An Attention Algorithm for Solving Large Scale Structured l_0 -norm Penalty Estimation Problems

Tso-Jung Yen

Institute of Statistical Science Academia Sinica

tjyen@stat.sinica.edu.tw

Department of Economics

Waseda University-Academia Sinica Joint Workshop

December 12, 2020

Outline

- Problem setting
- Algorithm
- Simulation experiments

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Discussion

Linear regression model:

$$\mathbf{y} = \sum_{j=1}^{m} \mathbf{X}_{G_j} \boldsymbol{eta}_{G_j} + \boldsymbol{\epsilon}_{j}$$

where **y** is an *n*-dimensional response vector, $\boldsymbol{\epsilon}$ is an *n*-dimensional vector of i.i.d. errors, $\mathbf{X}_{G_j} = [\mathbf{x}_{[k]}]_{k \in G_j}$ is an $n \times p_j$ matrix with $p_j = |G_j|$, $G_j \subseteq \{1, 2, \cdots, p\}$ is an index set, and $\boldsymbol{\beta}_{G_j} = \{\beta_k\}_{k \in G_j}$ is a p_j -dimensional vector of regression coefficients.

- Grouped variable selection problem:
 - Select X_{G_i} 's for prediction; Estimate $\beta_{G_i} = {\{\beta_k\}_{k \in G_i}}$ jointly.
 - Estimated \(\beta_{G_{j}}\) should either be zero-valued or contains non-zero entries.
 - Such a requirement can be done by using penalized estimation procedure with a structured penalty function.

- Group variable selection problem (contd):
 - Penalty function:

$$\operatorname{pen}(\boldsymbol{\beta}) = \sum_{j=1}^{m} \left(\lambda || \boldsymbol{\beta}_{\boldsymbol{G}_{j}} ||_{0} + \tau p_{j} \mathbb{I}\{ || \boldsymbol{\beta}_{\boldsymbol{G}_{j}} ||_{2} \neq 0 \} \right), \tag{1}$$

where $||\beta_{G_j}||_0 = \sum_{k \in G_j} \mathbb{I}\{\beta_k \neq 0\}$, and $\mathbb{I}\{||\beta_{G_j}||_2 \neq 0\}$ is an indicator function such that $\mathbb{I}\{||\beta_{G_j}||_2 \neq 0\} = 1$ if $||\beta_{G_j}||_2 \neq 0$ and $\mathbb{I}\{||\beta_{G_j}||_2 \neq 0\} = 0$ otherwise.

• Structured *l*₀-norm penalized estimation:

$$\begin{split} \widehat{\boldsymbol{\beta}}^{\lambda,\tau} &= \arg\min_{\boldsymbol{\beta}} \left\{ \frac{1}{2} \left\| \mathbf{y} - \sum_{j=1}^{m} \mathbf{X}_{G_{j}} \boldsymbol{\beta}_{G_{j}} \right\|_{2}^{2} \right. \\ &+ \sum_{j=1}^{m} \left(\lambda || \boldsymbol{\beta}_{G_{j}} ||_{0} + \tau p_{j} \mathbb{I}\{ || \boldsymbol{\beta}_{G_{j}} ||_{2} \neq 0 \} \right) \right\} \end{split}$$

where $\beta = (\beta_{G_1}, \beta_{G_2}, \cdots, \beta_{G_m})$ is a $\sum_{j=1}^m p_j = p$ -dimensional vector, $\lambda \ge 0$ and $\tau \ge 0$ are tuning parameters.

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の � @

Group variable selection problem (contd):

- Difficulties:
 - The estimation problem is NP-hard. An exact solution is not practical when p is large.
 - Approximate solutions may be more desirable.
- Conventional approaches:
 - Gradient descent algorithm + proximal operator = Proximal gradient algorithm.
 - A customized proximal operator of the structured *l*₀-norm penalty function (1) is needed for carrying out iteration.
 - When p is very large, the gradient descent algorithm can be slow at each iteration.

- Group variable selection problem (contd):
 - Our approach:
 - Blockwise coordinate descent algorithm;
 - Customized proximal operator of the structured *l*₀-norm penalty function (1);
 - Randomized attention mechanism focusing on blocks that are needed to be updated.

- The StructZero algorithm:
 - 1. Pre-iteration stage: Compute the initial values.
 - 2. Iteration stage: Run the iteration scheme under a given value of tuning parameters (τ, λ) .
 - **3.** Post-iteration stage: Compute model selection criteria (e.g. AIC, BIC or mean squared prediction error (MSPE)).
- At 2.Iteration stage, the algorithm
 - Runs an iterative scheme in a stochastic and non-cyclic way;
 - Updates multiple blocks of parameters simultaneously at each iteration.

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

- Two iterative schemes:
 - StructZero_Simpl:

$$\boldsymbol{\beta_{G_j}}^r = \arg\min_{\boldsymbol{\beta_{G_j}}} \left\{ \frac{1}{2} \left\| \boldsymbol{\beta_{G_j}} - \left[\boldsymbol{\beta_{G_j}}^{r-1} - c_j \nabla_{\boldsymbol{\beta_{G_j}}} l(\boldsymbol{\beta}^{r-1}) \right] \right\|_2^2 + g(\boldsymbol{\beta_{G_j}}) \right\}, \quad (2)$$

StructZero_Accel:

$$\beta_{G_{j}}{}^{r} = \arg \min_{\beta_{G_{j}}} \left\{ \frac{1}{2} \left\| \beta_{G_{j}} - \left[\alpha_{G_{j}}{}^{r-1} - c_{j} \nabla_{\beta_{G_{j}}} l(\alpha^{r-1}) \right] \right\|_{2}^{2} + g(\beta_{G_{j}}) \right\},$$

$$z^{r} = \frac{2}{r+2},$$

$$\alpha_{G_{j}}{}^{r} = \beta_{G_{j}}{}^{r} + \frac{z^{r}(1-z^{r-1})}{z^{r-1}} (\beta_{G_{j}}{}^{r} - \beta_{G_{j}}{}^{r-1}), \qquad (3)$$

where

$$g(\boldsymbol{\beta}_{\boldsymbol{G}_{j}}) = \lambda ||\boldsymbol{\beta}_{\boldsymbol{G}_{j}}||_{0} + \tau p_{j} \mathbb{I}\{||\boldsymbol{\beta}_{\boldsymbol{G}_{j}}||_{2} \neq 0\},$$
(4)

r is the number of iteration, and c_j is the stepsize.

- Two iterative schemes (contd):
 - StructZero_Simpl is an example of the generic iterative scheme commonly used in running the proximal gradient algorithm.
 - StructZero_Accel equips the momentum acceleration mechanism.
 - (2) and the first line of (3) are examples of the proximal operator on the function (4).
 - Both **StructZero_Simpl** and **StructZero_Accel** iterative schemes can be seen as examples of the blockwise coordinate descent algorithm if
 - They are carried out *deterministically*;
 - They are carried out in a *cyclic* way;
 - Only one block of parameters are updated at each iteration.

2. Iteration stage:

- **2.1.** For $r = 1, 2, \cdots$, max_iter:
 - 2.1.1. Compute the probability distribution Q^r for sampling the group indices {1, 2, · · · , m}.
 - **2.1.2.** Select v group indices from $\{1, 2, \dots, m\}$ according to Q^r . Let \mathcal{H}_r denote the set of the selected indices.
 - **2.1.3.** For j in \mathcal{H}_r , run either **StructZero_Simpl** or **StructZero_Accel**.
 - **2.1.4.** For $j = 1, 2, \dots, m$, compute the following quantity:

$$\xi_j^r = \begin{cases} \frac{||\beta \boldsymbol{G}_j^r - \beta \boldsymbol{G}_j^{r-1}||_2}{\sqrt{p_j}} & \text{if } j \in \mathcal{H}_r \\ \xi_j^{r-1} & \text{otherwise} \end{cases}$$
(5)

If the stopping criterion $m^{-1}\sum_{j=1}^{m}\xi_{j}^{r} \leq \text{tol_err}$, then set $r = \max_\text{iter}$ and terminate the iterative scheme.

2.2. Return to **2.1.** and run the iterative scheme with another value of (τ, λ) .

Computational Details

• The **proximal operator** of the structured *l*₀-norm function (4):

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \left\{ \frac{1}{2} ||\boldsymbol{\theta} - \mathbf{b}||_2^2 + g(\boldsymbol{\theta}) \right\},\tag{6}$$

where

$$g(\boldsymbol{\theta}) = \lambda ||\boldsymbol{\theta}||_0 + \tau p_j \mathbb{I}\{||\boldsymbol{\theta}||_2 \neq 0\},\$$

Case 1: When τ > 0 and λ = 0, the kth element of the proximal operator (6) can be expressed as

$$\theta_k^* = b_k \mathbb{I}\{||\mathbf{b}||_2 \ge \sqrt{2\tau p_j}\}.$$

where b_k is the kth element of **b**.

Case 2: When τ = 0 and λ > 0, the kth element of the proximal operator (6) can be expressed as

$$\theta_k^* = b_k \mathbb{I}\{|b_k| \ge \sqrt{2\lambda}\}.$$
(7)

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

Formula (7) is called the hard thresholding operator.

Computational Details

• The attention distribution $Q^r = \{Q_1^r, Q_2^r, \dots, Q_m^r\}$ for sampling block indices $\{1, 2, \dots, m\}$:

$$Q_j^r = \frac{\xi_j^{r-1}L_j + 10^{-8}}{\sum_{j'=1}^m \xi_{j'}^{r-1}L_{j'} + 10^{-8}},$$

where $L_j = \Lambda_{\max}(\mathbf{X}_{G_j}^T \mathbf{X}_{G_j})$, i.e. the maximum eigenvalue of the Gram matrix $\mathbf{X}_{G_j}^T \mathbf{X}_{G_j}$, ξ_j^{r-1} is defined in (5), and 10^{-8} is a constant for the baseline probability.

- Why Q^r ?
 - The iteration error at (r-1)th iteration (distance between the update at the (r-1)th iteration and the update at the (r-2)th iteration) is a signal indicating whether β_{G_j} needs to be updated further or not at the rth iteration.
 - If the distance is small, i.e. the current update and the previous update of β_{G_i} is close, then β_{G_i} may not need a further update.
 - The algorithm can then turn its attention on those with larger distances between their current updates and previous updates.

Computational Details

• The gradient computation at each iteration:

$$\nabla_{\boldsymbol{\beta}_{\boldsymbol{G}_{j}}} l(\boldsymbol{\beta}^{r}) = -[\mathbf{X}^{T}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}^{r})]_{G_{j}}$$

$$= -\mathbf{a}_{G_{j}} + \mathbf{B}_{G_{j}}(\boldsymbol{\beta}_{G_{j}}^{r} - \boldsymbol{\beta}_{G_{j}}^{r-1}) + \mathbf{X}_{G_{j}}^{T}\mathbf{d}^{r-1}, \qquad (8)$$

where

$$\begin{split} \mathbf{a}_{G_j} &= \mathbf{X}_{G_j}^T \mathbf{y}, \\ \mathbf{B}_{G_j} &= \mathbf{X}_{G_j}^T \mathbf{X}_{G_j}, \\ \mathbf{d}^{r-1} &= \mathbf{X} \boldsymbol{\beta}^{r-1}. \end{split}$$

- \mathbf{a}_{G_j} is a p_j -dimensional vector, \mathbf{B}_{G_j} is a $p_j \times p_j$ matrix; and \mathbf{d}^{r-1} is an n-dimensional vector.
- a_{G_j} and B_{G_j} are computed at the pre-iteration stage, while d^{r-1} can be calculated incrementally at each iteration with computational cost O(np_j).
- The computation cost of (8) at the *r*th iteration is $O(p_j^2) + O(np_j)$.

The ground truth model:

$$\mathbf{y} = \sum_{j \in \mathcal{H}^{\mathsf{true}}} \mathbf{X}_{G_j} oldsymbol{eta}_{G_j}^{\mathsf{true}} + oldsymbol{\epsilon},$$

where **y** is an *n*-dimensional vector, \mathbf{X}_{G_j} is an $n \times p_j$ matrix, $\boldsymbol{\epsilon} \sim MVN(0, \sigma_{\boldsymbol{\epsilon}}^2 \mathbf{I}_{n \times n})$, and

$$\beta_k^{\mathsf{true}} \sim \frac{1}{2} \mathsf{Normal}(2, 0.25) + \frac{1}{2} \mathsf{Normal}(-2, 0.25).$$

- Rows of \mathbf{X}_{G_j} are i.i.d. $MVN(0, \Sigma_{G_j})$.
- The residual variance σ_{ϵ}^2 is defined in terms of the signal-to-noise ratio (SNR) in a way such that

$$\mathsf{SNR} = \frac{\sum_{j \in \mathcal{H}^{\mathsf{true}}} (\beta_{G_j}^{\mathsf{true}})^T \boldsymbol{\Sigma}_{G_j} (\beta_{G_j}^{\mathsf{true}})}{\sigma_{\epsilon}^2}.$$

- Programming language and computational environment:
 - The StructZero algorithm was coded in C++ using package "Rcpp" under the R programming environment.
 - When involving a large matrix, the corresponding computation was coded using "SparseMatrix" module in package "RcppEigen".
 - The simulation experiments were carried out under a 64-bit Linux machine built on Dell's PowerEdge server with 2 Intel Xeon E5-2650v4 (2.2GHz/12c) CPUs and 448 GB memory.

• Convergence of the algorithm:

- The number of *true* groups $|\mathcal{H}^{true}| = 3$, with sizes equal to 50, 60 and 40, respectively. All covariates in the three true groups have non-zero valued regression coefficients.
- SNR (signal-to-noise ratio) = 0.5.
- Two cases: (n,m) = (2000, 1500) and (n,m) = (50000, 5000), where n is the sample size, and m is the number of groups in the regression model.
- The size of groups: $p_{\min} = 5$ and $p_{\max} = 40 \Rightarrow 32000 for the first case, and <math>p = 113,681$ for the second case.
- In both cases p > n.
- Other hyperparameters specified by researchers: v is the number of groups updated in each iteration; λ and τ are tuning parameters in the estimation.

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

Figure: Plots of iteration error vs iteration number with (n,m) = (2000, 1500). Top left: $(v, \tau, \lambda) = (1, 0.5, 0.5)$; Top right: $(v, \tau, \lambda) = (1, 0.5, 0.1)$; Bottom left: $(v, \tau, \lambda) = (20, 0.1, 0.05)$; Bottom right: $(v, \tau, \lambda) = (20, 0.1, 0.001)$.

Figure: Plots of iteration error vs iteration number with (n, m) = (50000, 5000). The two plots are based on results from the two experiments with $(v, \tau, \lambda) = (20, 0.001, 0.05)$ and $(v, \tau, \lambda) = (20, 0.001, 0.001)$, respectively; Top: Iteration error against the number of iterations; Bottom Iteration error against the runtime measured by second.

• Runtime of the algorithm:

- The number of *true* groups $|\mathcal{H}^{true}| = 3$, with sizes equal to 15, 37 and 22, respectively.
- Each group has the number of zero valued regression coefficients equal to 5, 10 and 2, respectively ⇒ The number of non-zero valued regression coefficients = 57.
- SNR = 0.5; n = 10,000; $p_{\min} = 5$ and $p_{\max} = 40$.
- 30 cases: The number of groups $m = 500, 1000, \cdots, 14500, 15000 \Rightarrow 11, 739 \le p \le 339, 608$. In all cases p > n.
- StructZero algorithm: Tolerance error $= 10^{-6}$; v = 200; $\tau = 0$ (No groupwise variable selection); The number of $\lambda = 100$.
- The number of CPU cores: 1, 5, 10, 20. Parallel computing over *tuning parameters*.
- Lasso estimation: "glmnet" (version 2.0-13); 100 tuning parameter values; The *Strong Rule* is used for screening covariates at the pre-iteration stage.

Figure: Runtime of the algorithms corresponding to the structured l_0 -norm estimation and the lasso of the glmnet. Top left: Total runtime; Top right: Runtime of the pre-iteration stage; Bottom Left: Sum of 100 runtimes measured at the iteration stage scaled by the number of CPU cores; (d) Runtime of the post-iteration stage.

- Accuracy of the algorithm:
 - Ground truth model: The same as the one in the previous section.
 - The number of groups $m = 1500 \Rightarrow$ The number of variables $32000 \le p \le 35000$.
 - 80 cases: Sample size $n=500,\,2000,\,5000$ and $10000;\,20$ values of SNR ranging from 0.05 to 10.
 - StructZero algorithm: Tolerance error = 10^{-6} ; v = 200; $\tau = 0$; The number of $\lambda = 100$.
 - Lasso estimation: "glmnet" (version 2.0-13); 100 tuning parameter values.
 - Tuning parameter selection criteria: Mean squared prediction error (MSPE). New data were used for evaluating the MSPE.
 - Performance criteria: (a) mean squared error (MSE), (b) True positive rate (TPE), and (c) false discovery rate (FDR).

Figure: MSE of the algorithms corresponding to the structured l_0 -norm estimation and the lasso of the glmnet. Top left: n = 500; Top right: n = 2000; Bottom left: n = 5000; Bottom right n = 10000.

Figure: True positive rate of the algorithms corresponding to the structured l_0 -norm estimation and the lasso of the glmnet. Top left: n = 500; Top right: n = 2000; Bottom left: n = 5000; Bottom right n = 10000.

<ロト < 団 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Figure: False discovery rate of the algorithms corresponding to the structured l_0 -norm estimation and the lasso of the glmnet. Top left: n = 500; Top right: n = 2000; Bottom left: n = 5000; Bottom right n = 10000.

Sample complexity and signal-to-noise ratio:

- StructZero algorithm vs Lasso estimation.
- The ground truth model is the same as the one in the previous section.
- 2500 cases: 50 values of sample size n from 200 to 10000, and 50 values of SNR from 0.1 to 5.0. 20 replicates for each case.
- Performance criterion:

$$t\text{-statistics} = \frac{\overline{\mathsf{MSPE}^{\mathsf{StructZero}} - \overline{\mathsf{MSPE}^{\mathsf{lasso}}}}}{\sqrt{\frac{\widehat{\mathsf{Var}}(\mathsf{MSPE}^{\mathsf{StructZero}})}{20} + \frac{\widehat{\mathsf{Var}}(\mathsf{MSPE}^{\mathsf{lasso}})}{20}}},$$

where $\overline{\text{MSPE}}^{\text{StructZero}}$ and $\overline{\text{MSPE}}^{\text{lasso}}$ are the sample mean of the corresponding MSPE values, while $\widehat{\text{Var}}(\text{MSPE}^{\text{StructZero}})$ and $\widehat{\text{Var}}(\text{MSPE}^{\text{lasso}})$ are estimated sample variances, and 20 is the number of replicates.

mean squared prediction error (MSPE) difference (StructZero - Jasso) 9000 -8000 7000two sample t-statistic 6000 ample size (n) 30 20 5000 10 0 -10 4000-3000-2000 1000-200 0.5 1.5 2.5 3.0 signal to noise ratio (SNR)

Figure: Heatmap of the two sample *t*-statistic for mean squared prediction error (MSPE) between the structured l_0 -norm estimation and the lasso estimation. In each plot the *x*-axis is the signal-to-noise ratio (SNR), and the *y*-axis is the sample size *n*. Colored points refer to values of the two sample t-statistic.

Discussion

- In this talk, we have
 - Developed algorithms for carrying out structured l₀-norm estimation with large data;
 - Derived closed form representations for the proximal operator of the structured l₀norm penalty function;
 - Developed an attention mechanism for accelerating the iteration procedure.
- Future research directions:
 - **Hyperparameter selection:** The hyperparameter *v*, the number of groups updated at each iteration, plays an important role in running our algorithm.
 - **Convergence analysis:** Available mathematical tools such as the "expected separable overapproximation" and the "Kurdyka-Łojasiewicz inequality" may be helpful here.