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Professor George Tiao

George
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Professor George Tiao

1976

Bayesian statistics, intervention analysis, seasonal adjustment,
adaptive prediction, aggregation, causality, outlier detection, EACF,
multiple time series, canonical analysis, environmetrics,......

The ET Interview by Ngai Hang Chan, 1999.

 

 

 

 

Institute of Statistics Annual Conference, King’s College, Cambridge.

A young 43-year old vs a younger 32-year old.

Multiple time series.
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Professor George Tiao

Multiple time series

time-domain approach vs frequency-domain approach using

X(ωj) = (2πT )−1
T
∑

t=1

Xte
iωj t

Frequency-domain: Treat X(ωj)s as if they were iid so that we can
perform conventional PCA, canonical correlation analysis, factor
analysis etc.-Priestley, Subba Rao and myself. Convenient but yielding
no exciting insights, lost in generality!

Time-domain: Box and Tiao (1977, Biometrika), canonical analysis
led to a major breakthrough!
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Professor George Tiao

Box and Tiao, 1977

Canonical correlation analysis wrt vector time series and its predictor.

Figure: US hog data:hog supply; hog price; corn price; corn supply; farm wages
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Professor George Tiao

Figure: US hog data:hog supplyZ1t ; hog priceZ2t; corn priceZ3t ; corn supplyZ4t;
farm wagesZ5t
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Professor George Tiao

Pre-dating cointegration by 10 years

HpHs

(RpRs)0.75W 0.50

is approximately independently distributed about a fixed mean. That
is these 5 time series co-move/co-integrate!!!
{return to the farmer} / {farmer’s expenditure} follows a stable
economic law!

Hs(Rp/Hp)

is approximately independently distributed about a fixed mean.

{hog supply} x {price ratio} follows a stable economic law.
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Professor George Tiao

Box and Tiao (1977) pre-dated Engle and Granger (1987) by 10 years.

The two Georges were victims at the hands of those whose motto is
”What I understand is mine.”

Speaking as a fellow victim of similar acts committed by a few
econometricians, I offer them my deepest sympathy.
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Non-likelihood Approach

Multi-step predictions

If the model is true and known up to some tuning parameters, we can
estimate the unknown parameters by minimizing a functional of
one-step prediction errors. Use the fitted model as if it were the true
model and obtain the k-step prediction in the usual way.

If the model is NOT true, what do we do?
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Non-likelihood Approach

George Tiao and Xu (1993) focus on prediction.
They wear a pair of multi-pocket trousers, using the model fitted in the
ℓ-th pocket for ℓ-step prediction. Different pockets contain different fitted
models.
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Non-likelihood Approach

ARIMA(0,1,1) model leads to EWMA predictor:

(1− B)Xt = (1− ηB)et

X̂t(1) = (1− η)Xt + ηX̂t−1(1).

X̂t(ℓ) = X̂t(ℓ− 1); ℓ = 2, 3, . . .
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Non-likelihood Approach

Figure: Box and Jenkins Series A-Chemical Process Concentration Readings:
every two hours
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Non-likelihood Approach

Figure: Ave(η(ℓ)) refers to model in pocket ℓ. R̂(ℓ) is ratio of ave squared
prediction errors using η estimated in 1st pocket to that using different η
estimates.Howell Tong (LSE) George Tiao 17 December 2013 14 / 50



Non-likelihood Approach

How to fit a time series model when you know it is wrong?

Focus is on fitting THE wrong model rather than prediction.

Pretending that the wrong model is true, fitting it with conventional
methods and then performing diagnostic checks is useful but smacks
of

xt = gθ(xt−1, ..., xt−p) + εt (1)

Observed Data: {y1, y2, · · · , yT }
For expositional simplicity, let p = 1.

P{x1(θ0) < u1, ..., xn(θ0) < un|x0(θ0) = y0}

≡ P{y1 < u1, ..., yn < un|y0}
almost surely for some θ0 and any n and real values u1, u2, . . . , un.
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Non-likelihood Approach

Catch-all

Standing on the shoulders of David Cox, George Tiao etc. while tunnelling
through their pockets!

E
[

{x1(θ0), ..., xm(θ0)}|x0(θ0) = y0

]

= E
[

{y1, ..., ym}|y0
]

.

We set θ0 to minimize the difference of the predictions,

E
{
∥

∥

∥
E
[

{x1(θ), ..., xm(θ)}|x0(θ) = y0
]

− E
[

{y1, ..., ym}|y0
]

∥

∥

∥

2}

.
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Non-likelihood Approach

Nicholson’s blowfly

Total number of blowflies (Lucilia cuprina) under controlled
laboratory conditions.

Counts for every second day.

The developmental delay (from egg to adult) is between 14-15 days.

Nicholson obtained 361 bi-daily recordings over a 2-year period (722
days).

A major transition appears to have occurred around day 400.

Following Tong (1990), we consider the first part of the time series
(to day 400, thus T=200), for which the population has a 19-bi-day
cycle; see figure.
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Non-likelihood Approach

Single species animal population discrete model as suggested by
Gurney et al. (1980)

xt = Poisson(cxt−τ exp(−xt−τ/N0)xt−τ + νxt−1),

where we take τ = 8 (bi-days) corresponding to the time taken for an
egg to develop into an adult.

3 parameters: c ,N0 and ν.

MLE estimates for the parameters are

ĉ = 8.49, N̂0 = 528.23, ν̂ = 0.77.

Catch-all method gives

ĉ = 8.82, N̂0 = 604.98, ν̂ = 0.67.
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Non-likelihood Approach
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Non-likelihood Approach
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Bayesian Statistics

Bayesian Statistics

George entered time series analysis through the Bayesian door.

Threshold models in time series have Bayesian underpinnings.

Time series {Xt : t = 0,±1,±2, · · · }
‘True’ model

E (Xt |Xt−1 = x) = µ(x)x ,

µ a ‘smooth’ function.

Approximate it by a Bayesian linear model

E (Xt |Xt−1 = x) = θx ,

θ ∼ N(c ,V ).

Howell Tong (LSE) George Tiao 17 December 2013 21 / 50



Bayesian Statistics

The closeness of approximation measured by the loss function

L(θ) = h[1− exp{− 1

2k
(θ − µ)2}],

where h > 0, k > 0. Conjugate to the Gaussian belief.

Introduce decision space D, s.t. δ ∈ D moves c to c + δ.

Since we would not expect to have to make drastic adjustments to
the value of θ for a ‘smooth’ function µ,

V (δ) = α+ β|δ|,

α > 0, β > 0
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Bayesian Statistics

Define expected loss function by

EV (δ) =

∫ ∞

−∞
L(θ)dFV (θ|δ), δ ∈ D,

FV (θ|δ) is N(c + δ,V )

EV (δ) = h[1− (
k

k + V
)
1
2 exp{−[2(k + V )]−1(δ − µ+ c)2}].

the minimizer of EV (δ) with respect to δ, the Bayes decision, is
uniformly zero, meaning that no adjustment is needed for

0 < µ(x)− c < {(1 + γ2)
1
2 − 1}γ−1, where γ = β(k + α)−

1
2 .
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Threshold AR models

TAR models

Xt = a
(Jt )
0 + a

(Jt)
1 Xt−1 + . . .+ a

(Jt)
p Xt−p + σ(Jt )εt ,

where Jt is a stochastic process taking positive integer values.

Example: Jt = j if Xt−d ∈ Rj for some positive integer d , where
(−∞,∞) = R1 ∪ R2 ∪ . . . ∪ Rk , for some k .
Ri = (ri−1, ri ], r0 = −∞, rk = ∞.
self-exciting threshold AR models–SETAR model order (k;p,p,...,p).

It seems that the TAR models have passed the Tiao’s test.
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Threshold AR models

Figure: Xt = growth of quarterly US real GNP (in 1982 dollars) from 1947:1 to
1991:1 (177 observations)

Xt = log(Yt)− log(Yt−1).
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Threshold AR models

Tiao and Tsay (1994) fitted a SETAR(2;2,2) model with r̂1 = 0.0 and

estimates of a
(j)
i , σj ; i = 0, 1, 2; j = 1, 2 as follows:

j = 1 − 0.0039(0.0033) 0.44(0.18) − 0.79(0.33) 0.0120
j = 2 0.0038(0.0014) 0.31(0.08) 0.20(0.11) 0.0087

The SETAR model shows that after ‘contraction’ the economy
behaves cyclically but after ‘expansion’ it tends to decay exponentially
to some mean level.
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Conditionally heteroscedastic AR model with Thresholds/T-CHARM

Motivation

ARCH and GARCH model conditional heteroscedascity in white noise
(martingale difference sequence).

strong conditions on the coefficients for ergodicity and inference.

simple alternatives?
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Conditionally heteroscedastic AR model with Thresholds/T-CHARM

Faithful geyser

Figure: Old Faithful Geyser
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Conditionally heteroscedastic AR model with Thresholds/T-CHARM

Waiting times between the starts of two consecutive eruptions of the old
faithful geyser, collected from August 1–15, 1985.

Waiting times between the starts of two consecutive eruptions of the
old faithful geyser, collected from August 1–15, 1985.

The waiting time is strongly associated with lag 1 values but much
less so with values at higher lags.

The presence of conditional heteroscedasticity.

A number of outliers.
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Conditionally heteroscedastic AR model with Thresholds/T-CHARM

Preliminary analysis: AR(1) model plus additive outliers for the mean
structure;
AR(1) coefficient estimate −0.571(0.0497),
mean 4.248 (0.00650) and adjusted for five
outliers at epochs 22, 37, 172, 237 and 266.
The residuals of the preceding model appear to be white, but are
highly conditionally heteroscedastic.

Tried to fit a GARCH(1,1) model to the AR(1) errors as suggested by
the sample EACF of the absolute residuals, but without success due
to convergence problem.
Xt = σtηt , σ

2
t = α0 + αX 2

t−1 + βσ2
t−1, where α > 0, β > 0 and

α+ β < 1.
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Conditionally heteroscedastic AR model with Thresholds/T-CHARM

T-CHARM

T-CHARM:

Xt = σ(Xt−1)ηt , (2)

{ηt} IID variables of zero mean and unit variance, ηt independent
{Xs : s < t}, and σ(·) is a piecewise constant function.

Assume σ(x) = σi > 0 for x ∈ Ri , σi ’s distinct, and the regimes
{Ri , i = 1, . . . ,m} is a partition of R .

Howell Tong (LSE) George Tiao 17 December 2013 31 / 50



Conditionally heteroscedastic AR model with Thresholds/T-CHARM

The residuals of the preceding model appear to be white, but are highly
conditionally heteroscedastic.
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Conditionally heteroscedastic AR model with Thresholds/T-CHARM

We fit a two-regime T-CHARM with the lag 1 of the AR(1) errors as
the threshold variable, giving the following parameter estimates:
σ̂2
1 = 0.0093(0.0011), σ̂2

2 = 0.037(0.0031), and r̂ = −0.072 (95%
confidence interval: (−0.088,−0.058)), which is about the 34
percentile.

The existence of the threshold is supported by the LR test with
p-value < 10−5. And there is no need for more thresholds, based on
the LR test.

The standardized residuals from the T-CHARM are no longer
conditionally heteroscedastic, based on the McLeod-Li test up to lag
50. However, the standardized residuals seems to be somewhat heavy
tailed based on the quantile-quantile normal score plot.
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Conditionally heteroscedastic AR model with Thresholds/T-CHARM
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Conditionally heteroscedastic AR model with Thresholds/T-CHARM
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Conditionally heteroscedastic AR model with Thresholds/T-CHARM

TWO BEAUTIES HAVE JOINED ME IN WISHING YOU
A HAPPY 80TH BIRTHDAY, GEORGE!
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Conditionally heteroscedastic AR model with Thresholds/T-CHARM

How do the cycles change with the time needed by the fly

to grow to maturity?

We vary the time τ from 4 to 100 bi-days. The corresponding cycles (in
bi-days) are shown in the figure.

APE(≤ T ) shows a clear linearly increasing trend in the cycle-periods
as τ increases.

APE(≤ 1) shows strange excursions that are difficult to interpret.
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Conditionally heteroscedastic AR model with Thresholds/T-CHARM

Ergodicity

Xt = σ(Wt−1)ηt , (3)

Define the regime process {St} for which St = i if and only if
Xt ∈ Ri , i = 1, . . . ,m.

If Wt−1 = H(Xt−1, · · · ,Xt−p), then {Xt} is a p-th order Markov
chain, i.e. {(Xt , · · · ,Xt−p+1)

⊤} is a markov chain, which is
(Lebesgue-)irreducible if the pdf of ηt is positive everywhere. If
{(Xt , · · · ,Xt−p+1)

⊤} is irreducible, it is uniformly ergodic, i.e. it
admits a unique stationary probability measure to which the marginal
distribution converges uniformly in total variation norm, for any initial
distribution.
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Conditionally heteroscedastic AR model with Thresholds/T-CHARM

Theorem

Let {Xt} be defined by the T-CHARM and the transition probability matrix
P of the associated regime process {St} be an irreducible m ×m matrix.
Let Yt = h(Xt), where h is a continuous function. Assume that {Yt}
admits finite second moments and E(h(ηt)) 6= 0. Let γk = γk,Y be the kth
lag auto-covariance of {Yt}. Then {γk} satisfies the Yule-Walker equation

γk = c1γk−1 + . . .+ cm−1γk−m+1 (4)

for k ≥ m.
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Conditionally heteroscedastic AR model with Thresholds/T-CHARM

That {γk} satisfies the Yule-Walker equation means that the ACF of
{Yt = h(Xt)} is exactly the same as that of some
ARMA(m− 1,m − 1) process.

Any instantaneous nonlinear transformation of {Xt} is generically an
ARMA(m− 1,m − 1) process. Estimate the number of regimes m by
adding the estimated AR order plus 1.
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Conditionally heteroscedastic AR model with Thresholds/T-CHARM

Comparison of the ACFs of T-CHARM vs. GARCH models

Under general conditions, for m = 2 and for k ≥ 0
1 cov(σ2(Xt ), σ

2(Xt−k )) = (σ2
2 − σ2

1)
2δ(1 − δ){P(σ2ηt ∈ R2)− P(σ1ηt ∈

R2)}k , where δ = P(σ1ηt ∈ R2)/{1− P(σ2ηt ∈ R2) + P(σ1ηt ∈ R2)};
2 ρk = {P(σ2ηt ∈ R2)− P(σ1ηt ∈ R2)}k .

Consider GARCH (1,1) model, namely σ2
t = α0 + (αη2t + β)σ2

t−1,
where α > 0 and β > 0. The corresponding ACF {ρgk} is

ρgk = (α+ β)k ,

where α+ β < 1.
Estimation of ρgk requires a finite fourth moment condition, i.e.,
2α2 + (α+ β)2 < 1, which is rarely satisfied in practice, but no such
restriction for T-CHARM.
The T-CHARM can capture the heavy-tailed property (via
Cauchy-Schwartz)

EX 4
t

(EX 2
t )

2
= (Eη4t )

∑m
i=1 σ

4
i P(Xt−1 ∈ Ri)

{∑m
i=1 σ

2
i P(Xt−1 ∈ Ri )}2

≥ Eη4t
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Conditionally heteroscedastic AR model with Thresholds/T-CHARM

A practical parametrized T-CHARM:

Xt = σ(Wt−1)ηt ,

σ(Wt−1) =

m
∑

i=1

σi I{ri−1 < Wt−1 ≤ ri},
(5)

where −∞ = r0 < r1 < · · · < rm−1 < rm = ∞.

Let θ = (σ2
1 , ..., σ

2
m)

⊤ and r = (r1, ..., rm−1)
⊤.

Quasi-likelihood function

Ln(θ, r) = −1

2

n
∑

t=1

m
∑

i=1

(

log σ2
i +

X 2
t

σ2
i

)

Iit , (6)

where Iit = I{ri−1 < Wt−1 ≤ ri}. For each r, Ln(θ, r) is maximized at

θ̂n(r) ≡ (σ̂2
1n(r), ..., σ̂

2
mn(r))

⊤ with σ̂2
in(r) =

∑n
t=1 X

2
t Iit∑n

t=1 Iit
, i = 1, ...,m.

The quasi-maximum likelihood estimator (QMLE):

r̂n = argmaxr Ln(θ̂n(r), r)

θ̂n = θ̂n(r̂n)
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Conditionally heteroscedastic AR model with Thresholds/T-CHARM

Assumption

The density f (·) of ηt is continuous and positive on R, Eηt = 0 and
Eη2t = 1.

Assumption

The density fw (·) of Wt is continuous and fw (rj0) > 0 for j = 1, ...,m − 1.

Theorem

If (i) Assumptions 1 and 2 hold, and (ii) σ2
i0 6= σ2

i+1,0 for i = 1, ...,m − 1,

then, (θ̂n, r̂n) → (θ0, r0) a.s. as n → ∞.
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Conditionally heteroscedastic AR model with Thresholds/T-CHARM

Theorem

Under the conditions of the preceding theorem, if
supx∈R{(1 + |x |)f (x)} < ∞ and κ4 ≡ Eη4t < ∞, then

(a) n(r̂n − r0) = Op(1);

(b)
√
n sup
‖r−r0‖≤B/n

|σ̂2
in(r)− σ̂2

in(r0)| = op(1) for any fixed B ∈ (0,∞).

Furthermore,

√
n(σ̂2

in(r0)− σ2
i0) =⇒ N

(

0,
(κ4 − 1)σ4

i0

Fw (ri0)− Fw (ri−1,0)

)

, i = 1, ...,m,

and all the normalized estimators are asymptotically independent, where
Fw (x) is the cumulative distribution function of Wt , and henceforth the
symbol =⇒ indicates weak convergence.
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Conditionally heteroscedastic AR model with Thresholds/T-CHARM

the waiting time is strongly associated with lag 1 values but much
less so with values at higher lags;

the presence of conditional heteroscedasticity;

a number of outliers.
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Conditionally heteroscedastic AR model with Thresholds/T-CHARM

A long time series of annual tree ring width

Year

Tre
e R

ing
 Wi

dth

500 1000 1500 2000

0.5
1.0

1.5

with the measurements taken from a tree in a location at high altitude in
Argentina. The time series spans over the period from year 441 to 1974
and it was contributed by J. Boninsegna to the NOAA Paleoclimatology
database.
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Conditionally heteroscedastic AR model with Thresholds/T-CHARM

An IMA(1,1) model is initially identified and fitted to the data with the
MA coefficient given by -0.6110 with standard error 0.0216. The residuals
of the fitted IMA(1,1) model appear to be white noise but not
independent as the absolute residuals appear to be correlated.
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Conditionally heteroscedastic AR model with Thresholds/T-CHARM

We fit a two-regime T-CHARM to the residuals to account for the
conditional heteroscedasticity, with lag 1 of the IMA(1,1) error as the
threshold variable. The following parameter estimates are obtained:
σ̂2
1 = 0.03205(0.00153), σ̂2

2 = 0.05729(0.00893), r̂ = 0.2366 (95%
confidence interval: (0.1619, 0.3049)), which is approximately the 91
percentile.
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Conditionally heteroscedastic AR model with Thresholds/T-CHARM

The threshold structure is supported by the LR test for T-CHARM
with p-value p0 = 0.005.

The first regime contains 1402 observations while the second regime
131 observations.

There are no residual ARCH effects in the standardized residuals from
the fitted T-CHARM, by reference to the McLeod-Li test up to 100
lags.

The fitted T-CHARM suggests that during fast-growing years, tree
growth is much more variable, with a variance that almost doubles
that during non-fast-growing years.
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Conditionally heteroscedastic AR model with Thresholds/T-CHARM

In comparison, the IMA(1,1) residuals may be fitted by a
GARCH(1,1) model whose conditional variance equals
ht = βht−1 + α0 + α1X

2
t−1 where Xt stands for the IMA(1,1) errors,

as this model passes the McLeod-Li test but the simpler ARCH(1)
model does not. The GARCH estimates, with their standard errors
enclosed in parentheses, are α̂0 = 0.0284(0.00656),
α̂1 = 0.0987(0.0288) and β̂ = 0.0747(0.198).

The simpler ARCH(1) model did not pass the McLeod-Li test.

It is unclear to us as to how to interpret the fitted GARCH(1,1)
model. Finally, both fitted models involve three parameters each with
comparable quasi-likelihoods.
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