X_i \mid \mathbf{x}^{i-1})$, based on each $P_{\theta} \in \mathcal{P}$: and "true" predictive distributions $Q_i := Q(X_i \mid \mathbf{x}^{i-1})$. The "best" value of θ , for predicting \mathbf{x}^n , might be defined as:

$$\theta_n^Q := \arg\min_{\theta} \sum_{i=1}^n K(Q_i, P_{\theta,i}).$$

NB: This typically depends on the observed data

With $\hat{\theta}_n$ the maximum likelihood estimate based on \mathbf{x}^n , we can show that for any Q, with Q-probability 1:

$$\hat{\theta}_n - \theta_n^Q \to 0.$$

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

▶ Conclusions

Conclusions

Conclusions

Conclusions

Forecasting Prequential analysis: Forecasting systems is a natural approach to assessing and adjusting the empirical Absolute assessment performance of a sequential forecasting system Comparative assessment can allow for essentially arbitrary dependence across time Prequential has close connexions with Bayesian inference, stochastic efficiency Model choice complexity, penalized likelihood, etc. Conclusions has many desirable theoretical properties, including **○** Conclusions automatic selection of the simplest model closest to that generating the data raises new computational challenges.

Forecasting

Forecasting systems

Absolute assessment

Comparative assessment

Prequential efficiency

Model choice

Conclusions

Conclusions

Happy Birthday George!