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Problem Setting

• Linear regression model:

y =
m∑
j=1

XGj
βGj

+ ε,

where y is an n-dimensional response vector, ε is an n-dimensional vector of
i.i.d. errors, XGj

= [x[k]]k∈Gj
is an n× pj matrix with pj = |Gj |,

Gj ⊆ {1, 2, · · · , p} is an index set, and βGj
= {βk}k∈Gj

is a pj-dimensional
vector of regression coefficients.

• Grouped variable selection problem:

• Select XGj
’s for prediction; Estimate βGj

= {βk}k∈Gj
jointly.

• Estimated βGj
should either be zero-valued or contains non-zero entries.

• Such a requirement can be done by using penalized estimation procedure
with a structured penalty function.



Problem Setting

• Group variable selection problem (contd):

• Penalty function:

pen(β) =
m∑
j=1

(
λ||βGj

||0 + τpjI{||βGj
||2 6= 0}

)
, (1)

where ||βGj
||0 =

∑
k∈Gj

I{βk 6= 0}, and I{||βGj
||2 6= 0} is an indicator

function such that I{||βGj
||2 6= 0} = 1 if ||βGj

||2 6= 0 and

I{||βGj
||2 6= 0} = 0 otherwise.

• Structured l0-norm penalized estimation:

β̂
λ,τ

= arg min
β

{
1

2

∣∣∣∣∣∣∣∣y − m∑
j=1

XGj
βGj

∣∣∣∣∣∣∣∣2
2

+
m∑
j=1

(
λ||βGj

||0 + τpjI{||βGj
||2 6= 0}

)}
,

where β = (βG1
,βG2

, · · · ,βGm
) is a

∑m
j=1 pj = p-dimensional vector,

λ ≥ 0 and τ ≥ 0 are tuning parameters.



Problem Setting

• Group variable selection problem (contd):

• Difficulties:

• The estimation problem is NP-hard. An exact solution is not
practical when p is large.

• Approximate solutions may be more desirable.

• Conventional approaches:

• Gradient descent algorithm + proximal operator = Proximal
gradient algorithm.

• A customized proximal operator of the structured l0-norm penalty
function (1) is needed for carrying out iteration.

• When p is very large, the gradient descent algorithm can be slow at
each iteration.



Problem Setting

• Group variable selection problem (contd):

• Our approach:

• Blockwise coordinate descent algorithm;

• Customized proximal operator of the structured l0-norm penalty
function (1);

• Randomized attention mechanism focusing on blocks that are
needed to be updated.



Algorithm

• The StructZero algorithm:

1. Pre-iteration stage: Compute the initial values.

2. Iteration stage: Run the iteration scheme under a given value of tuning
parameters (τ, λ).

3. Post-iteration stage: Compute model selection criteria (e.g. AIC, BIC or
mean squared prediction error (MSPE)).

• At 2.Iteration stage, the algorithm

• Runs an iterative scheme in a stochastic and non-cyclic way;

• Updates multiple blocks of parameters simultaneously at each iteration.



Algorithm

• Two iterative schemes:

• StructZero Simpl:

βGj
r = arg min

βGj

{
1

2

∣∣∣∣∣∣∣∣βGj
−
[
βGj

r−1 − cj∇βGj
l(βr−1)

]∣∣∣∣∣∣∣∣2
2

+ g(βGj
)

}
, (2)

• StructZero Accel:

βGj
r = arg min

βGj

{
1

2

∣∣∣∣∣∣∣∣βGj
−
[
αGj

r−1 − cj∇βGj
l(αr−1)

]∣∣∣∣∣∣∣∣2
2

+ g(βGj
)

}
,

zr =
2

r + 2
,

αGj
r = βGj

r +
zr(1− zr−1)

zr−1
(βGj

r − βGj
r−1), (3)

where

g(βGj
) = λ||βGj

||0 + τpjI{||βGj
||2 6= 0}, (4)

r is the number of iteration, and cj is the stepsize.



Algorithm

• Two iterative schemes (contd):

• StructZero Simpl is an example of the generic iterative scheme commonly
used in running the proximal gradient algorithm.

• StructZero Accel equips the momentum acceleration mechanism.

• (2) and the first line of (3) are examples of the proximal operator on the
function (4).

• Both StructZero Simpl and StructZero Accel iterative schemes can be

seen as examples of the blockwise coordinate descent algorithm if

• They are carried out deterministically;

• They are carried out in a cyclic way;

• Only one block of parameters are updated at each iteration.



Algorithm

2. Iteration stage:

2.1. For r = 1, 2, · · · , max iter:

2.1.1. Compute the probability distribution Qr for sampling the group
indices {1, 2, · · · ,m}.

2.1.2. Select v group indices from {1, 2, · · · ,m} according to Qr. Let Hr
denote the set of the selected indices.

2.1.3. For j in Hr, run either StructZero Simpl or StructZero Accel.

2.1.4. For j = 1, 2, · · · ,m, compute the following quantity:

ξrj =


||βGj

r−βGj
r−1||2

√
pj

if j ∈ Hr
ξr−1
j otherwise

. (5)

If the stopping criterion m−1
∑m
j=1 ξ

r
j ≤ tol err, then set

r = max iter and terminate the iterative scheme.

2.2. Return to 2.1. and run the iterative scheme with another value of (τ, λ).



Computational Details

• The proximal operator of the structured l0-norm function (4):

θ∗ = arg min
θ

{
1

2
||θ − b||22 + g(θ)

}
, (6)

where

g(θ) = λ||θ||0 + τpjI{||θ||2 6= 0},

• Case 1: When τ > 0 and λ = 0, the kth element of the proximal operator (6)
can be expressed as

θ∗k = bkI{||b||2 ≥
√

2τpj}.

where bk is the kth element of b.

• Case 2: When τ = 0 and λ > 0, the kth element of the proximal operator (6)
can be expressed as

θ∗k = bkI{|bk| ≥
√

2λ}. (7)

Formula (7) is called the hard thresholding operator.



Computational Details

• The attention distribution Qr = {Qr1, Qr2, · · · , Qrm} for sampling block indices
{1, 2, · · · ,m}:

Qrj =
ξr−1
j Lj + 10−8∑m

j′=1 ξ
r−1
j′ Lj′ + 10−8

,

where Lj = Λmax(XTGj
XGj

), i.e. the maximum eigenvalue of the Gram matrix

XTGj
XGj

, ξr−1
j is defined in (5), and 10−8 is a constant for the baseline

probability.

• Why Qr?

• The iteration error at (r − 1)th iteration (distance between the update at
the (r − 1)th iteration and the update at the (r − 2)th iteration) is a
signal indicating whether βGj

needs to be updated further or not at the
rth iteration.

• If the distance is small, i.e. the current update and the previous update of
βGj

is close, then βGj
may not need a further update.

• The algorithm can then turn its attention on those with larger distances
between their current updates and previous updates.



Computational Details

• The gradient computation at each iteration:

∇βGj
l(βr) = −[XT (y − Xβr)]Gj

= −aGj
+ BGj

(βrGj
− βr−1

Gj
) + XTGj

dr−1, (8)

where

aGj
= XTGj

y,

BGj
= XTGj

XGj
,

dr−1 = Xβr−1.

• aGj
is a pj-dimensional vector, BGj

is a pj × pj matrix; and dr−1 is an
n-dimensional vector.

• aGj
and BGj

are computed at the pre-iteration stage, while dr−1 can be

calculated incrementally at each iteration with computational cost O(npj).

• The computation cost of (8) at the rth iteration is O(p2j ) +O(npj).



Simulation Experiments

• The ground truth model:

y =
∑

j∈Htrue

XGj
βtrue
Gj

+ ε,

where y is an n-dimensional vector, XGj
is an n× pj matrix, ε ∼

MVN(0, σ2
ε In×n), and

βtrue
k ∼

1

2
Normal(2, 0.25) +

1

2
Normal(−2, 0.25).

• Rows of XGj
are i.i.d. MVN(0,ΣGj

).

• The residual variance σ2
ε is defined in terms of the signal-to-noise ratio (SNR) in

a way such that

SNR =

∑
j∈Htrue (βtrue

Gj
)TΣGj

(βtrue
Gj

)

σ2
ε

.



Simulation Experiments

• Programming language and computational environment:

• The StructZero algorithm was coded in C++ using package “Rcpp”
under the R programming environment.

• When involving a large matrix, the corresponding computation was coded
using “SparseMatrix” module in package “RcppEigen”.

• The simulation experiments were carried out under a 64-bit Linux
machine built on Dell’s PowerEdge server with 2 Intel Xeon E5-2650v4
(2.2GHz/12c) CPUs and 448 GB memory.



Simulation Experiments

• Convergence of the algorithm:

• The number of true groups |Htrue| = 3, with sizes equal to 50, 60 and 40,
respectively. All covariates in the three true groups have non-zero valued
regression coefficients.

• SNR (signal-to-noise ratio) = 0.5.

• Two cases: (n,m) = (2000, 1500) and (n,m) = (50000, 5000), where n is
the sample size, and m is the number of groups in the regression model.

• The size of groups: pmin = 5 and pmax = 40⇒ 32000 < p < 35000 for
the first case, and p = 113, 681 for the second case.

• In both cases p > n.

• Other hyperparameters specified by researchers: v is the number of
groups updated in each iteration; λ and τ are tuning parameters in the
estimation.



Simulation Experiments

Figure: Plots of iteration error vs iteration number with (n,m) = (2000, 1500). Top
left: (v, τ, λ) = (1, 0.5, 0.5); Top right: (v, τ, λ) = (1, 0.5, 0.1); Bottom left:
(v, τ, λ) = (20, 0.1, 0.05); Bottom right: (v, τ, λ) = (20, 0.1, 0.001).



Simulation Experiments

Figure: Plots of iteration error vs iteration number with (n,m) = (50000, 5000). The
two plots are based on results from the two experiments with
(v, τ, λ) = (20, 0.001, 0.05) and (v, τ, λ) = (20, 0.001, 0.001), respectively; Top:
Iteration error against the number of iterations; Bottom Iteration error against the
runtime measured by second.



Simulation Experiments

• Runtime of the algorithm:

• The number of true groups |Htrue| = 3, with sizes equal to 15, 37 and 22,
respectively.

• Each group has the number of zero valued regression coefficients equal to
5, 10 and 2, respectively ⇒ The number of non-zero valued regression
coefficients = 57.

• SNR = 0.5; n = 10, 000; pmin = 5 and pmax = 40.

• 30 cases: The number of groups m = 500, 1000, · · · , 14500, 15000⇒
11, 739 ≤ p ≤ 339, 608. In all cases p > n.

• StructZero algorithm: Tolerance error = 10−6; v = 200; τ = 0 (No
groupwise variable selection); The number of λ = 100.

• The number of CPU cores: 1, 5, 10, 20. Parallel computing over tuning
parameters.

• Lasso estimation: “glmnet” (version 2.0-13); 100 tuning parameter
values; The Strong Rule is used for screening covariates at the
pre-iteration stage.



Simulation Experiments

Figure: Runtime of the algorithms corresponding to the structured l0-norm
estimation and the lasso of the glmnet. Top left: Total runtime; Top right: Runtime of
the pre-iteration stage; Bottom Left: Sum of 100 runtimes measured at the iteration
stage scaled by the number of CPU cores; (d) Runtime of the post-iteration stage.



Simulation Experiments

• Accuracy of the algorithm:

• Ground truth model: The same as the one in the previous section.

• The number of groups m = 1500⇒ The number of variables
32000 ≤ p ≤ 35000.

• 80 cases: Sample size n = 500, 2000, 5000 and 10000; 20 values of SNR
ranging from 0.05 to 10.

• StructZero algorithm: Tolerance error = 10−6; v = 200; τ = 0; The
number of λ = 100.

• Lasso estimation: “glmnet” (version 2.0-13); 100 tuning parameter
values.

• Tuning parameter selection criteria: Mean squared prediction error
(MSPE). New data were used for evaluating the MSPE.

• Performance criteria: (a) mean squared error (MSE), (b) True positive
rate (TPE), and (c) false discovery rate (FDR).



Simulation Experiments

Figure: MSE of the algorithms corresponding to the structured l0-norm estimation
and the lasso of the glmnet. Top left: n = 500; Top right: n = 2000; Bottom left:
n = 5000; Bottom right n = 10000.



Simulation Experiments

Figure: True positive rate of the algorithms corresponding to the structured l0-norm
estimation and the lasso of the glmnet. Top left: n = 500; Top right: n = 2000;
Bottom left: n = 5000; Bottom right n = 10000.



Simulation Experiments

Figure: False discovery rate of the algorithms corresponding to the structured
l0-norm estimation and the lasso of the glmnet. Top left: n = 500; Top right:
n = 2000; Bottom left: n = 5000; Bottom right n = 10000.



Simulation Experiments

• Sample complexity and signal-to-noise ratio:

• StructZero algorithm vs Lasso estimation.

• The ground truth model is the same as the one in the previous section.

• 2500 cases: 50 values of sample size n from 200 to 10000, and 50 values
of SNR from 0.1 to 5.0. 20 replicates for each case.

• Performance criterion:

t-statistics =
MSPE

StructZero −MSPE
lasso√

V̂ar(MSPEStructZero)
20

+
V̂ar(MSPElasso)

20

,

where MSPE
StructZero

and MSPE
lasso

are the sample mean of the

corresponding MSPE values, while V̂ar(MSPEStructZero) and

V̂ar(MSPElasso) are estimated sample variances, and 20 is the number of
replicates.



Simulation Experiments

Figure: Heatmap of the two sample t-statistic for mean squared prediction error
(MSPE) between the structured l0-norm estimation and the lasso estimation. In each
plot the x-axis is the signal-to-noise ratio (SNR), and the y-axis is the sample size n.
Colored points refer to values of the two sample t-statistic.



Discussion

• In this talk, we have

• Developed algorithms for carrying out structured l0-norm estimation with
large data;

• Derived closed form representations for the proximal operator of the
structured l0norm penalty function;

• Developed an attention mechanism for accelerating the iteration
procedure.

• Future research directions:

• Hyperparameter selection: The hyperparameter v, the number of groups
updated at each iteration, plays an important role in running our
algorithm.

• Convergence analysis: Available mathematical tools such as the
“expected separable overapproximation” and the “Kurdyka- Lojasiewicz
inequality” may be helpful here.


