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Problem Setting

® |Linear regression model:
m
y=>_ Xg,Ba; +e€
j=1

where y is an n-dimensional response vector, € is an n-dimensional vector of
i.id. errors, Xg; = [x(5)lkec; is an n x p; matrix with p; = |G},

G; C{1,2,---,p} is an index set, and ,6‘@]. = {,Bk}kegj is a p;j-dimensional
vector of regression coefficients.

® Grouped variable selection problem:
® Select Xg,'s for prediction; Estimate BGj = {/Bk}kecj jointly.
® Estimated ,ng should either be zero-valued or contains non-zero entries.

® Such a requirement can be done by using penalized estimation procedure
with a structured penalty function.



Problem Setting

® Group variable selection problem (contd):
® Penalty function:

m

pen(8) = S (M8, o + o148, 0 ). M

j=1

where ||Bg; |lo = Zkecj I{By # 0}, and I{||Bg, ||2 # 0} is an indicator
function such that I{||Bg, |2 # 0} = 1 if [|Bg;||2 # 0 and
I{[|Bc;l2 # 0} = 0 otherwise.

® Structured lp-norm penalized estimation:

SN, T 1 U 2
, = argmén{iHnyXGjﬁGj
j=1 2
m
+3 (Wi llo + 70,118 12 # 0} )},
j=1
where 8= (B¢,,Ba,, " ,Ba,,) is a 2.7L1 pj = p-dimensional vector,

A >0 and 7 > 0 are tuning parameters.



Problem Setting

® Group variable selection problem (contd):

® Difficulties:

® The estimation problem is NP-hard. An exact solution is not
practical when p is large.

® Approximate solutions may be more desirable.

® Conventional approaches:

® Gradient descent algorithm + proximal operator = Proximal
gradient algorithm.

® A customized proximal operator of the structured lp-norm penalty
function (1) is needed for carrying out iteration.

® When p is very large, the gradient descent algorithm can be slow at
each iteration.



Problem Setting

® Group variable selection problem (contd):

® Qur approach:

® Blockwise coordinate descent algorithm;

® Customized proximal operator of the structured [p-norm penalty
function (1);

® Randomized attention mechanism focusing on blocks that are
needed to be updated.



Algorithm

® The StructZero algorithm:

1. Pre-iteration stage: Compute the initial values.

2. lteration stage: Run the iteration scheme under a given value of tuning
parameters (7, \).

3. Post-iteration stage: Compute model selection criteria (e.g. AIC, BIC or
mean squared prediction error (MSPE)).
® At 2.lteration stage, the algorithm

® Runs an iterative scheme in a stochastic and non-cyclic way;

® Updates multiple blocks of parameters simultaneously at each iteration.



Algorithm

® Two iterative schemes:

® StructZero_Simpl:

Bg;" = arg mm { Hﬂg BG-T_l - ij,@Gj s

® StructZero_Accel:

Bg;" = argmm{ H,@G G~T_1—ijﬁcj
FA— L,
r+2
ag;" = Bg;"+ Zqi:ijil)(ﬁcjrfﬁcjpl),
where

9(Bay) = MBa;llo + 7p;1{[1Be; 2 # 0},

r is the number of iteration, and c; is the stepsize.

l(ar—l)}

2
] +g<ﬂcj>}, 2)
2

2

2+g(ﬁcj)}7

3)

(4)



Algorithm

® Two iterative schemes (contd):

® StructZero_Simpl is an example of the generic iterative scheme commonly
used in running the proximal gradient algorithm.

® StructZero_Accel equips the momentum acceleration mechanism.

® (2) and the first line of (3) are examples of the proximal operator on the
function (4).

® Both StructZero_Simpl and StructZero_Accel iterative schemes can be
seen as examples of the blockwise coordinate descent algorithm if

® They are carried out deterministically,
® They are carried out in a cyclic way;

® Only one block of parameters are updated at each iteration.



Algorithm

2. lteration stage:
2.1. Forr=1,2,---, max_iter:

2.1.1. Compute the probability distribution Q" for sampling the group
indices {1,2,--- ,m}.

2.1.2. Select v group indices from {1,2,--- ,m} according to Q. Let H,
denote the set of the selected indices.

2.1.3. For j in H,, run either StructZero_Simpl or StructZero_Accel.

2.1.4. For j=1,2,--- ,m, compute the following quantity:
1Bc; " —Ba; " 'll2 . .
. —2 3 " f
& = N & (®)

5;_lotherwise

If the stopping criterion m ™! 2ot & < tolerr, then set
r = max_iter and terminate the iterative scheme.

2.2. Return to 2.1. and run the iterative scheme with another value of (7, \).



Computational Details

® The proximal operator of the structured lp-norm function (4):

1
or = argmin {10 - bii3+ 9(0)], ©)
where

9(6) = Al[6]lo + Tp;1{||6]|2 # 0},

® Case 1: When 7 > 0 and XA = 0, the kth element of the proximal operator (6)
can be expressed as

0% = brI{|[bl]2 > \/27p;}.
where by, is the kth element of b.

® Case 2: When 7 = 0 and X > 0, the kth element of the proximal operator (6)
can be expressed as

0 = bI{|bx| > V2X}. (7)

Formula (7) is called the hard thresholding operator.



Computational Details

® The attention distribution Q" = {Q7,Q%,--- , Q5. } for sampling block indices
{1’27"' 7m}:
r—17p . -8
gre_ & Litlo
J -1 8’
18 Ly +1078

where L; = Amax(ngXGj), i.e. the maximum eigenvalue of the Gram matrix

ng Xa; 5;_1 is defined in (5), and 108 is a constant for the baseline
probability.

* Why Q"7

® The iteration error at (r — 1)th iteration (distance between the update at
the (r — 1)th iteration and the update at the (r — 2)th iteration) is a
signal indicating whether ,ng needs to be updated further or not at the
rth iteration.

® |If the distance is small, i.e. the current update and the previous update of
,BGJ» is close, then BGj may not need a further update.

® The algorithm can then turn its attention on those with larger distances
between their current updates and previous updates.



Computational Details

® The gradient computation at each iteration:

Vgcjl(ﬁr) = —X'(y-XB")]g,
- —acj+Bcj(B£;j—ﬁgj)+x£id“1, (8)
where
ag, = ng%
Bg, = xgjxgj,
! = xgrL.

® ag, isa pj-dimensional vector, BG7. is a p; X p; matrix; and d"1isan
n-dimensional vector.

® ag, and Bcj are computed at the pre-iteration stage, while d”~! can be
calculated incrementally at each iteration with computational cost O(np;).

® The computation cost of (8) at the rth iteration is O(p?) + O(npj).



Simulation Experiments

® The ground truth model:

y= > Xg,BE +e
jthrUe

where y is an n-dimensional vector, ng is an n X p; matrix, € ~
MVN(07a§In><n), and

1 1
Bie ~ 5Norma|(2,0‘25) + §Norma|(—2,0.25).

® Rows of Xg; arei.id. MVN(O,ZGj).

® The residual variance o2 is defined in terms of the signal-to-noise ratio (SNR) in
a way such that

Z] cHtrue (ﬁtcmje)T EG]‘ (Btc?je)

SNR =
ol




Simulation Experiments

® Programming language and computational environment:

® The StructZero algorithm was coded in C++ using package “Rcpp”
under the R programming environment.

® When involving a large matrix, the corresponding computation was coded
using “SparseMatrix” module in package “RcppEigen”.

® The simulation experiments were carried out under a 64-bit Linux
machine built on Dell's PowerEdge server with 2 Intel Xeon E5-2650v4
(2.2GHz/12c) CPUs and 448 GB memory.



Simulation Experiments

® Convergence of the algorithm:

The number of true groups |H'"¢| = 3, with sizes equal to 50, 60 and 40,
respectively. All covariates in the three true groups have non-zero valued
regression coefficients.

SNR (signal-to-noise ratio) = 0.5.

Two cases: (n,m) = (2000, 1500) and (n, m) = (50000, 5000), where n is
the sample size, and m is the number of groups in the regression model.

The size of groups: pmin = 5 and pmax = 40 = 32000 < p < 35000 for
the first case, and p = 113,681 for the second case.

In both cases p > n.

Other hyperparameters specified by researchers: v is the number of
groups updated in each iteration; A and 7 are tuning parameters in the
estimation.



Simulation Experiments
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Figure: Plots of iteration error vs iteration number with (n, m) = (2000, 1500). Top
left: (v,7,A) = (1,0.5,0.5); Top right: (v,7,A) = (1,0.5,0.1); Bottom left:
(v, 7,X) = (20,0.1,0.05); Bottom right: (v, 7, ) = (20,0.1,0.001).
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Simulation Experiments
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Figure: Plots of iteration error vs iteration number with (n, m) = (50000, 5000). The
two plots are based on results from the two experiments with

(v, 7,A) = (20,0.001,0.05) and (v, 7, A) = (20,0.001,0.001), respectively; Top:
Iteration error against the number of iterations; Bottom lteration error against the
runtime measured by second.



Simulation Experiments

® Runtime of the algorithm:

The number of true groups |H'" | = 3, with sizes equal to 15, 37 and 22,
respectively.

Each group has the number of zero valued regression coefficients equal to
5, 10 and 2, respectively = The number of non-zero valued regression
coefficients = 57.

SNR = 0.5; n = 10,000; pmin = 5 and pmax = 40.

30 cases: The number of groups m = 500, 1000, - - - , 14500, 15000 =
11,739 < p < 339,608. In all cases p > n.

StructZero algorithm: Tolerance error = 1076, v =200; =0 (No
groupwise variable selection); The number of A = 100.

The number of CPU cores: 1, 5, 10, 20. Parallel computing over tuning
parameters.

Lasso estimation: “glmnet” (version 2.0-13); 100 tuning parameter
values; The Strong Rule is used for screening covariates at the
pre-iteration stage.



Simulation Experiments
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Figure: Runtime of the algorithms corresponding to the structured lp-norm
estimation and the lasso of the glmnet. Top left: Total runtime; Top right: Runtime of
the pre-iteration stage; Bottom Left: Sum of 100 runtimes measured at the iteration
stage scaled by the number of CPU cores; (d) Runtime of the post-iteration stage.
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Simulation Experiments

® Accuracy of the algorithm:

Ground truth model: The same as the one in the previous section.

The number of groups m = 1500 = The number of variables
32000 < p < 35000.

80 cases: Sample size n = 500, 2000, 5000 and 10000; 20 values of SNR
ranging from 0.05 to 10.

StructZero algorithm: Tolerance error = 10~%; v = 200; 7 = 0; The
number of A = 100.

Lasso estimation: “glmnet” (version 2.0-13); 100 tuning parameter
values.

Tuning parameter selection criteria: Mean squared prediction error
(MSPE). New data were used for evaluating the MSPE.

Performance criteria: (a) mean squared error (MSE), (b) True positive
rate (TPE), and (c) false discovery rate (FDR).



Simulation Experiments
mean squared error of estimated parameters
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Figure: MSE of the algorithms corresponding to the structured lp-norm estimation

and the lasso of the glmnet. Top left: n = 500; Top right: n = 2000; Bottom left:
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Simulation Experiments

true positive rate of selected variables
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Figure: True positive rate of the algorithms corresponding to the structured lp-norm
estimation and the lasso of the glmnet. Top left: n = 500; Top right: n = 2000;
Bottom left: n = 5000; Bottom right n = 10000.
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Simulation Experiments

false discovery rate of selected variables
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Figure: False discovery rate of the algorithms corresponding to the structured
lp-norm estimation and the lasso of the glmnet. Top left: n = 500; Top right:
n = 2000; Bottom left: n = 5000; Bottom right n = 10000.




Simulation Experiments

® Sample complexity and signal-to-noise ratio:

® StructZero algorithm vs Lasso estimation.
® The ground truth model is the same as the one in the previous section.

® 2500 cases: 50 values of sample size n from 200 to 10000, and 50 values
of SNR from 0.1 to 5.0. 20 replicates for each case.

® Performance criterion:

e EotructZero lasso

. MSPE — MSPE
t-statistics = — — s
\/Var(MSPEStrutherc> Var(MSPElasso)
20 + 20
where MSPEStrUCtzerO and MSPEIaSSO are the sample mean of the

corresponding MSPE values, while V;r(MSPES““CtZ”O) and
Var(MSPE'®°) are estimated sample variances, and 20 is the number of
replicates.



Simulation Experiments
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Figure: Heatmap of the two sample t-statistic for mean squared prediction error
(MSPE) between the structured lp-norm estimation and the lasso estimation. In each
plot the z-axis is the signal-to-noise ratio (SNR), and the y-axis is the sample size n.
Colored points refer to values of the two sample t-statistic.



Discussion

® |n this talk, we have

® Developed algorithms for carrying out structured lp-norm estimation with
large data;

® Derived closed form representations for the proximal operator of the
structured lgnorm penalty function;

® Developed an attention mechanism for accelerating the iteration
procedure.

® Future research directions:

® Hyperparameter selection: The hyperparameter v, the number of groups
updated at each iteration, plays an important role in running our
algorithm.

® Convergence analysis: Available mathematical tools such as the
“expected separable overapproximation” and the "Kurdyka-tojasiewicz
inequality” may be helpful here.



