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— a general framework for assessing and comparing the
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Prequential = [Probabilistic]/Predictive/Sequential
— a general framework for assessing and comparing the
predictive performance of a FORECASTING SYSTEM.

� We assume reasonably extensive data, that either arrive in a
time-ordered stream, or can be can be arranged into such a
form:

X = (X1, X2, . . .).

� There may be patterns in the sequence of values.
� We try to identify these patterns, so as to use currently

available data to form good forecasts of future values.

Basic idea: Assess our future predictive performance by means of
our past predictive performance.
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� Introduce the data-points (x1, . . . , xn) one by one.
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� At time i, we have observed values xi of

Xi := (X1, . . . , Xi).
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� Introduce the data-points (x1, . . . , xn) one by one.
� At time i, we have observed values xi of

Xi := (X1, . . . , Xi).
� We now produce some sort of forecast, fi+1, for Xi+1.
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� At time i, we have observed values xi of

Xi := (X1, . . . , Xi).
� We now produce some sort of forecast, fi+1, for Xi+1.
� Next, observe value xi+1 of Xi+1.
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Xi := (X1, . . . , Xi).
� We now produce some sort of forecast, fi+1, for Xi+1.
� Next, observe value xi+1 of Xi+1.
� Step up i by 1 and repeat.
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� Next, observe value xi+1 of Xi+1.
� Step up i by 1 and repeat.
� When done, form overall assessment of quality of forecast

sequence fn = (f1, . . . , fn) in the light of outcome sequence
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� Introduce the data-points (x1, . . . , xn) one by one.
� At time i, we have observed values xi of

Xi := (X1, . . . , Xi).
� We now produce some sort of forecast, fi+1, for Xi+1.
� Next, observe value xi+1 of Xi+1.
� Step up i by 1 and repeat.
� When done, form overall assessment of quality of forecast

sequence fn = (f1, . . . , fn) in the light of outcome sequence
xn = (x1, . . . , xn).

We can assess forecast quality either in absolute terms, or by
comparison of alternative sets of forecasts.
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Forecast type: Pretty arbitrary: e.g.

� Point forecast
� Action
� Probability distribution
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forecasts — not with their provenance, what might have
happened in other circumstances, hypothetical repetitions,. . .
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Forecast type: Pretty arbitrary: e.g.

� Point forecast
� Action
� Probability distribution

Black-box: Not interested in the truth/beauty/. . . of any
theory underlying our forecasts—only in their performance

Close to the data: Concerned only with realized data and
forecasts — not with their provenance, what might have
happened in other circumstances, hypothetical repetitions,. . .

No peeping: Forecast of Xi+1 made before its value is
observed — unbiased assessment
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X
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Probability model: Fully specified joint distribution P for X

(allow arbitrary dependence)

� probability forecast fi+1 = P (Xi+1 | Xi = xi)

Statistical model: Family P = {Pθ} of joint distributions for
X

� forecast fi+1 = P ∗(Xi+1 | Xi = xi), where P ∗ is formed
from P by somehow estimating/eliminating θ, using the
currently available data Xi = xi
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Very general idea, e.g.:

No system: e.g. day-by-day weather forecasts
Probability model: Fully specified joint distribution P for X

(allow arbitrary dependence)

� probability forecast fi+1 = P (Xi+1 | Xi = xi)

Statistical model: Family P = {Pθ} of joint distributions for
X

� forecast fi+1 = P ∗(Xi+1 | Xi = xi), where P ∗ is formed
from P by somehow estimating/eliminating θ, using the
currently available data Xi = xi

Collection of models e.g. forecast Xi+1 using model that has
performed best up to time i
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—based on a statistical model P = {Pθ} for X.
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—based on a statistical model P = {Pθ} for X.

Plug-in forecasting system Given the past data xi, construct
some estimate θ̂i of θ (e.g., by maximum likelihood), and
proceed as if this were the true value:

P ∗

i+1(Xi+1) = P
θ̂i
(Xi+1 | x

i).

NB: This requires re-estimating θ with each new observation!
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—based on a statistical model P = {Pθ} for X.

Plug-in forecasting system Given the past data xi, construct
some estimate θ̂i of θ (e.g., by maximum likelihood), and
proceed as if this were the true value:

P ∗

i+1(Xi+1) = P
θ̂i
(Xi+1 | x

i).

NB: This requires re-estimating θ with each new observation!
Bayesian forecasting system (BFS) Let π(θ) be a prior

density for θ, and πi(θ) the posterior based on the past data
xi. Use this to mix the various θ-specific forecasts:

P ∗

i+1(Xi+1) =

∫

Pθ(Xi+1 | x
i)πi(θ) dθ.
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—based on a statistical model P = {Pθ} for X.

Plug-in forecasting system Given the past data xi, construct
some estimate θ̂i of θ (e.g., by maximum likelihood), and
proceed as if this were the true value:

P ∗

i+1(Xi+1) = P
θ̂i
(Xi+1 | x

i).

NB: This requires re-estimating θ with each new observation!
Bayesian forecasting system (BFS) Let π(θ) be a prior

density for θ, and πi(θ) the posterior based on the past data
xi. Use this to mix the various θ-specific forecasts:

P ∗

i+1(Xi+1) =

∫

Pθ(Xi+1 | x
i)πi(θ) dθ.

Other e.g. fiducial predictive distribution, . . .
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Gaussian process: Xi ∼ N (µ, σ2), corr(Xi, Xj) = ρ
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Gaussian process: Xi ∼ N (µ, σ2), corr(Xi, Xj) = ρ

MLEs:

µ̂n = Xn
L
→ N (0, ρσ2)

σ̂2
n = n−1

∑n
i=1

(Xi −Xn)
2 p

→ (1− ρ)σ2

ρ̂n = 0
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Gaussian process: Xi ∼ N (µ, σ2), corr(Xi, Xj) = ρ

MLEs:

µ̂n = Xn
L
→ N (0, ρσ2)

σ̂2
n = n−1

∑n
i=1

(Xi −Xn)
2 p

→ (1− ρ)σ2

ρ̂n = 0

— not classically consistent.

But the estimated predictive distribution P̂n+1 = N (µ̂n, σ̂
2
n)

does approximate the true predictive distribution Pn+1:
normal with mean xn + (1− ρ)(µ− xn)/{nρ+ (1− ρ)} and
variance (1− ρ)σ2 + σ2/{nρ+ (1− ρ)}.
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The assessment of the quality of a forecasting system in the light
of a sequence of observed outcomes should depend only on the
forecasts it in fact delivered for that sequence
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The assessment of the quality of a forecasting system in the light
of a sequence of observed outcomes should depend only on the
forecasts it in fact delivered for that sequence

— and not, for example, on how it might have behaved for other
sequences.
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� Binary variables (Xi)
� Realized values (xi)
� Emitted probability forecasts (pi)
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� Binary variables (Xi)
� Realized values (xi)
� Emitted probability forecasts (pi)

Want (??) the (pi) and (xi) to be close “on average”:

xn − pn → 0

where xn is the average of all the (xi) up to time n, etc.
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� Binary variables (Xi)
� Realized values (xi)
� Emitted probability forecasts (pi)

Want (??) the (pi) and (xi) to be close “on average”:

xn − pn → 0

where xn is the average of all the (xi) up to time n, etc.

Probability calibration: Fix π ∈ [0, 1], average over only those
times i when pi is “close to” π:

x′n − π → 0
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Let σ be a computable strategy for selecting trials in the light of
previous outcomes and forecasts
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Let σ be a computable strategy for selecting trials in the light of
previous outcomes and forecasts

— e.g. third day following two successive rainy days, where
forecast is below 0.5.
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Let σ be a computable strategy for selecting trials in the light of
previous outcomes and forecasts

— e.g. third day following two successive rainy days, where
forecast is below 0.5.

Then require asymptotic equality of averages, pσ and xσ, of the
(pi) and (xi) over those trials selected by σ.
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Let σ be a computable strategy for selecting trials in the light of
previous outcomes and forecasts

— e.g. third day following two successive rainy days, where
forecast is below 0.5.

Then require asymptotic equality of averages, pσ and xσ, of the
(pi) and (xi) over those trials selected by σ.

Why?
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Let σ be a computable strategy for selecting trials in the light of
previous outcomes and forecasts

— e.g. third day following two successive rainy days, where
forecast is below 0.5.

Then require asymptotic equality of averages, pσ and xσ, of the
(pi) and (xi) over those trials selected by σ.

Why?

Can show following. Let P be a distribution for X, and
Pi := P (Xi = 1 | Xi−1). Then

P σ −Xσ → 0

P -almost surely, for any distribution P .
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Suppose p and q are computable forecast sequences, each
computably calibrated for the same outcome sequence x.
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Suppose p and q are computable forecast sequences, each
computably calibrated for the same outcome sequence x.

Then pi − qi → 0.
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Consider e.g.

Zn :=

∑

(Xi − Pi)
∑

Pi(1− Pi)

where Pi = P (Xi = 1 | X i−1).
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Consider e.g.

Zn :=

∑

(Xi − Pi)
∑

Pi(1− Pi)

where Pi = P (Xi = 1 | X i−1).

Then
Zn

L
→ N (0, 1)

for (almost) any P .
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Consider e.g.

Zn :=

∑

(Xi − Pi)
∑

Pi(1− Pi)

where Pi = P (Xi = 1 | X i−1).

Then
Zn

L
→ N (0, 1)

for (almost) any P .

So can refer value of Zn to standard normal tables to test
departure from calibration, even without knowing generating
distribution P
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Consider e.g.

Zn :=

∑

(Xi − Pi)
∑

Pi(1− Pi)

where Pi = P (Xi = 1 | X i−1).

Then
Zn

L
→ N (0, 1)

for (almost) any P .

So can refer value of Zn to standard normal tables to test
departure from calibration, even without knowing generating
distribution P

— ”Strong Prequential Principle”
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Suppose the Xi are continuous variables, and the forecast for Xi

has the form of a continuous cumulative distribution function
Fi(·).
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Suppose the Xi are continuous variables, and the forecast for Xi

has the form of a continuous cumulative distribution function
Fi(·).

If X ∼ P , and the forecasts are obtained from P :

Fi(x) := P (Xi ≤ x | Xi−1 = xi−1)

then, defining
Ui := Fi(Xi)

we have
Ui ∼ U [0, 1]

independently, for any P .
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So we can apply various tests of uniformity and/or independence
to the observed values

ui := Fi(xi)

to test the validity of the forecasts made
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So we can apply various tests of uniformity and/or independence
to the observed values

ui := Fi(xi)

to test the validity of the forecasts made

— again, without needing to know the generating distribution P .
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Measure inadequacy of forecast f of outcome x by

loss function: L(x, f)
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Measure inadequacy of forecast f of outcome x by

loss function: L(x, f)

Then measure of overall inadequacy of forecast sequence fn for
outcome sequence xn is cumulative loss:

Ln =
n
∑

i=1

L(xi, fi)

We can use this to compare different forecasting systems.
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Squared error: f a point forecast of real-valued X

L(x, f) = (x− f)2.
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Squared error: f a point forecast of real-valued X

L(x, f) = (x− f)2.

Logarithmic score: f a probability density q(·) for X

L(x, q) = − log q(x).
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At time i, having observed xi, probability forecast for Xi+1 is its
conditional distribution Pi+1(Xi+1) := P (Xi+1 | Xi = xi).
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At time i, having observed xi, probability forecast for Xi+1 is its
conditional distribution Pi+1(Xi+1) := P (Xi+1 | Xi = xi).
When we then observe Xi+1 = xi+1, the associated logarithmic
score is

− log p(xi+1 | x
i).
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At time i, having observed xi, probability forecast for Xi+1 is its
conditional distribution Pi+1(Xi+1) := P (Xi+1 | Xi = xi).
When we then observe Xi+1 = xi+1, the associated logarithmic
score is

− log p(xi+1 | x
i).

So the cumulative score is

Ln(P ) =
n−1
∑

i=0

− log p(xi+1 | x
i)

= − log

n
∏

i=1

p(xi | x
i−1)

= − log p(xn)

where p(·) is the joint density of X under P .
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Ln(P ) is just the (negative) log-likelihood of the joint
distribution P for the observed data-sequence xn.
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Ln(P ) is just the (negative) log-likelihood of the joint
distribution P for the observed data-sequence xn.

If P and Q are alternative joint distributions, considered as
forecasting systems, then the excess score of Q over P is just the
log likelihood ratio for comparing P to Q for the full data xn.
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Ln(P ) is just the (negative) log-likelihood of the joint
distribution P for the observed data-sequence xn.

If P and Q are alternative joint distributions, considered as
forecasting systems, then the excess score of Q over P is just the
log likelihood ratio for comparing P to Q for the full data xn.

This gives an interpretation to and use for likelihood that does
not rely on the assuming the truth of any of the models
considered.
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For a BFS:

P ∗

i+1(Xi+1) =

∫

Pθ(Xi+1 | x
i)πi(θ) dθ

= PB(Xi+1 | x
i)

where PB :=
∫

Pθ π(θ) dθ is the Bayes mixture joint distribution.
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For a BFS:

P ∗

i+1(Xi+1) =

∫

Pθ(Xi+1 | x
i)πi(θ) dθ

= PB(Xi+1 | x
i)

where PB :=
∫

Pθ π(θ) dθ is the Bayes mixture joint distribution.

This is equivalent to basing all forecasts on the single
distribution PB. The total logarithmic score is thus

Ln(P) = Ln(PB)

= − log pB(x
n)

= − log

∫

pθ(x
n)π(θ) dθ
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For a plug-in system: Ln = − log
∏n−1

i=0
p
θ̂i
(xi+1 | x

i).
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For a plug-in system: Ln = − log
∏n−1

i=0
p
θ̂i
(xi+1 | x

i).

� The data (xi+1) used to evaluate performance, and the data
(xi) used to estimate θ, do not overlap

– “unbiased” assessments (like cross-validation)
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For a plug-in system: Ln = − log
∏n−1

i=0
p
θ̂i
(xi+1 | x

i).

� The data (xi+1) used to evaluate performance, and the data
(xi) used to estimate θ, do not overlap

– “unbiased” assessments (like cross-validation)

� If xi is used to forecast xj , then xj is not used to forecast xi

– “uncorrelated” assessments (unlike cross-validation)
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For a plug-in system: Ln = − log
∏n−1

i=0
p
θ̂i
(xi+1 | x

i).

� The data (xi+1) used to evaluate performance, and the data
(xi) used to estimate θ, do not overlap

– “unbiased” assessments (like cross-validation)

� If xi is used to forecast xj , then xj is not used to forecast xi

– “uncorrelated” assessments (unlike cross-validation)

Both under- and over-fitting automatically and appropriately
penalized.
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Let P be a SFS. P is prequentially efficient for {Pθ} if, for any
PFS Q:

Ln(P )− Ln(Q) remains bounded above as n → ∞,
with Pθ probability 1, for almost all θ.

[In particular, the losses of any two efficient SFS’s differ by an
amount that remains asymptotically bounded under almost all
Pθ.]
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Let P be a SFS. P is prequentially efficient for {Pθ} if, for any
PFS Q:

Ln(P )− Ln(Q) remains bounded above as n → ∞,
with Pθ probability 1, for almost all θ.

[In particular, the losses of any two efficient SFS’s differ by an
amount that remains asymptotically bounded under almost all
Pθ.]

� A BFS with π(θ) > 0 is prequentially efficient.
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Let P be a SFS. P is prequentially efficient for {Pθ} if, for any
PFS Q:

Ln(P )− Ln(Q) remains bounded above as n → ∞,
with Pθ probability 1, for almost all θ.

[In particular, the losses of any two efficient SFS’s differ by an
amount that remains asymptotically bounded under almost all
Pθ.]

� A BFS with π(θ) > 0 is prequentially efficient.
� A plug-in SFS based on a Fisher efficient estimator sequence

is prequentially efficient.
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Model:
X ∼ Pθ (θ ∈ Θ)
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Model:
X ∼ Pθ (θ ∈ Θ)

Let P be prequentially efficient for P = {Pθ}, and define:

µi = EP (Xi | X
i−1)

σ2
i = varP (Xi | X

i−1)

Zn =

∑n
i=1

(Xi − µi)
(
∑n

i=1
σ2
i

)
1

2
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Model:
X ∼ Pθ (θ ∈ Θ)

Let P be prequentially efficient for P = {Pθ}, and define:

µi = EP (Xi | X
i−1)

σ2
i = varP (Xi | X

i−1)

Zn =

∑n
i=1

(Xi − µi)
(
∑n

i=1
σ2
i

)
1

2

Then Zn
L
→ N (0, 1) under any Pθ ∈ P.
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Model:
X ∼ Pθ (θ ∈ Θ)

Let P be prequentially efficient for P = {Pθ}, and define:

µi = EP (Xi | X
i−1)

σ2
i = varP (Xi | X

i−1)

Zn =

∑n
i=1

(Xi − µi)
(
∑n

i=1
σ2
i

)
1

2

Then Zn
L
→ N (0, 1) under any Pθ ∈ P.

So refer Zn to standard normal tables to test the model P.
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Probability models Collection C = {Pj : j = 1, 2, . . .}.
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Probability models Collection C = {Pj : j = 1, 2, . . .}.

� Both BFS and (suitable) plug-in SFS are prequentially
consistent: with probability 1 under any Pj ∈ C, their
forecasts will come to agree with those made by Pj.
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Probability models Collection C = {Pj : j = 1, 2, . . .}.

� Both BFS and (suitable) plug-in SFS are prequentially
consistent: with probability 1 under any Pj ∈ C, their
forecasts will come to agree with those made by Pj.

Parametric models Collection C = {Pj : j = 1, 2, . . .}, where
each Pj is itself a parametric model: Pj = {Pj,θj}. Can have
different dimensionalities.
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Probability models Collection C = {Pj : j = 1, 2, . . .}.

� Both BFS and (suitable) plug-in SFS are prequentially
consistent: with probability 1 under any Pj ∈ C, their
forecasts will come to agree with those made by Pj.

Parametric models Collection C = {Pj : j = 1, 2, . . .}, where
each Pj is itself a parametric model: Pj = {Pj,θj}. Can have
different dimensionalities.

� Replace each Pj by a prequentially efficient single
distribution Pj and proceed as above.
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Probability models Collection C = {Pj : j = 1, 2, . . .}.

� Both BFS and (suitable) plug-in SFS are prequentially
consistent: with probability 1 under any Pj ∈ C, their
forecasts will come to agree with those made by Pj.

Parametric models Collection C = {Pj : j = 1, 2, . . .}, where
each Pj is itself a parametric model: Pj = {Pj,θj}. Can have
different dimensionalities.

� Replace each Pj by a prequentially efficient single
distribution Pj and proceed as above.

� For each j, for almost all θj , with probability 1 under Pj,θj

the resulting forecasts will come to agree with those made
by Pj,θj .
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Suppose we use a model P = {Pθ} for X, but the data are
generated from a distribution Q 6∈ P. For an observed
data-sequence x, we have sequences of probability forecasts
Pθ,i := Pθ(Xi | xi−1), based on each Pθ ∈ P: and “true”
predictive distributions Qi := Q(Xi | xi−1). The “best” value of
θ, for predicting xn, might be defined as:

θQn := argmin
θ

n
∑

i=1

K(Qi, Pθ,i).

NB: This typically depends on the observed data
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Suppose we use a model P = {Pθ} for X, but the data are
generated from a distribution Q 6∈ P. For an observed
data-sequence x, we have sequences of probability forecasts
Pθ,i := Pθ(Xi | xi−1), based on each Pθ ∈ P: and “true”
predictive distributions Qi := Q(Xi | xi−1). The “best” value of
θ, for predicting xn, might be defined as:

θQn := argmin
θ

n
∑

i=1

K(Qi, Pθ,i).

NB: This typically depends on the observed data
With θ̂n the maximum likelihood estimate based on xn, we can
show that for any Q, with Q-probability 1:

θ̂n − θQn → 0.
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Prequential analysis:

� is a natural approach to assessing and adjusting the empirical
performance of a sequential forecasting system

� can allow for essentially arbitrary dependence across time
� has close connexions with Bayesian inference, stochastic

complexity, penalized likelihood, etc.
� has many desirable theoretical properties, including

automatic selection of the simplest model closest to that
generating the data

� raises new computational challenges.
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Happy Birthday George!
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