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Abstract: Functional data often possess nonlinear structures, for example, phase

variation, for which linear dimension-reduction techniques can be ineffective. We

study nonlinear dimension reduction for functional data based on the assumption

that the data lie on an unknown manifold contaminated with noise. We generalize

a recently developed manifold learning method designed for high-dimensional data

into our context, and derive asymptotic convergence results, taking noise into

account. The results based on synthetic examples often produce more accurate

geodesic distance estimations than those of the traditional functional Isomap

method. We further develop a clustering strategy based on the manifold learning

outcomes, and demonstrate that our method outperforms others if the data lie on

a curved manifold. Two real-data examples are presented for illustration.
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1. Introduction

Popular methods of dealing with high-/infinite-dimensional data reduce the

dimension of the data, for example, using a principal component analysis or a

linear discriminant analysis. More recently, nonlinear methods such as manifold

learning have been developed to handle complex data patterns, particularly

for high-dimensional data. Well-known methods include Isomap (Tenenbaum,

De Silva and Langford. (2000)), local linear embedding (Roweis and Saul (2000)),

Laplacian eigenmaps (Belkin and Niyogi (2003)), tangent space alignment (Zhang

and Zha (2004)), and vector diffusion maps (Singer and Wu (2012)). These

methods and their variants have been used successfully in many fields, for

example, in imaging data analysis (Pless and Souvenir (2009)) when the pixels

lie in a high-dimensional vector space, but are concentrated on a low-dimensional

manifold.

Functional data are usually collected sequentially over time. Unlike high-

dimensional data, functional data are intrinsically infinite dimensional, and thus

the demand for dimension reduction is more pressing. Classical functional

principal component analysis (FPCA) is a core technique of linear dimension
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