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There may be patterns in the sequence of values.
We try to identify these patterns, so as to use currently
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Introduce the data-points (x1,...,x,) one by one.

At time 7, we have observed values x* of

Xi = (Xl, “ o 7Xz')-

We now produce some sort of forecast, f;+1, for X;11.

Next, observe value x;11 of X;y1.

Step up ¢ by 1 and repeat.

When done, form overall assessment of quality of forecast
sequence f = (f1,..., fn) in the light of outcome sequence
X" = (x1,...,%p).

We can assess forecast quality either in absolute terms, or by
comparison of alternative sets of forecasts.
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theory underlying our forecasts—only in their performance
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No peeping: Forecast of X, made before its value is
observed — unbiased assessment
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MLEs:
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Let 0 be a computable strategy for selecting trials in the light of
previous outcomes and forecasts

— e.g. third day following two successive rainy days, where
forecast is below 0.5.

Then require asymptotic equality of averages, p, and Z,, of the
(p;) and (x;) over those trials selected by o.

Why?

Can show following. Let P be a distribution for X, and
P, = P(X/L =1 ‘ Xi_l). Then

P, —X,—0

P-almost surely, for any distribution P.
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Suppose the X; are continuous variables, and the forecast for X;
has the form of a continuous cumulative distribution function

If X ~ P, and the forecasts are obtained from P:
Fi(z):=P(X; <z | X" l=x"1

then, defining
we have

independently, for any P.
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Measure inadequacy of forecast f of outcome = by

loss function: L(x, f)

Then measure of overall inadequacy of forecast sequence £ for

outcome sequence X" is cumulative loss:
n
n
L" = E Lz, fi)
i=1

We can use this to compare different forecasting systems.
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Squared error: f a point forecast of real-valued X

Logarithmic score:

L(x, f) = (z — f)*.

f a probability density ¢(-) for X

L(z,q) = —logq(x).
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—logp(wis1 | XY).
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Conclusions - lOg H p(x’b ‘ Xi_l)
1=1

= —logp(x")

where p(-) is the joint density of X under P.

24 / 36



Likelihood

Forecasting

Forecasting systems

Absolute assessment

Comparative
assessment

Loss function
Examples:
Single distribution P

> Likelihood
Bayesian forecasting
system

Plug-in SFS

Prequential
efficiency

Model choice

Conclusions

L, (P) is just the (negative) log-likelihood of the joint
distribution P for the observed data-sequence x".

25 / 36



Likelihood

Forecasting

Forecasting systems

Absolute assessment

Comparative
assessment

Loss function
Examples:
Single distribution P

> Likelihood
Bayesian forecasting
system

Plug-in SFS

Prequential
efficiency

Model choice

Conclusions

L, (P) is just the (negative) log-likelihood of the joint
distribution P for the observed data-sequence x".

If P and (Q are alternative joint distributions, considered as
forecasting systems, then the excess score of () over P is just the
log likelihood ratio for comparing P to () for the full data x™.

25 / 36



Likelihood

Forecasting

Forecasting systems

Absolute assessment

Comparative
assessment

Loss function
Examples:
Single distribution P

> Likelihood
Bayesian forecasting
system

Plug-in SFS

Prequential
efficiency

Model choice

Conclusions

L, (P) is just the (negative) log-likelihood of the joint
distribution P for the observed data-sequence x".

If P and (Q are alternative joint distributions, considered as
forecasting systems, then the excess score of () over P is just the
log likelihood ratio for comparing P to () for the full data x™.

This gives an interpretation to and use for likelihood that does
not rely on the assuming the truth of any of the models
considered.
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For a BFS:

- (Xin) = / Py(Xip1 | x') mi(6) do

Pp(Xit1 | x)

where Pp := [ Pym(0)df is the Bayes mixture joint distribution.

This is equivalent to basing all forecasts on the single
distribution Pg. The total logarithmic score is thus

L,(P) = L,(Pp)
= —logpp(x")

— —log/pg(xn) 7T(9) do

26 / 36



Plug-in SFS

Forecasting n—

For a plug-in system: L, = —log Hi:Ol Py (zip1 | xY).

Forecasting systems

Absolute assessment

Comparative
assessment

Loss function
Examples:
Single distribution P

Likelihood
Bayesian forecasting
system

> Plug-in SFS

Prequential
efficiency

Model choice

Conclusions

27 / 36



Plug-in SFS

Forecasting

Forecasting systems

Absolute assessment

Comparative
assessment

Loss function
Examples:
Single distribution P

Likelihood
Bayesian forecasting
system

> Plug-in SFS

Prequential
efficiency

Model choice

Conclusions

n—1

For a plug-in system: L, = —log [y ps (wiy1 | X*).

0 The data (x;41) used to evaluate performance, and the data
(x*) used to estimate 6, do not overlap

“unbiased” assessments (like cross-validation)

27 / 36



Plug-in SFS

Forecasting

Forecasting systems

Absolute assessment

Comparative
assessment

Loss function
Examples:
Single distribution P

Likelihood
Bayesian forecasting
system

> Plug-in SFS

Prequential
efficiency

Model choice

Conclusions

n—1

For a plug-in system: L, = —log [y ps (wiy1 | X*).

[

The data (x;+1) used to evaluate performance, and the data
(x*) used to estimate 6, do not overlap

— "unbiased” assessments (like cross-validation)
If ; is used to forecast x;, then z; is not used to forecast x;

— “uncorrelated” assessments (unlike cross-validation)

27 / 36



Plug-in SFS

Forecasting

Forecasting systems

Absolute assessment

Comparative
assessment

Loss function
Examples:
Single distribution P

Likelihood
Bayesian forecasting
system

> Plug-in SFS

Prequential
efficiency

Model choice

Conclusions

n—1

For a plug-in system: L, = —log [y ps (wiy1 | X*).

0 The data (x;41) used to evaluate performance, and the data
(x*) used to estimate 6, do not overlap

— “unbiased” assessments (like cross-validation)
O If z; is used to forecast x;, then x; is not used to forecast x;

— “uncorrelated” assessments (unlike cross-validation)

Both under- and over-fitting automatically and appropriately
penalized.
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Let P be a SFS. P is prequentially efficient for { Py} if, for any
PFS @:

L,(P)— L,(Q) remains bounded above as n — oo,
with Py probability 1, for almost all 6.

[In particular, the losses of any two efficient SFS’s differ by an
amount that remains asymptotically bounded under almost all
Py.]

0O A BFS with w(8) > 0 is prequentially efficient.
O A plug-in SFS based on a Fisher efficient estimator sequence
is prequentially efficient.

29 / 36



Model testing

Forecasting MOdel .

Forecasting systems

Absolute assessment

Comparative
assessment

Prequential
efficiency

Efficiency
> Model testing

Model choice

Conclusions

X~ Py

(0 € ©)

30 / 36



Model testing

Forecasting Model .

Forecasting systems X ~ PQ (9 & @)

Absolute assessment

Comparative

‘;ssessmef‘tl Let P be prequentially efficient for P = {Fy}, and define:
requentia
efficqiency 1
Efficiency . — . 1=
> Model testing /122 EP(XZ | X . )1
Model choice O-’I: — VarP(Xi | XZ_ )
_ n
Conclusions Zi:l(Xi - ,u’l,)
Ly = 1

(Z?ﬁ ‘77;2>§

30 / 36



Model testing

Forecasting MOdel .

Forecasting systems X ~ PQ (9 & @)

Absolute assessment

Comparative

‘;ssessmef‘tl Let P be prequentially efficient for P = {Fy}, and define:
requentia
efficqiency 1
Efficiency . — . 1=
> Model testing /122 EP(XZ | X . )1
Model choice O-’I: — VarP(Xi | XZ_ )
_ n
Conclusions Zi:l(Xi - ,u’l,)
Ly = 1

(Z?ﬁ ‘77;2>§

Then Z,, 5 N(0,1) under any Py € P.

30 / 36



Model testing

Forecasting MOdel .

Forecasting systems X ~ P9 (9 & @)

Absolute assessment

Comparative

‘;ssessme”tl Let P be prequentially efficient for P = { Py}, and define:
requentia
efficqiency 1
Efficiency . — . 1=
> Model testing /122 EP(XZ | X . )1
Model choice O-’I: — VarP(Xi | XZ_ )
_ n
Conclusions Zi:l(Xi - ,u’l,)
Ly = 1

(Z?ﬁ ‘77;2>§

Then Z,, 5 N(0,1) under any Py € P.

So refer Z,, to standard normal tables to test the model P.
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Model choice

Prequential T I . . — .
> oo each P; is itself a parametric model: P; = {P;jg.}. Can have
Out-of-model different dimensionalities.
performance
Conclusions O Replace each P; by a prequentially efficient single

distribution P; and proceed as above.

0 For each 7, for almost all 6;, with probability 1 under P; ¢
the resulting forecasts will come to agree with those made
by Pjﬁj-
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recssImESsiems generated from a distribution @ € P. For an observed

Absolute assessment

data-sequence X, we have sequences of probability forecasts

Comparative

assessment Py = Pp(X; | x*1), based on each Py € P: and “true”
Prequential . . . . . ) — T "
e predictive distributions Q; := Q(X; | x*~!). The “best” value of
Model choice 6, for predicting x", might be defined as:
Prequential
consistency

Out-of-model n
D> performance 6761,2 = arg meln E K(Q’L; PQ,’L)
Conclusions .

1=1

NB: TAhis typically depends on the observed data
With 6,, the maximum likelihood estimate based on x™, we can
show that for any (), with ()-probability 1:

A

O — 09 — 0.
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> Conclusions

Prequential analysis:

[l

L1 O

Is a natural approach to assessing and adjusting the empirical
performance of a sequential forecasting system

can allow for essentially arbitrary dependence across time
has close connexions with Bayesian inference, stochastic
complexity, penalized likelihood, etc.

has many desirable theoretical properties, including
automatic selection of the simplest model closest to that
generating the data

raises new computational challenges.
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Happy Birthday Georgel
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