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Abstract: We introduce a new sparse sliced inverse regression estimator called

Cholesky matrix penalization, and its adaptive version, for achieving sparsity when

estimating the dimensions of a central subspace. The new estimators use the

Cholesky decomposition of the covariance matrix of the covariates and include a

regularization term in the objective function to achieve sparsity in a computation-

ally efficient manner. We establish the theoretical values of the tuning parameters

that achieve estimation and variable selection consistency for the central subspace.

Furthermore, we propose a new projection information criterion to select the tuning

parameter for our proposed estimators, and prove that the new criterion facilitates

selection consistency. The Cholesky matrix penalization estimator inherits the ad-

vantages of the matrix lasso and the lasso sliced inverse regression estimator. Fur-

thermore, it shows superior performance in numerical studies and can be extended

to other sufficient dimension reduction methods in the literature.
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1. Introduction

In a regression problem with a scalar outcome y and a p-variate predictor

X = (X1, . . . , Xp)
>, sufficient dimension reduction refers to a class of methods

that try to express the outcome as a function of a few linear combinations of

covariates (Li (2018)). In other words, sufficient dimension reduction aims to

find a matrix B of dimension p× d, with d� p, such that

y ⊥ X | B>X, (1.1)

with ⊥ denoting statistical independence. Condition (1.1) implies that the d

linear combinations B>X contain all the information about y on X, so we can

replace X by B>X without loss of information. Dimension reduction is achieved

because the number of linear combinations d is usually much smaller than the
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