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« Introduction to structural causal inference
« Bayes optimal estimator of intervention effects

« Approximation algorithm for the Bayes optimal estimator
« Experimental results
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Introduction to structural causal inference

« Will increasing chocolate consumption increase the number of Nobel
Prize winners?

359

==t n Switzerland

= mm Sweden

r=0.791
P<0.0001 Denmark

25 Austria : = oruay

F. H. Messerli, “Chocolate
Consumption, Cognitive Function,
555 Unied Kingdom and Nobel Laureates,” 2012

Usn'tcd B Nireland P Cermany
, e States

The Nc.hcrlands_- )

104 France

Belg! U:.lalal I I -'—:iﬂland
::o|a-‘dci %Ausnal ia

Po'tUg |Grcccc &l haly

Spain

Nobel Laureates per 10 Million Population

of i sopen {e}

China Brazil

T T T T T T T T T T T T T T ]
0 5 10 13
Chocolate Consumption (kg/yr/capita)

Figure 1. Correlation between Countries’ Annual Per Capita Chocolate Consumption and the Number of Nobel
Laureates per 10 Million Population.
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Introduction to structural causal inference

Wealthier countries
spend more money
on education.

=

Chocolate Nobel prize

Wealthier countries
will consume more
chocolates.

consumption : X winners : Y
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Introduction to structural causal inference

« Karl Pearson, “The Grammar of Science,” 1911

No phenomena are causal; all phenomena are contingent, and the
problem before us is to measure the degree of this contingency, -

— There had been no concrete definition of “causality” in statistics.

Exception: R. Fisher’s Randomized controlled trial = limited to experimental
studies

- Statistical estimation of causality in observational studies has
been attracting a lot of attention recently.

We need a definition of causality
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Introduction to structural causal inference

« Simpson’s paradox

Treatment A | Treatment B

273 _ 289 _
B =078 | 22=0.83

562 _
562" (.80

Charig et al. “Comparison of treatment of renal calculi by open surgery, (---)”, British Medical Journal, 1986
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Introduction to structural causal inference

« Simpson’s paradox

Treatment A | Treatment B
kidney stone size: small % = 0.93 % = 0.87
kidney stone size: large % = 0.73 % = 0.69
273 _ 289 _
555 = 0.78 ssg = 0.83
562 _
55 = 0.80

Charig et al. “Comparison of treatment of renal calculi by open surgery, (---)”, British Medical Journal, 1986
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Introduction to structural causal inference

« Structure behind the data

T: Treatment

S: Kidney
stone size

R: Recovery

Probability of being recovered when
the treatment is A or B:

P(R =1|T = A) = 0.78
P(R =1|T = B) = 0.83
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Introduction to structural causal inference

« Structure behind the data

T: Treatment

S: Kidney
stone size

R: Recovery

Probability of being recovered when Probability of being recovered when
the treatment is A or B: the treatment is set to A or B:
P(R=1|T =A) =0.78 7+ Paoir=ay(R = 1)

P(R =1|T = B) = 0.83 Paoir—py(R = 1)
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Introduction to structural causal inference

« Structure behind the data

T: Treatment

S: Kidney
stone size

R: Recovery

Paofr=a3(R = 1) is defined as follows:
« The probability of R =1 when T is set to A independently of §
« Assumption: P(S),P(R|S,T) does not change
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Introduction to structural causal inference

Piogri=ay (R ZZPdo{T —A)(R=1,8=5T=t)
— ZZPdo{T:A} =115 =5,T = t)Paoir.=ay (S =5, T = 1)
t
= ZPdo{T::A}(R = 1|5 =s,T = A)Pyo(r:=a3(5 = 3)
:zS:P(R: 1S =s,T=A)P(S =s)

=0.93 x 0.51 +0.73 x 0.49
— 0.832

Pdo{T::B}(R — ].) = 0.782

2020 Waseda University - Academia Sinica Data Science Workshop 12



Introduction to structural causal inference

« Structural (equation/causal) model (SCM) & Causal graph

72y = fz,(Z1, €z,)

X = fx(Z1,2,, €x)
Z3 = f7,(X, €z,)

Y = fy(£2,X, 73, €y)
Zy = f2,(X, Y, €z,)

The left-hand side variables Stronger assumption than just

are generated according to assuming conditional distributions.
the right-hand side equations.
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Introduction to structural causal inference

« Definition of Intervention effect [J. Pearl 1998]

Distribution of the objective variable when
the treatment variable is fixed to a certain
value independently of the other variables:

Pdo{X —x}

wy,zl,... Zp)
dzi...dz
/ / (z|pa(z)) ' !
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« Three steps to calculate the intervention effect:

1. Determine/Estimate the structure of causal graph

. Use domain knowledge

. Estimate from data
—  Use independence and conditional independence—Ex: PC algorithm

—  Use posterior probabilities of models—Ex: GES algorithm
— Use restrictions on models—Ex: LINGAM

2. Estimate the conditional distributions
3. Calculate the intervention effect

If the goal is to estimate the intervention effect, we don’t have
to fix a single causal graph and conditional distributions.

- It is Bayes optimal to average the intervention effects
estimated under each model.
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« Posterior probabilities calculation for all candidate models are
necessary for the Bayes optimal estimation

= Computationally hard when the number of candidate models is large

Our research

« Develop the Bayes optimal estimator of mean intervention
effect in linear SCM

« Develop an approximation to Bayes optimal estimator by
using variational Bayes method
— Utilize an idea developed in Bayesian sparse modeling literature
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Linear SCM

« Structural equations are linear (path analysis)

Zo =0z,2,21 + €z,

X =0x7,21+0xz,22+€x

Z3 =0z,xX + €z,

Y =0yz,22+0yxX +0yz,23 + ¢y
Zy =0z, xX+0z,yY +e€z,

coefficients in RHS:
path coefficients
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Linear SCM

« Mean intervention effect (MIE) can be expressed by total effect
[J. Pearl 1998]

Yz = /y ) Pdo{X:::U}dy — Z H H’ij X

IEP (i,5)€l

Zoy =0z,7, 21+ €z,

X =0xz,21+0xz,2>+ €ex

Z3z =0z, xX + ez,

Y =0yz,2+0yx X +0yz, 23+ €y
Zy =0z, xX +0z,vY + ez,

Yo = Oy x +0z,x0yz,)x
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Bayes optimal estimator of MIE

« Causal graph G € G is a random variable with prior p(G)

» Path coefficients {6;;} are random variables with prior p(64|G)
— 0.: set of path coefficients under a causal graph G

Bayes optimal estimator

- data: DY, decision function: d(D")
« loss function: 2(G,0;,d(DM)) = (3,(G,0;) — d(DY))?

(DY) = Y- p(GIDY) [ 5.(G.66)p(661G. D¥)d6c
Geg
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Approximate Bayes optimal estimator

Difficulty in calculation

(DY) = 3 p(GIDY) [ 5.(G.06)p(66]G, DV)dbc

Geg

1. Difficulty in integration
If we assume conjugate prior, we can calculate p(6,|G,D"N)

analytically, but even then, this integration is difficult
(due to the nonlinearity of y,(G,0;) w.r.t. 6;)

(D) = 3" p(GID")5.(G, 0*7)

» GeG
Hé\;lAP

= arg max p(65|G, D)
O¢

20

2020 Waseda University - Academia Sinica Data Science Workshop



Approximate Bayes optimal estimator

Difficulty in calculation

(DY) = 3 p(GIDY) [ 5.(G.06)p(66]G, DV)dbc
Geg

2. Difficulty in summation over all models
Computationally hard when the number of models is large

2020 Waseda University - Academia Sinica Data Science Workshop 21



Approximate Bayes optimal estimator

Assumptions for approximation

()
« We know the positions of the Grun’ ?‘s@
possible edges
- We know the orientation of the A 9
possible edges (causal order) '
« Probability that an edge exist is p @ B @ @%2
-+ If an edge (i,)) exists, p(616) ~  — —
N(0,1) & ®) @’@*

p(G) = p|EG|(1 _ p)lEfull\EGl %) @.
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Approximate Bayes optimal estimator

- Under the assumptions, we can write p(6;;) = X p(6;;1G) as follows:
p6;)) = (1 = p)dp(6;;) + pN(;;;0,7)

50(+): Dirac delta function

0.40

Superficially, we can replace summation

0.30 1

with integration

] (We assume Ggy; as a model, and this
/\ distribution as the prior for 6, )

0.00
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Approximate Bayes optimal estimator

- Under the assumptions, we can write p(6;;) = X p(6;;1G) as follows:
p6;)) = (1 = p)dp(6;;) + pN(;;;0,7)

50(+): Dirac delta function

t Approximate it . l e
by Gaussian o
] /\ Scale Mixture 2. /\
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Approximate Bayes optimal estimator

Approximation algorithm

« Assume GSM for p(8g;,|Grun)

- Approximately calculate 8, , = argmaxp(8g,, |G, DY) Using

. Gfull
variational Bayes method

« Calculate 3, (Gay, aGfull)
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« Semi-synthetic data

— Infant Health and Development Program (IHDP) data
— Linked Birth and Infant Death Data (LBIDD)

« Include counterfactual data generated artificially

Ycfact Yfact X W1 Wy
4.32 5.60 -0.53 -0.34
/.86 6.88 -1.74 -1.80
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« Semi-synthetic data

— Infant Health and Development Program (IHDP) data
— Linked Birth and Infant Death Data (LBIDD)

« Include counterfactual data generated artificially

Ycfact Yfact X W1 Wy
1.58 4,32 5.60 1 -0.53 -0.34
0.98 7.86 6.88 0 -1.74 -1.80

Avg. 4.02 é estimate
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Experiments

Ycfact

Yfact

4.32

5.60

-0.53

-0.34

/.86

6.88

-1.74

-1.80
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squared error for the ATE
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« The outputs of IPW estimator and proposed estimator would be
comparatively reliable for IHDP and LBIDD1

« The proposed estimator is robust in the data generation process
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« Introduced the Pearl’s framework of causality estimation

« Derived the Bayes optimal estimator of the mean intervention effect
when the data generating model is an unknown random variable

« Developed an approximation algorithm for the optimal estimator by
using a sparse model technique

e Future works:
— Unknown causal order
— Unobservable latent variables
— Non-linear model or Non-Gaussian model
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