Data

Literature

SDR

Estimation

Examples

Discussion

Nonparametric variable selection via sufficient dimension reduction for cross-sectional survival data without follow-up

Ming-Yueh Huang

Institute of Statistical Science, Academia Sinica

December 12, 2020

Nonparametric variable selection via sufficient dimension reduction for cross-sectional survival data without follow-up

Regression on Time-to-Event Data

- T^0 : failure time of interest
 - Duration time from an initial event to a failure event
- X⁰: baseline covariate at onset
- Parameter of interest: $S_{T^0}(t \mid X^0 = x)$

Sampling Mechanisms

• Incident vs. prevalent sampling

- Cross-sectional data: left truncation
- Without follow-up: fully right censoring

Data Structures

- $\bullet\,$ Prevalent data without follow-up: (A,X)
 - A^0 : truncation time
 - $(A, X) \sim (A^0, X^0) | T^0 > X^0$
- Incident and prevalent covariate data: X and X^0
 - ${\scriptstyle \bullet \ } X$ and X^0 are independent
- Problems
 - Only biased sample of (T^0, X^0) is available.
 - Data with no follow-up: $S_{T^0}(t \,|\, X^0 = x)$ is not identifiable.
- Parametric models are often used to identify the covariate effects.

Data

Length-Biased Data

- A^0 is (improper) uniformly distributed.
- Yamaguchi (2003)
 - $\ln T^0 = -\beta_0^{\mathrm{T}} X^0 + \varepsilon_0 \Rightarrow \ln A = -\beta_0^{\mathrm{T}} X + \varepsilon^*$
- Oakes and Dasu (1990), Chan et al. (2012)
 - Proportional mean residual life model: E(T⁰ − t | T⁰ > t, X⁰ = x) = m(t) exp(β₀^Tx)
 λ_A(t | x) = {1/m(t)} exp(-β₀^Tx) = m*(t) exp(-β₀^Tx)
- Chan (2013)
 - $\ln \mathbb{E}[T^0 \mid X^0] = \alpha_0 + \beta_0^T X \Rightarrow f_X(x) = \frac{\exp(\alpha_0 + \beta_0^T x)}{\mathbb{E}(T^0)} f_{X^0}(x)$ • $\ln\{f_X(x)/f_{X^0}(x)\} = \alpha^* + \beta_0^T x$

More General Modeling

- $A^0 \perp (T^0, X^0)$
- Chen and Chiang (2018)
 - General truncation distribution is allowed.
 - General single-index model is considered: $S_{T^0}(t \mid x) = S_0(t, \beta_0^T x)$
 - For prevalent data without follow-up: $f_A(t \mid x) = S_0(t, \beta_0^{\mathrm{T}} x) f_{A^0}(t) / \int_0^\infty S_0(u, \beta_0^{\mathrm{T}} x) f_{A^0}(u) du$

 $\Rightarrow f_A(t \mid x) = f(t, \beta_0^{\mathrm{T}} x)$

• For incident and prevalent covariate data

$$\begin{split} f_X(x)/f_{X^0}(x) &= \int_0^\infty S_0(u, \beta_0^{\mathrm{T}} x) f_{A^0}(u) du / \mathrm{P}(T^0 > A^0) \\ \Rightarrow \ln\{f_X(x)/f_{X^0}(x)\} &= g(\beta_0^{\mathrm{T}} x) \end{split}$$

- Is the single-index model assumed correctly?
 - Model diagnosis is required.
 - Difficulty: $S_0(t, v)$ is not identifiable.
 - More general models?
- How to characterize/screen the covariate effects in more general semiparametric/nonparametric models.

Key Idea

• Connection between $({\cal A}, {\cal X})$ and $({\cal A}^0, {\cal T}^0, {\cal X}^0)$

- $f_A(t \mid x)$
- $\ln\{f_X(x)/f_{X^0}(x)\}$
- Important finding:
 - $S_{T^0}(t \mid X^0 = x)$ is only partially dellivered.
 - Central subspace of $S_{T^0}(t \,|\, X^0 = x)$ can be fully delivered.

Sufficient Dimension Reduction

• The central subspace $\mathcal{S}_{T^0|X^0} = \operatorname{span}(B_0)$ is the smallest linear subspace such that

 $T^0 \perp\!\!\!\perp X^0 \mid B_0^{\mathrm{T}} X^0,$

where B_0 is a $p \times d_0$ index coefficient matrix.

• Equivalently, $\mathcal{S}_{T^0|X^0}$ is the smallest linear subspace such that

 $S_{T^0}(t \mid X^0 = x) = S(t, B_0^{\mathrm{T}}x)$ for some link function S.

Data

Submodels

- The structural dimension d_0 (number of linear indices) is also to be determined.
- In fact, SDR is a series of nested multiple index models.
 - $d_0 = p$: fully nonparametric regression
 - $d_0 = 1$: single-index model
 - $d_0 = 0$: $T^0 \perp X^0$
- $e_{\ell}^{T}B_{0} \equiv 0 \Leftrightarrow X_{\ell}^{0}$ has no covariate effect on T^{0} .
- Parameters of interest: d_0 , B_0 , and $\mathcal{A}_0 = \{\ell : \|\mathbf{e}_{\ell}^{\mathrm{T}} B_0\| \neq 0\}.$

Prevalent Data without Follow-Up

- Observed variables: $(A, X) \sim (A^0, X^0) | T^0 > X^0$
- Under $A^0 \perp (T^0, X^0)$,

$$f_A(t \mid x) = \frac{S_{T^0}(t \mid X^0 = x) f_{A^0}(t)}{\int_0^\infty S_{T^0}(u \mid X^0 = x) f_{A^0}(u) du}$$

- The central subspace $\mathcal{S}_{A|X} = \mathcal{S}_{T^0|X^0}$.
- Random sample $\{(A_i, X_i)\}_{i=1}^n$
- Existing SDR methods can be directly applied.

Semiparametric Cross-Validation Criterion

- Huang and Chiang (2017)
- The semiparametric cross-validation criterion is defined as

$$CV_A(d, B, h) = \frac{1}{n} \sum_{i=1}^n \int \{1(A_i \le t) - \widehat{F}_A^{-i}(t \mid B^{\mathrm{T}} X_i; B)\}^2 d\widehat{F}_A(t),$$

•
$$\widehat{F}_A(t \mid v; B) = \frac{\sum_{i=1}^n 1(A_i \le t)\mathcal{K}_h(B^{\mathrm{T}}X_i - v)}{\sum_{i=1}^n \mathcal{K}_h(B^{\mathrm{T}}X_i - v)}$$

• The supersript -i denotes the estimator based on data with the *i*th subject being deleted,

•
$$\widehat{F}_A(t) = n^{-1} \sum_{i=1}^n \mathbb{1}(A_i \le t).$$

•
$$(\widehat{d}, \widehat{B}, \widehat{h}) = \operatorname{argminCV}_A(d, B, h).$$

Selection of Baseline Significant Covariates

- The parametrization $B = (I_d, C^T)^T$ requires d baseline significant covariates for each working dimension d.
- Minimizing $CV_A(d, B, h)$ w.r.t. all the permutations of $\{X_1, \ldots, X_p\}$.
 - At least $\binom{p}{d}$ minimization problems to be solved
- Starting from an initial estimator \check{B}
 - Calculate the projection matrix $\check{P} = \check{B}(\check{B}^{\mathrm{T}}\check{B})^{-1}\check{B}^{\mathrm{T}}$.
 - Calculate the L²-norms of column vectors of P̃.
 - Choose the covariates corresponding to the column vectors with first *d* large norms.

- Penalization
- Screening of zero row vectors of \widehat{B}
- Consistent selection (oracle property)
- We combine the group LASSO of Yuan and Lin (2006) and the adaptive LASSO of Zou (2006).

$$\operatorname{CV}_{A,\lambda}(B) = \operatorname{CV}_A(\widehat{d}, B, \widehat{h}) + \lambda \sum_{\ell=1}^{p-\widehat{d}} \frac{\|\mathbf{e}_{\ell}^{\mathrm{T}}B\|}{\|\mathbf{e}_{\ell}^{\mathrm{T}}\widehat{B}\|},$$

where λ is a tuning parameter.

• $\widehat{B}_{\lambda} = \operatorname{argminCV}_{A,\lambda}(B).$

• We modify the generalized information criterion of Zhang et al. (2010) to the following BIC-type criterion:

$$\operatorname{CV}_A(\widehat{d}, \widehat{B}_\lambda, \widehat{h}) + \frac{\log n}{n} |\widehat{\mathcal{A}}_\lambda| \operatorname{CV}_A(\widehat{d}, \widehat{B}, \widehat{h}),$$

where $\widehat{\mathcal{A}}_{\lambda} = \{\ell : \|\mathbf{e}_{\ell}^{\mathrm{T}}\widehat{B}_{\lambda}\| \neq 0\}$, and denote the minimizer as $\widehat{\lambda}$.

Incident and Prevalent Covariate Data

- Observed variables: X and X^0 with $X \perp X^0$
- $\bullet \ \ \mathrm{Under} \ A^0 \, \mathbb{ll} \, (T^0, X^0) \text{,}$

$$f_X(x) = \frac{\int_0^\infty S_{T^0}(u \,|\, X^0 = x) f_{A^0}(u) du}{\mathcal{P}(T^0 > A^0)} f_{X^0}(x).$$

Let

$$m(x) \stackrel{\triangle}{=} \ln\{f_X(x)/f_{X^0}(x)\} = \ln\frac{\int_0^\infty S_{T^0}(u \,|\, X^0 = x)f_{A^0}(u)du}{\mathcal{P}(T^0 > A^0)}$$

Case-Control Study

Designed variables:

 $(D,Z) = \begin{cases} (0,X^0) & \text{ if subject belongs to the incident cohort,} \\ (1,X) & \text{ if subject belongs to the prevalent cohort.} \end{cases}$

•
$$f_Z(z \mid D = 1) = f_X(z)$$
 and $f_Z(z \mid D = 0) = f_{X^0}(z)$.
• $\begin{cases} P(D = 1 \mid Z = z) = \frac{\exp\{m(z)\}P(D=1)}{\exp\{m(z)\}P(D=1)+P(D=0)}, \\ m(z) = \ln \frac{P(D=1 \mid Z=z)P(D=0)}{P(D=0 \mid Z=z)P(D=1)}. \end{cases}$

• $S_{D|Z} = \operatorname{span}(B_0)$ is the smallest subspace s.t. $m(x) = g(B_0^T x)$.

• Under some mild conditions, $\mathcal{S}_{D|Z} = \mathcal{S}_{T^0|X^0}$.

•
$$\operatorname{CV}_D(d, B, h) = \frac{1}{n} \sum_{i=1}^{n_0+n_1} \{D_i - \widetilde{\pi}^{-i}(B^{\mathrm{T}}Z_i; B)\}^2$$

• $\widetilde{\pi}(v; B) = \frac{\sum_{i=1}^n D_i \mathcal{K}_h(B^{\mathrm{T}}X_i - v)}{\sum_{i=1}^n \mathcal{K}_h(B^{\mathrm{T}}X_i - v)}.$
• $(\widetilde{d}, \widetilde{B}, \widetilde{h}) = \operatorname{argminCV}_D(d, B, h).$

•
$$\operatorname{CV}_{D,\lambda}(B) = \operatorname{CV}_D(\widetilde{d}, B, \widetilde{h}) + \lambda \sum_{\ell=1}^{p-\widetilde{d}} \frac{\|\mathbf{e}_\ell^T B\|}{\|\mathbf{e}_\ell^T \widetilde{B}\|}$$

•
$$\widetilde{B}_{\lambda} = \operatorname{arg\,min}_B \operatorname{CV}_{D,\lambda}(B).$$

•
$$\widetilde{\lambda} = \operatorname{argmin} \operatorname{CV}_D(\widetilde{d}, \widetilde{B}_{\lambda}, \widetilde{h}) + \frac{\log n}{n} |\widetilde{\mathcal{A}}_{\lambda}| \operatorname{CV}_D(\widetilde{d}, \widetilde{B}, \widetilde{h}).$$

•
$$X = (X_1, \dots, X_{10})^{\mathrm{T}} \sim N(0, I_{10})$$

• $\beta_{01} = (1, 0, 0, 0, 0, 0, 0, 1, 1, 1)^{\mathrm{T}}, \ \beta_{02} = (1, 0, 0, 0, 0, 0, 0, 1, 1, 0)^{\mathrm{T}},$ and $\beta_{03} = (0, 1, 0, 0, 0, 0, 0, 0, 1, -1)^{\mathrm{T}}$

•
$$\varepsilon \sim N(0, 0.05^2)$$

M1.
$$T^0 = [1/\{1 + \exp(1 - \beta_{01}^{T} X^0)\}] \exp(\varepsilon)$$

M2.
$$T^0 = (1/[1 + \exp\{1 - (\beta_{02}^{T}X^0)(\beta_{03}^{T}X^0)\}])\exp(\varepsilon)$$

•
$$A^0 \sim \text{Unif}(0, c_{\text{U}})$$
 or $\text{Beta}(2, c_{\text{B}})$

•
$$P(T^0 \ge A^0)$$
: 0.2, 0.4, 0.6

Simulations

- When the sample size increases,
 - the proportions of $\widehat{d}=d_0$ tend to one,
 - the proportions of selecting significant covariates tend to one,
 - the proportions of insignificant covariates tend to zero,
 - the accuracy measures of \widehat{B} and \widehat{B}_{λ} tends to zero.
- The penalized estimator can not guarantee smaller accuracy measure but mostly lead to smaller standard error of the accuracy measure.
- Same conclusions for $(\widetilde{d}, \widetilde{B})$ and $\widetilde{B}_{\widetilde{\lambda}}$
- The same increasing size on n_1 usually leads to better performance than that on n_0 .

National Comorbidity Survey Replication Data

- The survey was conducted in 2001-2002.
 - ${\scriptstyle \bullet}~$ 1010 English-speaking household residents aged 18+ years old
- $\bullet\,$ Childhood adversities \rightarrow durations of adult mental disorders
- T^0 : duration between suicidal thoughts
- A⁰: time from the last event to recruitment
- Baseline covariates X⁰:
 - age of last suicidal thoughts (age),
 - family structure (fs),
 - gender (gender),
 - status of ever using marijuana or hashish (drug)

National Comorbidity Survey Replication Data

- Chen and Chiang (2018)
 - PLISE: age 0.58 fs + 0.07 gender + 1.39 drug
 - Rank correlation estimator: age 1.33fs + 0.15gender + 1.33drug

•
$$\widehat{B}_{\widehat{\lambda}}^{\mathrm{T}}X = age + 0.083 drug$$

- The single-index model is adequate.
- *fs* and *gender* have no covariate effects.

Worcester Heart Attack Study Data

- Approximately 23% random sample from the cohort years 1997, 1999, and 2001 (Hosmer et al. 2008)
- T^0 : survival following admission to a hospital after AMI
- Baseline covariates X⁰:
 - age (age)
 - body mass index (BMI) at hospital admission
 - gender (gender)
- Patients
 - prevalent: admitted to hospitals before April 1, 1999 and were still followed at this date, $n_1=151$
 - $\,\circ\,$ incident: admitted to hospitals after April 1, 1999, $n_0=300$

Worcester Heart Attack Study Data

- Chen and Chiang (2018)
 - Rank correlation estimator:

 $age - 0.20gender - 0.03BMI + 0.30BMI^{2}$

•
$$\widetilde{B}_{\widetilde{\lambda}}^{\mathrm{T}}X = age$$

- The single-index model is adequate.
- age is the only significant covariate.

- For cross-sectional data without follow-up, we showed that the central subspace can be fully delivered.
- Instead of assuming particular models, we select the correct model in a series of nested models which contains the fully nonparametric regression.
- The central subspace can help detect redundant covariates.

Nonparametric variable selection via sufficient dimension reduction for cross-sectional survival data without follow-up

Future Work

- Combination of two types of data
 - Optimal weights for combined criteria
- High-dimensional covariates
 - Pre-screening