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spect to multiple competing risk time-to-event endpoints is considered. Using a

nonparametric approach, a multivariate two-sample statistic is proposed for simul-

taneous testing for differences in cumulative incidence of the multiple competing

survival endpoints.
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covariation processes among martingales associated with all cause-specific counting

processes. The procedure is illustrated by a simulation study and by an application

to data from a recent large randomized cancer prevention clinical trial.
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1. Introduction

Design and evaluation of clinical cancer trials often involve several time-to-
event endpoints. The regulatory decision regarding the recommendation of a new
drug or treatment regimen can be difficult to make when effects of a new drug
vary among study endpoints — Huque and Sankoh (1997). For example, use of
estrogen replacement therapy in post-menopausal women can lead to benefits of
prevention of onset of heart disease, osteoporosis and colon cancer but at a cost
of increased risks of breast, endometrial and ovarian cancer, e.g. see Bilezikian
(1994), Calle, Miracle-McMahill, Thun and Heath (1995) and Jick (1993).

Various statistical methods have been proposed to assess the overall effect
of treatment and aid in the two-decision problem of whether or not to go for-
ward with the new treatment when there are multiple outcome variables. One
such method is to consider quality of life adjusted survival (Gelber, Gelman and
Goldhirsch (1989)). For sequential monitoring of a clinical trial, Jennison and
Turnbull (1993) and Thall, Simon and Estey (1993, 1996) propose specification
of minimum acceptable tradeoffs for multiple normal and binary responses, re-
spectively. In particular, Jennison and Turnbull (1993, Sec. 2) propose dividing
the parameter space for each outcome variable into acceptable, indifference and
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unacceptable regions. For K outcome variables, this leads to 3K regions and non-
statistical considerations are used to assign an “Accept” or “Reject” decision to
each. This will be the paradigm we will use when considering the situation with
competing time-to-event outcomes on each subject.

Competing risk models with failure times to several endpoints have been
intensively studied, see, for example, Kalbfleisch and Prentice (1980, Chap. 6)
and Cox and Oakes (1984, Chap. 9). Some interesting examples from clinical
oncology data are presented in detail by Gaynor, Feuer, Tan, Wu, Little, Straus,
Clarkson and Brennan (1993). For comparing groups with respect to cumulative
incidence of a particular single failure type in the presence of several competing
risks, Gray (1988) develops a test statistic based on integrated weighted differ-
ences of the hazard rates corresponding to the cumulative incidence functions
for the failure type of interest in each group. (The cumulative incidence for a
given cause at time t is defined as the probability that failure is due to that
cause and that this occurs at or before time t (t > 0). It has also been termed
the “absolute cause-specific risk” in Benichou and Gail (1990) and the “crude
incidence curve” in Korn and Dorey (1992).) An approach similar to that of
Gray (1988) was taken by Pepe and Mori (1993) but using weighted differences
of the cumulative incidence functions themselves, or alternatively of conditional
probability functions. (The latter is defined as the probability of failure due to
the given cause by time t conditional that no other cause has led to failure prior
to t.) In the context of a regression setup, Cheng, Fine and Wei (1998) have
recently considered the problem of predicting the cumulative incidence function
under a proportional hazards model.

Pepe (1991) develops a very general class of procedures for comparing groups
using estimates of functionals of survival, cumulative incidence and cumulative
hazard functions. However Pepe uses a univariate (or “global”) summary statis-
tic for the difference in the multiple competing risk experience between the two
groups. Our methodological approach is to retain the multivariate structure and
base inferences on a multivariate statistic, in which each component corresponds
to a respective failure type. Also our analytic approach differs from that of
Pepe (1991). We utilize a martingale technique to obtain asymptotic joint distri-
butions of various test statistics for use with simultaneous inference procedures
involving multiple survival endpoints in a dependent competing risks setup. Pre-
vious authors have considered variation processes of martingales associated with
individual cause-specific counting processes. By calculating covariation processes
among martingales associated with all cause-specific counting processes, we are
able to develop a simultaneous approach for the dependent competing risks prob-
lem. This development is described in Section 2. In Section 3 we apply the theory
to the construction of a two-decision testing procedure, as described above, with
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given operating characteristics. In Section 4, we describe the results of a simula-
tion study designed to investigate the finite sample properties of the procedure.
Finally we give an application to data from the Nutritional Prevention of Cancer
(NPC) trial (Clark (1996)).

2. Theoretical Background

2.1. The one sample problem

We start by describing some large sample results for the one sample problem.
Suppose data from a competing risk model are i.i.d. random vectors {(Yi, δi), 1 ≤
i ≤ n} with distribution equal to a random vector (Y, δ). We assume that the
failure time Y ≥ 0 is a continuous random variable and failure type δ can take
on one of the values 1, . . . , k. Thus, when δ = j, we say that the subject fails for
cause j at time Y . A subject cannot fail from two causes at the same time. We
may consider censoring as one of the failure types. For each subject i and failure
type j, we denote cause-specific counting processes as

N j
i (t) = 1(Yi≤t,δi=j), t ≥ 0.

Denote all information observed up to time t by the filtration

Ft = σ{N j
i (u), 1 ≤ j ≤ k, 1 ≤ i ≤ n; 0 ≤ u ≤ t}, t ≥ 0. (1)

Note that, when k = 2, this filtration is consistent with the one defined in
Theorem 1.3.1 of Fleming and Harrington (1991, p.26). We define the cause-
specific hazard rate as

λ#
j (t) = −

d
dtP (Y ≥ t, δ = j)

P (Y ≥ t)
, for 1 ≤ j ≤ k.

Fleming and Harrington (1991, p.29) show that, for each j, 1 ≤ j ≤ k,

M j
i (t) = N j

i (t) −
∫ t

0
λ#

j (s)1(Yi≥s)ds, 1 ≤ i ≤ n, (2)

are locally square integrable Ft−martingales with respect to the filtration (1).
To facilitate the description, we need additional notation. Denote the cause-

specific cumulative hazard Λ#
j (t) =

∫ t
0 λ#

j (s)ds, marginal survival function F (t) =
P (Y ≥ t), and cumulative incidence Ij(t) = P (Y < t, δ = j) =

∫ t
0 F (s)λ#

j (s)ds.
We will use corresponding estimators Λ̂#

jn(t) =
∫ t
0 (1/Ȳn(s))dN̄ j

n(s), F̂n(t) =
exp{−∑k

j=1

∫ t
0(1/Ȳn(s))dN̄ j

n(s)}, and Îjn(t) =
∫ t
0 (F̂n(s)/Ȳn(s))dN̄ j

n(s), respec-
tively. In these expressions, the sample means are defined as N̄ j

n(s)= 1
n

∑n
i=1N

j
i (s),
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1 ≤ j ≤ k and Ȳn(s) = 1
n

∑n
i=1 1(Yi≥s). The asymptotic properties of these esti-

mators have been described by several authors, including Kalbfleisch and Prentice
(1980) and Pepe (1991).

2.2. The two sample problem

Suppose there are two groups of i.i.d. random vectors {(Y (m)
i , δ

(m)
i ), 1 ≤ i ≤

nm},m = 1, 2 with distributions equal to random vectors (Y (m), δ(m)),m = 1, 2,
respectively. In general, the superscript (m) attached to any quantity defined in
Section 2.1, such as λ

(m),#
j (s), n(m), etc., refers to that same quantity for the

corresponding group, m = 1, 2. In particular, we let I
(m)
j (t) be the cumulative

incidence function for group m and cause j and let Î
(m)
j (t) be its estimator

as described above. We propose to use the cause-specific cumulative incidence
function as the basis to compare the two groups. This permits the comparison of
probabilities of failure of a specific type in the setting where the competing risks
are acknowledged to exist and thus has a direct clinical interpretation (Pepe and
Mori (1993), Sec. 1). This is not the case for the cause-specific hazard function,
for example. As Gray (1988, p.1142) points out, a test of equality of cumulative
incidence functions for a given failure type is not equivalent to one of equality
of corresponding cause-specific hazard functions for that type, unless the null
hypothesis also specifies that the overall survival functions are the same in both
groups.

From Pepe (1991, p.772), we have that {
√

n(m)(Î(m)
j (t)−I

(m)
j (t)), 1 ≤ j ≤ k}

converges in distribution to a k-variate normal distribution for each m = 1, 2.
We propose to use the integrated weighted difference

Xj(τ) =

√
n(1)n(2)

n(1) + n(2)

∫ τ

0
Ŵj(s)d

[
Î
(1)
j (s) − Î

(2)
j (s)

]

as a test statistic to compare cause-specific cumulative incidences I
(1)
j (t) and

I
(2)
j (t), where Ŵj(t) is a weight function converging to some Wj(t) in probability.

This statistic is in the class considered by Pepe (1991, Sec. 4) and related to
the one proposed by Gray (1988, Eqn 1.3). However, here we are interested in
simultaneous inference on cumulative incidences of all causes. Accordingly, we
need the joint distribution of (X1(τ), . . . ,Xk(τ)).

Denote weighted cumulative incidences as

B
(m)
j (t) =

∫ t

0
Wj(s)F (m)(u)λ(m),#

j (s)ds, 1 ≤ j ≤ k, m = 1, 2
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and, for each fixed τ > 0, define

A
(m)
l (s; j, τ, n(m))=




[
B

(m)
j (τ)−B

(m)
j (s)

] F̂
(m)

n(m)
(s)

F (m)(s)Ȳ
(m)

n(m)
(s)

, l �= j

[
B

(m)
j (τ)−B

(m)
j (s)

] F̂
(m)

n(m)
(s)

F (m)(s)Ȳ
(m)

n(m)
(s)

−Ŵj(s)
F̂

(m)

n(m)
(s)

Ȳ
(m)

n(m)
(s)

, l = j.

With a standard martingale manipulation argument, we can show that, under a
null hypothesis that the cumulative incidence functions for cause j are the same
for both groups, i.e., I

(1)
j (t) = I

(2)
j (t) for t > 0, we can write

Xj(τ) =

√
n(1)n(2)

n(1) + n(2)

[
−

k∑
l=1

∫ τ

0
A

(1)
l (s; j, τ, n(1))dM̄

(1),l

n(1) (s)

+
k∑

l=1

∫ τ

0
A

(2)
l (s; j, τ, n(2))dM̄

(2),l

n(2) (s)

]
+ o(1). (3)

Note that for each fixed τ , A
(m)
l (s; j, τ, n(m)) is Fs−measurable. Under standard

regularity conditions, variances and covariances of all {Xj(τ)} are convergent
and any linear combination of the {Xj(τ)} has an asymptotic normal distribu-
tion. Hence by the Cramér-Wold device (e.g. Billingsley (1995), Theorem 29.4),
(X1(τ), . . . ,Xk(τ)) converges to a multivariate normal distribution. The consid-
erations concerning the choice of weight function W are analogous to those for
for weighted Kaplan-Meier or weighted logrank statistics for comparing survival
distributions — Pepe and Fleming (1989, 1991). A decreasing function gives
more weight to early differences resulting in greater power against corresponding
alternative hypotheses. The opposite would apply to increasing weight functions.
In our example, we examine sensitivity to the choice of W by considering several
weight functions in the classes considered by Gray (1988) and by Pepe and Mori
(1993). There has been less guidance in the literature as to the choice of horizon
τ . For the asymptotic theory to hold, τ must be fixed and should be prespecified
based on historical experience. Typically τ should be chosen so that it is expected
that most or all of the events are included in the interval [0, τ ]; however, if the
weight function is not chosen to be decreasing sufficiently, increased variability
of the estimates of the cumulative incidence function at later times can tend to
dilute the power of the test. Fortunately, limited sensitivity analyses that we
have performed have shown results that are fairly insensitive to the choices of
weight function and horizon, at least in the examples we present.

To illustrate an application of the result (3), we consider simultaneous infer-
ence for two of k competing risks. The same method can be used for simultaneous
inference for any number of competing risks.
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2.3. Simultaneous inference for two competing risks

Suppose we are interested in failure causes 1 and 2 out of the k compet-
ing causes. From the previous section we have that the joint distribution of
(X1(τ),X2(τ)) is asymptotically bivariate normal. From the martingale expres-
sion (3), we have variances that are asymptotically equivalent to

Var (X1(τ)) a=
n(1)n(2)

n(1) + n(2)

k∑
l=1

∫ τ

0

[A
(1)
l (s; 1, τ, n(1))2Ȳn(1)(s)λ(1),#

l (s)
n(1)

+
A

(2)
l (s; 1, τ, n(2))2Ȳn(2)(s)λ(2),#

l (s)
n(2)

]
ds,

Var (X2(τ)) a=
n(1)n(2)

n(1) + n(2)

k∑
l=1

∫ τ

0

[A
(1)
l (s; 2, τ, n(1))2Ȳn(1)(s)λ(1),#

l (s)
n(1)

+
A

(2)
l (s; 2, τ, n(2))2Ȳn(2)(s)λ(2),#

l (s)
n(2)

]
ds

and the asymptotic covariance

Cov (X1(τ),X2(τ)) a=

n(1)n(2)

n(1) + n(2)

k∑
l=1

∫ τ

0

{
A

(1)
l (s; 1, τ, n(1))A(1)

l (s; 2, τ, n(1))
Ȳn(1)(s)λ(1),#

l (s)
n(1)

+A
(2)
l (s; 1, τ, n(2))A(2)

l (s; 2, τ, n(2))
Ȳn(2)(s)λ(2),#

l (s)
n(2)

}
ds.

Denote

Â
(m)
l (s; j, t, n(m)) =




[
B̂

(m)
j (t) − B̂

(m)
j (s)

]
1

Ȳ
(m)

n(m)
(s)

, l �= j,

[
B̂

(m)
j (t) − B̂

(m)
j (s)

]
1

Ȳ
(m)

n(m)
(s)

− Ŵj(s)
F̂

(m)

n(m)
(s)

Ȳ
(m)

n(m)
(s)

, l = j.

where

B̂
(m)
j (u) =

∫ u

0
Ŵj(s)

F̂
(m)

n(m)(s)

Ȳ
(m)

n(m)(s)
dN̄ (m),j

n (s).

We can estimate the variances by

σ̂2
1 = n(1)n(2)

n(1)+n(2)

k∑
l=1

∫ τ
0

[
Â

(1)
l

(s;1,τ,n(1))2

n(1) dN̄
(1),l

n(1) (s) + Â
(2)
l

(s;1,τ,n(2))2

n(2) dN̄
(2),l

n(2) (s)
]
,

σ̂2
2 = n(1)n(2)

n(1)+n(2)

k∑
l=1

∫ τ
0

[
Â

(1)
l

(s;2,τ,n(1))2

n(1) dN̄
(1),l

n(1) (s) + Â
(2)
l

(s;2,τ,n(2))2

n(2) dN̄
(2),l

n(2) (s)
]
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and the covariance by

Ĉ =
n(1)n(2)

n(1) + n(2)

k∑
l=1

∫ τ

0

{
Â

(1)
l (s; 1, τ, n(1))Â(1)

l (s; 2, τ, n(1))
dN̄

(1),l

n(1) (s)
n(1)

+Â
(2)
l (s; 1, τ, n(2))Â(2)

l (s; 2, τ, n(2))
dN̄

(2),l

n(2) (s)
n(2)

}
.

Denoting

T1 =
X1(τ)

σ̂1
, T2 =

X2(τ)
σ̂2

, ρ̂ =
Ĉ

σ̂1σ̂2
, (4)

we will use (T1, T2) as a bivariate test statistic that has an asymptotic bivariate
normal distribution with correlation coefficient consistently estimated by ρ̂.

3. A Testing Procedure for a Two-Decision Problem

We use the statistic (T1, T2) and, by the above, we may suppose it is approx-
imately bivariate normally distributed with variances σ2

1 = σ2
2 = 1, covariance ρ

and means (µ1, µ2), say. We suppose that the event “failure” is an unfavorable
one, sample 1 is from a standard treatment and sample 2 is a new treatment.
Since Tj, j = 1, 2, is an observed measure of the standardized difference in cu-
mulative incidence for cause j between the control and treatment group, positive
values of µj, j = 1, 2, would imply the new treatment is beneficial. A reasonable
procedure might be to recommend the new treatment if it is not worse than the
control in both cause-specific cumulative incidences and it is better in at least one.
That is, we recommend the treatment if min{µ1, µ2} ≥ 0 and max{µ1, µ2} > 0.
These criteria can easily be adapted to any of the alternate situations described
in Section 2 of Jennison and Turnbull (1993). Following that paper, a reasonable
shape for an acceptance region for an overall favorable treatment outcome is:

C(a, b) = {(t1, t2) : min{t1, t2} ≥ a, max{t1, t2} ≥ b} (5)

for some a, b. The choice of (a, b) can be made so that the procedure satisfies
prespecified requirements on the operating characteristic (OC) function. This
will depend on non-statistical considerations such as the relative importance
(risk/benefit tradeoff) of the different types of failure outcome. In the absence
of such input, an arbitrary ad hoc rule might be to first choose a = −0.3551 so
that T ≤ a would marginally imply a negative mean (95% power at µ = −2);
and then choose a ρ-dependent b so that Pr[(T1, T2) ∈ C(a, b)|µ1 = µ2 = 0] = α,
a given significance level. For example, if ρ̂ = 0.9 and α = 0.05, we might
choose b = 1.798 so that P ((T1, T2) ∈ C(a, b)) = 0.05, when µ1 = µ2 = 0. We
employ this procedure in the simulation study used to illustrate the methodology
in Section 4.
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Alternatively, one may avoid the direct choice of a and b by simply stating
a P -value. The simultaneous bivariate P -value for the two-decision problem is
given by the probability of the event given in (5) with a and b set equal to
the observed values of min(T1, T2) and max(T1, T2), respectively, and assuming
a bivariate normal distribution with zero means, unit variances and correlation
given by (4). This idea is easily generalized to k ≥ 2 competing risks. The
resulting P -value can be viewed as a univariate summary statistic of the difference
in the multiple competing risk experience between the two groups. We now apply
this procedure in two examples.

4. Example 1: Simulated Data Sets

We describe a simulation study carried out for the purpose of demonstrat-
ing the practicality of the methodology of Section 5 and to illustrate its finite
sample properties. One thousand data sets were generated for sample sizes and
parameter values that might be typical of a large disease prevention trial, such
as the one mentioned in Section 1 and analyzed further in the next section.

First, a binary group assignment variable X is generated which has a Ber-
noulli distribution B(1, 1

2 ); X = 0 implies assignment to the standard or control
(group m = 1), X = 1 implies assignment to the new treatment (group m =
2). Subjects are equally likely to be assigned to either group, independent of
other subjects. Conditional on X, three latent failure times, (Z1, Z2, Z3), are
generated from independent exponential distributions with constant hazard rates
p1 = (2−d1X)/6, p2 = (2−d2X)/6, and p3 = 1−p1−p2, respectively. Here, the
parameters d1 and d2 (with −4 ≤ d1 ≤ 2, −4 ≤ d2 ≤ 2, d1+d2 ≥ −4) specify the
amount by which the cumulative incidence is decreased (for dj > 0) or increased
(dj < 0) by the new treatment over the standard for failures of type j = 1
and j = 2, respectively. Finally the failure time Y and failure type are defined
as Y = min{Z1, Z2, Z3} and δ = j∗, if Y = Zj∗ . Note that this is equivalent
to generating a failure time Y from an exponential distribution with mean 1
and generating the failure type indicator, independently of Y , from a trinomial
distribution with P (δ = j) = pj, j = 1, 2, 3. A random sample of n = 1000 group
assignments, failure times and failure types were generated. We simulated 1000
such data sets for each of the three parameter settings: (d1, d2) = (0, 0), (1, 0),
and (1, 1).

To assess the sensitivity of the test statistics, we explored three choices of
horizon, namely τ = 2, 3, 4, and two classes of weight function. The first class,
suggested by Gray (1988, Eqn 3.2), takes the form:

W G
j (t) = (1 − Î

(0)
jn (t))r, j = 1, 2,
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using the notation of Section 3, and Î
(0)
jn (t) represents the estimated cumulative

incidence function for cause j when the data from both groups 1 and 2 are
combined. The second class of weight functions considered generalizes that of
Pepe and Mori (1993, Sec. 3):

W1(t) = W2(t) =

[
Ĉ0(t)Ĉ1(t)

(n(0)Ĉ0(t) + n(1)Ĉ1(t))/(n(0) + n(1))

]r

,

where
Ĉm(t) = exp{−Λ̂(m),#

3n (t)}, m = 1, 2,

is the estimated survivor function for failures not of types 1 or 2 (e.g. includes
censoring). Both classes of weight function are indexed by a parameter r. When
r = 0, both weight functions reduce simply to a constant. When r > 0, less
weight is put on differences at later time points where there is more variability
in the incidence estimates due to smaller numbers at risk. Conversely, a choice
of r < 0 will lead to more sensitive test when differences at later time points
may be more important. For their respective forms of weight function, Gray
(1988) proposed choices of r = 1, 0,−1, whereas Pepe and Mori (1993) used
r = 1. We will use the Gray-type weight functions with r = 1, 0,−1, and the
Pepe/Mori-type weight functions with r = 0,±1

2 ,±1.

Table 1. Proportions1 of 1000 simulated data sets which recommend the new
treatment.

Horizon Weight function
Difference Constant “Gray” “Pepe/Mori”
parameters τ r = 0 r = −1 r = 1 r = −1 r = − 1

2 r = 1
2 r = 1

Null 2 0.048 0.070 0.026 0.045 0.047 0.047 0.054
d1 = d2 = 0 3 0.049 0.076 0.027 0.042 0.045 0.049 0.054

4 0.048 0.077 0.026 0.058 0.050 0.054 0.053
2 0.624 0.606 0.653 0.609 0.617 0.637 0.636

d1 = 1, d2 = 0 3 0.638 0.601 0.659 0.620 0.627 0.628 0.636
4 0.628 0.607 0.665 0.636 0.638 0.627 0.635

1 Standard errors for rejection probability estimates around 0.05 are approximately 0.007; for rejection

probabilities around 0.60, they are approximately 0.015.

For each of the thousand data sets generated, and for each combination of
weight function and horizon τ , the statistics (T1, T2, ρ̂) were computed. First, the
approximate normality (with unit variance) of the marginal distributions of T1

and of T2 was examined by construction of smoothed histograms and probability
plots using the thousand values generated for each combination of parameter
settings, weight function and time horizon. These plots, not shown here, all
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confirmed the adequacy of the normal approximation. This finding was supported
by the non-significance in every case of the corresponding Shapiro-Wilk (1965)
test. Next, Table 1 shows the proportions of the 1000 data sets in which the
standard treatment was rejected in favor of the new one using the procedure of
Section 5 with size α = 0.05, for differences d1 = d2 = 0 and d1 = 1, d2 = 0.
When d1 = d2 = 1, the null hypothesis was rejected in all 1000 cases (rejection
rate = 100%). For the particular situation shown in Table 1, the test based on
Gray-type weights with r = 1 appears to do best, having lower empirical sizes
and slightly higher empirical powers. However, the differences may possibly be
due to sampling error. The tests using constant and Pepe/Mori-type weight
functions maintain close to nominal size and exhibit good power.

5. Example 2: Application to NPC Trial Data

We now apply the procedure to data from the Nutritional Prevention of
Cancer (NPC) trial (Clark et al. (1996)), as mentioned in Section 1. In this trial,
starting in 1983, 1312 subjects were randomized to either a daily supplement of
200 mg of selenium or a placebo. The patients were followed for up to ten
years. The primary endpoint was squamous cell carcinoma of the skin, but
incidence of internal cancer (lung, colorectal, prostate etc.) was also of interest
as a designated secondary endpoint. Daily dietary supplementation of selenium
might be recommended to the general population if it could be demonstrated that
it delayed the onset of one (or both) endpoints compared to placebo, provided
that the other endpoint was not adversely affected. The two endpoints of interest
are (a) internal cancer incidence and (b) incidence of squamous cell carcinoma of
the skin. Failure time is measured in months from date of entry into the study
to date of first diagnosis. The data are summarized in Table 2 below.

Table 2. Summary data for NPC Trial.

Group 1: Placebo 2: Se Supplement
Patients entered 659 653
(a) Cancer incidence 52 41
(b) SCC incidence 184 211
(c) Incidence Free 423 401
Mean followup (months at risk) 53.4 (Range: 0 - 124.3)

These frequencies are lower than those reported in Clark et al. (1996, Ta-
bles 2 and 3) because here we use only competing risk data of time up to the
first diagnosis of either endpoint (a) or (b) for each subject.

Initially we used a test with a constant weight function and a horizon τ = 60
months, approximately equal to the median followup. Computing the statistics
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(4), we obtain standardized weighted differences between placebo and Se groups
T1 = 1.93 for cumulative cancer incidence, T2 = −1.45 for cumulative SCC inci-
dence, and correlation coefficient ρ̂ = −0.13. These findings agree qualitatively
with the results of the standard logrank tests used in Clark et al. (1996) . There
they reported a statistically significant benefit from Se supplementation for end-
point (a), and a moderate but non-significant increased risk in the less important
SCC incidence – endpoint (b). As remarked in Section 5, the simultaneous bivari-
ate P -value for the two-decision problem is given by the probability of the event
given in (5) with a and b set equal to the observed values of min(T1, T2) = −1.45
and max(T1, T2) = 1.93, respectively, and assuming a bivariate normal distribu-
tion with zero means, unit variances and correlation ρ̂ = −0.13. This is computed
to be 0.047 and suggests that there is no significant negative treatment effect in
both cancer and SCC incidence but there may be significant positive treatment
effect in at least one of the endpoints, here endpoint (a), the internal cancers.

Table 3. Sensitivity of P -values for NPC trial data to various horizons and
weight functions.

Horizon Weight function
τ Constant “Gray” “Pepe/Mori”

(months) r = 0 r = −1 r = 1 r = −1 r = − 1
2 r = 1

2 r = 1
50 0.062 0.057 0.066 0.064 0.064 0.063 0.063
60 0.047 0.043 0.050 0.046 0.046 0.046 0.047
70 0.097 0.092 0.100 0.130 0.120 0.111 0.108
80 0.211 0.210 0.210 0.338 0.303 0.269 0.260

It is important to check the sensitivity of these findings to alternate choices of
horizon τ (50,60,70,80 months, for example), and to alternate choices of weight
function. Such sensitivity analyses should be viewed as exploratory or, alterna-
tively, as providing more credibility to the confirmatory analysis with the pre-
specified choice of weight function and τ . The results are displayed in Table 3.
The longer horizons include later periods where the cumulative incidence func-
tion estimates have higher variability thus diluting power, which is reflected in
the table by higher P -values. For a given τ , the P -value is relatively stable here
for different choices of weight function, except at the highest value of τ = 80. We
might argue on statistical grounds that it is preferable to use a decreasing weight
function that downweights later time periods because heavy censoring increases
the variability and dilutes power. On the other hand, it might be argued on
medical grounds that, in a prevention trial, it is unlikely that an intervention
will have an immediate effect (see Luo, Turnbull and Clark (1997)), and so early
differences in tumor rates should be discounted, thus calling for an increasing
weight function. We compromised on a constant weight function.
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