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Abstract: We introduce a new sparse sliced inverse regression estimator called
Cholesky matrix penalization, and its adaptive version, for achieving sparsity when
estimating the dimensions of a central subspace. The new estimators use the
Cholesky decomposition of the covariance matrix of the covariates and include a
regularization term in the objective function to achieve sparsity in a computation-
ally efficient manner. We establish the theoretical values of the tuning parameters
that achieve estimation and variable selection consistency for the central subspace.
Furthermore, we propose a new projection information criterion to select the tuning
parameter for our proposed estimators, and prove that the new criterion facilitates
selection consistency. The Cholesky matrix penalization estimator inherits the ad-
vantages of the matrix lasso and the lasso sliced inverse regression estimator. Fur-
thermore, it shows superior performance in numerical studies and can be extended
to other sufficient dimension reduction methods in the literature.
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1. Introduction

In a regression problem with a scalar outcome y and a p-variate predictor
X = (Xy,... ,Xp)T, sufficient dimension reduction refers to a class of methods
that try to express the outcome as a function of a few linear combinations of
covariates (Li (2018)). In other words, sufficient dimension reduction aims to
find a matrix B of dimension p x d, with d < p, such that

y L X |B'X, (1.1)

with | denoting statistical independence. Condition implies that the d
linear combinations B' X contain all the information about y on X, so we can
replace X by BT X without loss of information. Dimension reduction is achieved
because the number of linear combinations d is usually much smaller than the
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