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Abstract: We propose a robust and scalable procedure for general optimization and

inference problems on manifolds, leveraging the classic idea of “median-of-means

estimation”. This is motivated by ubiquitous examples and applications in modern

data science in which a statistical learning problem can be cast as an optimization

problem over manifolds. Being able to incorporate the underlying geometry

for inference, while addressing the need for robustness and scalability, presents

great challenges. We address these challenges by first proving a key lemma that

characterizes some crucial properties of geometric medians on manifolds. In turn,

this allows us to prove the robustness and tighter concentration of our proposed

final estimator in a subsequent theorem. This estimator aggregates a collection of

subset estimators by taking their geometric median over the manifold. We illustrate

bounds on this estimator using examples. The robustness and scalability of the

procedure is shown in numerical examples on simulated and real data sets.
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1. Introduction

There is a rapidly growing collection of learning problems and applications

in data science that can be formalized as optimization problems over non-

Euclidean spaces, such as nonlinear Riemannian manifolds. Advancements in

technology and computing have led to an increasing prevalence of complex data

in non-Euclidean forms, such as positive-definite matrices (diffusion matrices) in

diffusion tensor imaging (Alexander et al. (2007)), shape objects in medical vision

(Kendall (1984)), network data objects (Kolaczyk et al. (2020)) and subspaces

or orthonormal frames (Lin, Rao and Dunson (2017)). A proper statistical

inference from such data involves optimizing over the underlying manifold to

which the data are constrained. For example, there is a vibrant line of research

on estimating Fréchet means (Fréchet (1948)), which are minimizers of Fréchet

functions on manifolds (Bhattacharya and Bhattacharya (2012); Bhattacharya

and Lin (2017)). In this case, both the data and the parameters of interest
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