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Abstract: The regular maximum partial likelihood estimator is biased when the

covariates in the Cox proportional hazards model are measured with error, unless

the measurement errors tend to zero. Although several alternative estimators have

been proposed, theoretical justifications for them are lacking. We try to fill this gap

by showing that the corrected maximum partial likelihood estimator proposed by

Nakamura (1992) is consistent and has an asymptotic normal distribution. A con-

sistent estimator of its variance is derived as well. We also show that the corrected

baseline hazard estimator proposed by Kong, Huang and Li (1998) is consistent and

converges to a Gaussian process. Furthermore, we obtain the estimators for more

general measurement error models where the errors are not normally distributed.

Simulations are performed to show the accuracy of the variance estimator.
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1. Introduction

The Cox proportional hazards model is the most popular model describing
the relationship between risk factors and survival time. Yet it is quite common
that some or even all of the covariates are measured with error or are misspecified.
A common consequence of such measurement error or misspecification is that the
parameter estimations are attenuated, which means that the estimates shrink
toward zero. A more serious consequence is that such error could violate the
correct model relationship. In an example studying the survival time of women
with breast cancer in the San Francisco Bay Area, Gong, Whittemore and Grosser
(1990) have pointed out that a valid proportional hazards model between survival
time and cancer stage was violated because of cancer stage misspecification.

A typical approach to correct the parameter estimation is based on induced
hazard rates, which are defined as the conditional hazards given the observed
covariates and the condition that the event has not occurred (Prentice (1982)).
Such a procedure is believed to give consistent induced maximum partial likeli-
hood estimators (induced MPLEs) and was further explored by Pepe, Self and
Prentice (1989), Tsiatis, DeGruttola and Wulfsohn (1995), Wulfson and Tsiatis
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(1997) and Zhou and Pepe (1995). However, so far there is no effective way to
derive this estimator.

Another approach, which comes from a general strategy developed by Ste-
fanski (1989) and Nakamura (1990), is to construct an unbiased score function.
Knowing that the naive score is biased, these authors constructed a corrected
score such that, given the true covariates, its expectation under the measure-
ment error distribution is the same as the true score; thus, a corrected maximum
likelihood estimator is derived. However, as Stefanski (1989) has argued, such a
corrected score does not exist for the partial likelihood score. Therefore, Naka-
mura (1992) introduced an approximately corrected partial likelihood score and
derived an estimator that was less biased than the naive MPLE, as shown through
simulations. A similar approach was taken by Buzas (1996).

The regression calibration approach was introduced to failure time analysis
by Wang, Hsu, Feng and Prentice (1997). As in logistic regression (Rosner,
Willett and Spiegelman (1989)), this method generates a small bias in estimating
the parameters. However, it can be applied in quite general circumstances and
is easy to implement.

Also as a general approach, Kong (1999) modified the naive MPLE by de-
ducting its estimated bias. This approach produces less biased estimators with
existing software, and the new estimates can be further improved. At the same
time, Kong, Huang and Li (1998) provided a corrected cumulative baseline haz-
ard estimator by modifying the Breslow estimator.

In this paper we show that Nakamura’s approach produces a consistent es-
timator as sample size increases, without requiring that the error magnitude be
small. Under quite general conditions, this estimator also has an asymptotic
normal distribution, with the variance consistently estimated by a sandwich es-
timator (Theorem 3.1). Examples of sandwich estimators can be found in Liang
and Zeger (1986), Lin and Wei (1989) and White (1982). At the same time, we
show that the corrected cumulative baseline hazard estimator is consistent and
follows the Central Limit Theorem under general conditions (Theorem 4.1).

Suppose that the hazard rate λ(t) for survival time T follows the Cox (1972)
proportional hazards model

λ{t; z(t)} = λ0(t) exp{β′z(t)}, (1.1)

where λ0(·) is an unspecified baseline hazard, z is a possibly time-varying p-
vector covariate and β is a p-vector regression parameter. Usually, the observed
data for n subjects are n triplets {Ui, Zi(·), δi}, where Ui = min(Ti, Ci) is the
event time, Ci is the censoring time, Zi(·) is the true covariate process and δi =
I(Ti ≤ Ci), with I(·) being an indicator function. When covariate measurement
error is involved, covariate Zi(·) becomes unobservable. The observed covariate



CONSISTENT ESTIMATION IN COX PROPORTIONAL HAZARDS MODEL 955

is actually the true covariate plus a measurement error. We assume an additive
measurement error of the form:

Xi(t) = Zi(t) + εi(t), for i = 1, . . . , n, (1.2)

for a stationary Gaussian process εi(t) independent of Zi(t). The main assump-
tion on εi(t) is that it has mean zero and a variance-covariance matrix D that is
not dependent on time t. It is not necessary for εi(t) to be normally distributed.
But for ease of notation, we derive the theorems for normally distributed εi(t) and
give the general formulas in Section 5. As a necessary requirement, a consistent
estimator D̂ of D is assumed to exist. Usually, such estimators can be derived
using validation data (e.g. Carroll, Ruppert and Stefanski (1995), Chapter 3).

2. Notation

The arguments in this paper apply mainly to functional models but can eas-
ily be modified for structural models. For functional models, we assume that the
regularity conditions in Andersen and Gill (1982) hold. For structural models
where {Ti, Ci, Zi(·), εi(·)}, i = 1, . . . , n, are i.i.d. random vectors, we make neces-
sary assumptions so that the Laws of Large Numbers holds. We also assume that
Ti, Ci are independent given the true covariate Zi(·) for i = 1, . . . , n. Denoting
a⊗0 = 1, a⊗1 = a and a⊗2 = aa′ for any column vector a, we introduce the
following notations:

S(r)(β, t, Z) =
1
n

n∑
i=1

Yi(t)Zi(t)⊗reβ′Zi(t), r = 0, 1, 2, for Yi(t) = I(Ui ≥ t),

E(β, t, Z) =
S(1)(β, t, Z)
S(0)(β, t, Z)

, and V (β, t, Z) =
S(2)(β, t, Z)
S(0)(β, t, Z)

− E(β, t, Z)⊗2.

Also let
s(r)(β, t) = E{S(r)(β, t, Z)} for r = 0, 1, 2,

where the expectation is taken with respect to the true distribution of (T,C,Z).
Under the above assumptions for both functional and structural models, as n
increases, S(r)(β, t, Z) → s(r)(β, t) for r = 0, 1, 2, so that E(β, t, Z) → e(β, t) and
V (β, t, Z) → v(β, t), where

e(β, t) =
s(1)(β, t)
s(0)(β, t)

and v(β, t) =
s(2)(β, t)
s(0)(β, t)

− e(β, t)⊗2.

Here and later, all assertions of consistency are in probability. For the true
parameter β0 and true covariate Zi(t), define the counting process as Ni(t) =
δiI(Ui ≤ t) and the martingale process as

Mi(t) = Ni(t) −
∫ t

0
Yi(s) exp{β′

0Zi(s)}λ0(s)ds, for i = 1, . . . , n. (2.1)
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With N̄(t) =
∑n

1 Ni(t), the score statistic based on true covariates is defined as

Un(β, t, Z) =
n∑

i=1

∫ t

0
{Zi(s) − E(β, s, Z)}dNi(s). (2.2)

For observed covariates Xi(t), i = 1, . . . , n, in (1.2), S(r)(β, t,X), r = 0, 1, 2,
E(β, t,X), V (β, t,X) and Un(β, t,X) are defined simply by replacing Z(t) with
X(t) in the above definitions. Under observed values of {Xi, Ui, δi}, i = 1, . . . , n,
the observed score Un(β, t,X) is biased, which means that Un(β, t,X) does not
have mean zero at β0. By defining the corrected score as

Ũn(β, t,X) =
n∑

i=1

∫ t

0
{Xi(s) − E(β, s,X) + Dβ}dNi(s) (2.3)

for t ≤ τ ≤ ∞, Nakamura’s corrected MPLE is the β̂ that satisfies

Ũn(β̂, τ,X) = 0. (2.4)

The corrected information matrix is

Ĩn(β̂,X) = −∇βŨn(β̂, τ,X), (2.5)

where ∇β is the derivative with respect to β.
To estimate the cumulative baseline hazard function Λ0(t), Kong, Huang

and Li (1998) proposed a corrected cumulative baseline hazard estimator of the
form

Λ̂0(t,X) = exp{1
2
β̂′D̂β̂}

∫ t

0

dN̄(s)/n
S(0)(β̂, s,X)

, (2.6)

where β̂ is an estimator of β and D̂ is an estimator of the measurement error
variance-covariance matrix derived from validation data or repeated measure-
ments (e.g. Carroll, Ruppert and Stefanski (1995), Chapter 3). To derive a
corrected cumulative baseline hazard estimator, β̂ in (2.6) can be any estimator
rather than just Nakamura’s corrected MPLE. But to show the consistency of
Λ̂0(t,X), we require that both β̂ and D̂ be consistent. To derive the asymptotic
normality of Λ̂0(t,X), we require that both D̂ and β̂ be consistent and that β̂

follow the Central Limit Theorem. However, to avoid confusion in this paper, we
assume that β̂ is Nakamura’s corrected MPLE, as defined in (2.4). It is consistent
as well as asymptotically normally distributed, as shown in the next section.

3. Corrected Maximum Partial Likelihood Estimator

The main result for the corrected MPLE, β̂, is given in Theorem 3.1. How-
ever, for the sake of convenience, we begin with a lemma.
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Lemma 3.1. For Zi(t), εi(t),Xi(t) and Yi(t), i = 1, . . . , n, as defined in Section
2, let

Q0(β, t) =
1√
n

n∑
i=1

Yi(t)eβ′Zi(t){eβ′εi(t)− 1
2
β′Dβ − 1}

and

Q1(β, t) =
1√
n

n∑
i=1

Yi(t)eβ′Zi(t)
[
Xi(t)eβ′εi(t)− 1

2
β′Dβ − {Zi(t) + Dβ}

]
,

for t ≤ τ and measurement error covariance matrix D. Then for S(r)(β, t,X)
and S(r)(β, t, Z), r = 0, 1, as defined in Section 2, the following relationships
hold:

S(0)(β, t,X) = e
1
2
β′Dβ

{
S(0)(β, t, Z) +

1√
n

Q0(β, t)
}

(3.1)

and

S(1)(β, t,X) = e
1
2
β′Dβ

{
S(1)(β, t, Z) + DβS(0)(β, t, Z) +

1√
n

Q1(β, t)
}
. (3.2)

Proof. Because the proofs for (3.1) and (3.2) are similar, we prove only (3.1).
In fact, using (1.2), S(0)(β, t,X) can be written as

S(0)(β, t,X) = e
1
2
β′DβS(0)(β, t, Z) +

1
n

n∑
i=1

Yi(t)eβ′Zi(t){eβ′εi(t) − e
1
2
β′Dβ}, (3.3)

which is (3.1).

Because Q0(β, t) and Q1(β, t) are sums of independent random variables with
mean zero, both are asymptotically normally distributed under the Lindeberg
condition. We assume that the Lindeberg condition holds here and for other
sums of independent random variables given throughout this paper. To derive
the asymptotic variance of the corrected MPLE, let

C1i(β̂,X) =
∫ τ

0

{
Xi(s) − S(1)(β̂, s,X)

S(0)(β̂, s,X)
+ Dβ̂

}
dNi(s)

−
∫ τ

0

{
Xi(s) − S(1)(β̂, s,X)

S(0)(β̂, s,X)

} Yi(s)eβ̂′Xi(s)

S(0)(β̂, s,X)
dN̄(s)

n
(3.4)

and

J̃n(β̂,X) =
1
n

n∑
i=1

C1i(β̂,X)⊗2.

Then Theorem 3.1 follows.
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Theorem 3.1. For the Cox proportional hazards model (1.1) and the additive
measurement error model (1.2), assume that the regularity conditions in Ander-
son and Gill (1982) hold. Then, the corrected MPLE, β̂, is a consistent estimator
of β0 as n → ∞. At the same time, n1/2(β̂ − β0) has an asymptotic normal dis-
tribution with mean zero and a variance-covariance matrix consistently estimated
by

Ĩn(β̂,X)−1J̃n(β̂,X)Ĩn(β̂,X)−1,

where Ĩn(β̂,X) is the corrected information matrix defined in (2.5), and J̃n(β̂,X)
is defined by (3.4).

Comment. For the special case of no measurement error, Ũn(β, t,X) =
Un(β, t, Z), so that Nakamura’s corrected MPLE becomes a regular MPLE and
Ĩn(β̂,X) becomes the observed Fisher information matrix. The variance estima-
tor is not reduced to the inverse of the observed Fisher information. However, it
is still a consistent estimator of the variance of β̂. In fact, it becomes the robust
variance estimator derived by Lin and Wei (1989), given that the Cox model is
not misspecified.

Proof. In order to show the consistency of β̂, we must derive the limit of
Ũn(β, τ,X)/n for any β as in Andersen and Gill (1982). Note that for any
0 ≤ t ≤ τ , by (2.3),

1
n
Ũn(β, t,X) =

1
n

n∑
i=1

∫ t

0
{Xi(s) − E(β, s,X) + Dβ}dMi(s)

+
1
n

n∑
i=1

∫ t

0
{Xi(s) − E(β, s,X) + Dβ}Yi(s)eβ′

0Zi(s)λ0(s)ds, (3.5)

where β0 is the true parameter and Mi(t) is a local-square integrable martingale
as defined in (2.1). The first term of (3.5) is a local square-integrable martingale.
Dividing (3.2) by (3.1) and noting that 1√

n
Qr(β, t) → 0 for r = 0, 1 as n → ∞,

we find
E(β, t,X) = E(β, t, Z) + Dβ + op(1). (3.6)

By calculating the variance function, we can show that the first term of (3.5)
converges to zero. Therefore, with Xi(t) replaced by Zi(t) + εi(t), (3.5) becomes

1
n
Ũn(β, τ,X) =

∫ τ

0
S(1)(β0, s, Z)λ0(s)ds +

∫ τ

0

1
n

n∑
i=1

Yi(s)εi(s)eβ′
0Zi(s)λ0(s)ds

−
∫ τ

0
E(β, s, Z)S(0)(β0, s, Z)λ0(s)ds + op(1).
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The second term is a sum of independent random variables with mean zero and
a variance that can be easily derived. Therefore, as n → ∞, under regularity
conditions the second term goes to zero and the remainder converges to

∫ τ

0

[
s(1)(β0, s) − e(β, s)s(0)(β0, s)

]
λ0(s)ds,

for s(r)(β, s), r = 0, 1, and e(β, s) as defined in Section 2. Under the regularity
conditions, this limiting function becomes zero at β = β0, and its derivative is
a negative function of β. Therefore, using the argument in Andersen and Gill
(1982), we have shown the consistency of β̂.

To derive the limiting distribution of β̂, we apply the Mean Value Theorem
to Ũn(β, τ,X) and write

n1/2(β̂ − β0) =
[ 1
n

Ĩn(β∗,X)
]−1 1√

n
Ũn(β0, τ,X) (3.7)

for β∗ between β0 and β̂. First consider 1√
n
Ũn(β0, t,X) for t ≤ τ , which can be

written as

1√
n
Ũn(β0, t,X) =

1√
n

n∑
i=1

∫ t

0
{Xi(s) − E(β0, s,X) + Dβ0}dMi(s)

+
1√
n

n∑
i=1

∫ t

0
{Xi(s) − E(β0, s,X) + Dβ0}Yi(s)eβ′

0Zi(s)λ0(s)ds

= A1 + A2.

With the aid of expressions (3.1), (3.2) and (3.6), E(β, t,X) can be written as

E(β, t,X) =
E(β, t, Z) + Dβ + 1√

n
Q1(β, t)/S(0)(β, t, Z)

1 + 1√
n
Q0(β, t)/S(0)(β, t, Z)

= E(β, t, Z) + Dβ +
1√
n

Q1(β, t)/S(0)(β, t, Z)

−{E(β, t, Z) + Dβ} 1√
n

Q0(β, t)/S(0)(β, t, Z) + op(
1√
n

). (3.8)

With E(β0, t, Z) approximated by e(β0, t), A1 becomes

A1=
1√
n

n∑
i=1

∫ t

0
{Xi(s) − e(β0, s)}dMi(s)

−
∫ t

0

1
S(0)(β0, s, Z)

[
Q1(β0, s)−{E(β0, s, Z)+Dβ0}Q0(β0, s)

]dM̄(s)
n

+op(1),
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with M̄ (t) =
∑n

1 Mi(t). Because both Q0(β, t) and Q1(β, t) have finite limiting
distributions and both E(β0, t, Z) and S(0)(β0, t, Z) have finite limits, by calcu-
lating the variance function we can show that the second term converges to zero.
Similarly, substituting (3.8) into A2, we find that

A2 =
1√
n

n∑
i=1

∫ t

0

{
Xi(s) − E(β0, s, Z)

}
Yi(s)eβ′

0Zi(s)λ0(s)ds

−
∫ t

0
[Q1(β0, s) − {E(β0, s, Z) + Dβ0}Q0(β0, s)]λ0(s)ds + op(1)

= − 1√
n

n∑
i=1

∫ t

0

[{
Xi(s) − E(β0, s, Z) − Dβ0

}
eβ′

0εi(s)− 1
2
β′
0Dβ0

−{Xi(s) − E(β0, s, Z)}
]
Yi(s)eβ′

0Zi(s)λ0(s)ds + op(1)

= − 1√
n

n∑
i=1

∫ t

0

[{
Xi(s) − e(β0, s) − Dβ0

}
eβ′

0εi(s)− 1
2
β′
0Dβ0

−{Xi(s) − e(β0, s)}
]
Yi(s)eβ′

0Zi(s)λ0(s)ds + op(1).

Notice that the replacement of E(β0, s, Z) by e(β0, s) in the last equation causes
an error of op(1). Combining A1 and A2 yields

1√
n
Ũn(β0, τ,X)=

1√
n

n∑
i=1

∫ τ

0
{Xi(s) − e(β0, s)}dNi(s)

−e−
1
2
β′
0Dβ0

√
n

n∑
i=1

∫ τ

0

{
Xi(s)−e(β0, s)−Dβ0

}
Yi(s)eβ′

0Xi(s)λ0(s)ds

+op(1), (3.9)

which is a sum of independent random variables, each with mean zero. Therefore,
under previous assumptions, the Central Limit Theorem applies. At the same
time, 1

n Ĩn(β,X) can be written as follows:

1
n

Ĩn(β,X) = −
∫ τ

0

{
D − S(2)(β, s,X)

S(0)(β, s,X)
+ E(β, s,X)⊗2

}dN̄(s)
n

. (3.10)

Replacing Xi(t) with Zi(t) + εi(t) in both S(0)(β, t,X) and S(2)(β, t,X) for i =
1, . . . , n, the former becomes

S(0)(β, t,X) = e
1
2
β′DβS(0)(β, t, Z) + op(1) (3.11)

and the latter becomes

S(2)(β, t,X) =
1
n

n∑
i=1

Yi(t)Zi(t)⊗2eβ′Zi(t)+β′εi(t) +
1
n

n∑
i=1

Yi(t)εi(t)⊗2eβ′Zi(t)+β′εi(t)
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+
1
n

n∑
i=1

Yi(t){Zi(t)εi(t)′ + εi(t)Zi(t)′}eβ′Zi(t)+β′εi(t). (3.12)

To derive an approximation for S(2)(β, t,X), we consider the above three terms
separately. The first term can be written as

e
1
2
β′Dβ

[
S(2)(β, t, Z) +

1
n

n∑
i=1

Yi(t)Zi(t)⊗2eβ′Zi(t){eβ′εi(t)− 1
2
β′Dβ − 1}

]

= e
1
2
β′DβS(2)(β, t, Z) + op(1)

since the n summands are independent variables, each with mean zero. Therefore,
the summation converges to zero in probability. With the same technique, the
second term of (3.12) becomes

e
1
2
β′DβS(0)(β, t, Z)(D + Dββ′D) + op(1)

and the last term becomes

e
1
2
β′Dβ

[
S(1)(β, t, Z)β′D + DβS(1)(β, t, Z)′

]
+ op(1).

Combining these expansions of S(2)(β, t,X), we have the following expansion:

S(2)(β, t,X)
S(0)(β, t,X)

=
S(2)(β, t, Z)
S(0)(β, t, Z)

+E(β, t, Z)β′D+DβE(β, t, Z)′+D+Dββ′D+op(1)

for any value of β. Substituting this expression into (3.10) and using (3.6) for
E(β, t,X), it follows that

1
n

Ĩn(β,X) = −
∫ τ

0

{
− S(2)(β, s, Z)

S(0)(β, s, Z)
+ E(β, s, Z)⊗2

}dN̄(s)
n

+ op(1)

= Σ + op(1), (3.13)

where Σ is the information matrix with the true covariates. Letting n → ∞, β̂ →
β0 in probability for true β0, as does β∗. Therefore,

1
n

Ĩn(β̂,X) =
∣∣∣ 1
n

Ĩn(β̂,X) − 1
n

Ĩn(β,X)
∣∣∣ +

1
n

Ĩn(β,X) →p Σ,

which in turn is a consistent estimator of Σ, as is 1
n Ĩn(β∗,X). Because (3.9)

is a sum of n independent random variables, each with mean zero, its variance
is the sum of the variances of these variables, which also equals the sum of the
expectations of the squares of these variables. By the Laws of Large Numbers,
for any fixed β0 and λ0(t), this variance can be consistently estimated by the
sum of the squares of these variables. By replacing β0 with β̂ and replacing λ0(t)
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with the corrected baseline hazard estimator, this sample sum is J̃n(β̂,X), as
defined in (3.4), and converges in probability to the variance of 1√

n
Ũn(β0, t,X).

As a result, n1/2(β̂ − β0), which can be expressed as in (3.7), has an asymptotic
normal distribution with mean zero and a variance consistently estimated by

Ĩn(β̂,X)−1J̃n(β̂,X)Ĩn(β̂,X)−1.

Here, to estimate the variance of 1√
n
Ũn(β0, τ,X), we replace λ0(t) with the mod-

ified Breslow estimator, the consistency of which is given in the next section.

4. Corrected Baseline Hazard Estimator

As we saw at the end of the last section, a consistent estimator of the baseline
hazard λ0(t) is essential for deriving a consistent variance estimator for β̂. In the
following we shall show that the corrected baseline hazard estimator defined in
(2.6) is such an estimator.

Because the true covariate Z is not observable, the Breslow estimator for
the cumulative baseline hazard function Λ0(t) cannot be calculated. To estimate
Λ0(t), Kong, Huang and Li (1998) proposed the modified Breslow estimator
Λ̂0(t,X). In the following discussion, we show that this estimator is consistent
and converges to a Gaussian process as n → ∞. To estimate the variance function
of the limiting process of n1/2{Λ̂0(t,X) − Λ0(t)}, we introduce the following
notation. Let

Ĥ(β̂, t) = −
∫ t

0

e
1
2
β̂′D̂β̂

S(0)(β̂, s,X)

{S(1)(β̂, s,X)
S(0)(β̂, s,X)

+ D̂β̂
}dN̄(s)

n
(4.1)

and

C2i(β̂,X, t) =
∫ t

0

e−
1
2
β̂′D̂β̂

S(0)(β̂, s,X)

{
dNi(s) − Yi(s)eβ̂′Xi(s)

S(0)(β̂, s,X)
dN̄ (s)

n

}
,

for i = 1, . . . , n. Then Theorem 4.1 follows.

Theorem 4.1. Under the assumptions of Theorem 3.1, Λ̂0(t,X), as defined in
(2.6), is a consistent estimator of Λ0(t). Also, on [0, τ ], n1/2{Λ̂0(t,X) − Λ0(t)}
can be expressed as a sum of independent random processes; therefore, the large
sample theory applies, and it converges to a Gaussian process with mean zero and
a variance function that can be consistently estimated by

1
n

n∑
i=1

{
nĤ(β̂, t)Ĩ(β̂,X)−1C1i(β̂,X) + C2i(β̂,X, t)

}⊗2

for 0 ≤ t ≤ τ < ∞ and C1i(β̂,X) defined in (3.4).
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Comment. If the variance D of the measurement error is 0, indicating no
measurement error, Λ̂0(t,X) is reduced to the regular Breslow estimator of Λ0(t).
Although the variance function estimator has a different form from that given by
Andersen and Gill (1982), it is still a consistent estimator of Λ0(t), as indicated
below.

Proof. Replacing β with β̂ in (3.11), the equation is still valid. Putting (3.11)
into Λ̂0(t,X), by the consistency of the Breslow estimator the consistency of
Λ̂0(t,X) is obtained.

To see the limiting distribution, note that

n1/2{Λ̂0(t,X) − Λ0(t)} = n1/2
{
Λ̂0(t,X) − e

1
2
β′
0Dβ0

∫ t

0

dN̄(s)/n
S(0)(β0, s,X)

}

+n1/2
{
e

1
2
β′
0Dβ0

∫ t

0

dN̄(s)/n
S(0)(β0, s,X)

− Λ0(t)
}

= B1 + B2.

Let H(β, t) be given by

∂

∂β

{
e

1
2
β′Dβ

∫ t

0

dN̄ (s)/n
S(0)(β, s,X)

}

= Dβe
1
2
β′Dβ

∫ t

0

dN̄(s)/n
S(0)(β, s,X)

− e
1
2
β′Dβ

∫ t

0

S(1)(β, s,X)
{S(0)(β, s,X)}2

dN̄(s)/n.

Then B1 becomes
H(β∗, t)n1/2(β̂ − β0)

for β∗ between β0 and β̂. When β̂ → β0, β∗ → β0. With the consistency of
the corrected cumulative baseline hazard estimator, as β → β0, H(β, t) can be
approximated as

H(β, t) = DβΛ0(t) −
∫ t

0

S(1)(β, s,X)
S(0)(β, s,X)

λ0(s)ds + op(1)

= DβΛ0(t) −
∫ t

0
{e(β, s) + Dβ}λ0(s)ds + op(1)

= −
∫ t

0
e(β, s)λ0(s)ds + op(1). (4.2)

Adopting expression (3.7) for n1/2(β̂ − β0), with (3.9) and (3.13), B1 becomes

B1 = H(β∗, t)Σ−1
[ 1√

n

n∑
i=1

∫ τ

0
{Xi(s) − e(β0, s)}dNi(s)
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−e−
1
2
β′
0Dβ0

√
n

n∑
i=1

∫ τ

0
{Xi(s) − e(β0, s) − Dβ0}Yi(s)eβ′

0Xi(s)λ0(s)ds
]
+ op(1)

=
1√
n

H(β0, t)Σ−1Ũn(β0, τ,X) + op(1). (4.3)

With H(β0, t) replaced by (4.2), B1 becomes a sum of independent random pro-
cesses, each with mean zero. With (3.1) in Lemma 3.1, the second term of
n1/2{Λ̂0(t,X) − Λ0(t)} can be expressed as

B2 = n1/2
{
e

1
2
β′
0Dβ0

∫ t

0

dN̄(s)/n
S(0)(β0, s,X)

−
∫ t

0

dN̄ (s)/n
S(0)(β0, s, Z)

}
+n1/2

∫ t

0

dM̄ (s)/n
S(0)(β0, s, Z)

= −
∫ t

0

Q0(β0, s)
{S(0)(β0, s, Z)}2

dN̄ (s)/n +
1√
n

∫ t

0

dM̄ (s)
S(0)(β0, s, Z)

+ op(1).

Following the standard martingale argument in Fleming and Harrington (1991),
it follows that

B2 = −
∫ t

0

λ0(s)
s(0)(β0, s)

1√
n

n∑
i=1

Yi(s)eβ′
0Zi(s){eβ′

0εi(s)− 1
2
β′
0Dβ0 − 1}ds

+
1√
n

∫ t

0

1
s(0)(β0, s)

dM̄(s) + op(1)

=
1√
n

n∑
i=1

∫ t

0

1
s(0)(β0, s)

[
dNi(s) − Yi(s)eβ′

0Xi(s)− 1
2
β′
0Dβ0λ0(s)ds

]
+ op(1). (4.4)

Both B1 and B2 are the sums of independent mean zero random processes, as is
B1 + B2. With the Central Limit Theorem, the limiting process of B1 + B2 is a
Gaussian process with mean zero and a variance function that can be consistently
estimated by the sample variance function of the terms in (4.3) and (4.4), with
unknown values replaced by their estimators.

5. General Case

The previous results are derived for normally distributed measurement er-
rors. Similar results are valid for more general measurement error distributions
when the estimators are suitably modified.

For measurement error process εi(t), i = 1, . . . , n, suppose that its moment
generating function φ(β) = E{eβ′εi(t)} does not depend on time t and exists for
all β. Then we define the corrected score function as

Ũn(β, t,X) =
n∑

i=1

∫ t

0

{
Xi(s) − E(β, s,X) +

∇βφ(β)
φ(β)

}
dNi(s) (5.1)
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for t ≤ τ ≤ ∞, where ∇β is the derivative with respect to β. Nakamura’s
corrected MPLE and the corrected information matrix are defined as in Section
2, with the score function defined in (5.1). The corrected cumulative baseline
hazard estimator for Λ0(t) is given by

Λ̂0(t,X) = φ(β̂)
∫ t

0

dN̄ (s)/n
S(0)(β̂, s,X)

,

where β̂ is an estimator of β. Then, under regularity conditions, Theorems 3.1
and 4.1 are both valid, except that Dβ̂ in the definition of J̃n(β̂,X) in (3.5) and
Ĥ(β̂, t) in (4.1) must be replaced by ∇βφ(β̂)/φ(β̂).

6. Simulation Results

Let SD(Z) be the standard deviation of covariate Z, and σ the standard
deviation of measurement error. For a fixed sample size and different values of
β, SD(Z) and σ, Nakamura (1992) simulated the performance of the corrected
MPLE and his variance estimator. Now, knowing that his variance estimator is
not consistent, we have performed a similar simulation to compare its accuracy
with that of ours.

Table 1. Simulation for the corrected MPLE of β and its standard deviation
estimators. M(β̂) is the mean of 500 independent β estimates. SD(β̂) is the
standard deviation of these 500 β estimates. M1(SD) is the square root of
the average of 500 variance estimates using Nakamura’s variance estimator.
M2(SD) is the square root of the average of 500 variance estimates using our
variance estimator. In this table, n = 400, m = 300.

β σ M(β̂) SD(β̂) M1(SD) M2(SD)
0.5 0.6 0.5210 0.0798 0.0735 0.0810
0.6 0.5 0.6197 0.0827 0.0724 0.0802
0.7 0.5 0.7137 0.0926 0.0762 0.0852
0.8 0.4 0.8034 0.0827 0.0748 0.0824
0.9 0.3 0.9130 0.0736 0.0748 0.0789
1.0 0.3 1.0019 0.0802 0.0776 0.0836
1.0 0.4 1.0075 0.0865 0.0829 0.0944
1.0 0.5 1.0162 0.1040 0.0897 0.1093
1.0 0.6 1.0297 0.1274 0.0969 0.1349
1.0 0.7 1.0413 0.1503 0.1147 0.1726
2.0 0.15 2.0230 0.1232 0.1122 0.1188
2.0 0.2 2.0375 0.1372 0.1176 0.1327
2.0 0.25 2.0561 0.1593 0.1261 0.1506
2.0 0.3 2.0545 0.1824 0.1327 0.1722
2.0 0.35 2.0659 0.2202 0.1484 0.2055
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Let n and m be the sample size and the number of failures, respectively. We
chose n = 400 and let Z be a set of 400 uniform random numbers in (0, 121/2)
so that SD(Z) =1. For a given β and each covariate value Z, a failure time Y

is generated from the proportional hazards model with λ0(t) = 1 and relative
risk eβZ . In the first part of the simulation, for m = 100, 200 and 300, we chose
Type-II censoring so that all individuals after the mth failure are censored. For a
fixed σ and a measurement error V generated from N(0, 1), an observed covariate
X is the sum of Z and σV .

Given 400 independent pairs of (X,Y ), we derived a corrected MPLE and
two variance estimates, one using Nakamura’s method and the other using our
formula. This procedure was repeated 500 times, and we derived an average
of the corrected MPLEs, its sample standard deviation and the square root of
the average of Nakamura’s variance estimates and the square root of the average
of our variance estimates. To save space, Table 1 presents only the results for
m = 100. The results for m = 200, 300 are similar and are available from the
authors.

Because the main results derived in this paper are based on the random
censorship assumption, we performed a simulation for the same model with cen-
soring time independently generated from a uniform distribution on [0, d], where
d is a positive number. For a fixed β, d can be chosen such that the percentage
of censoring is a desired value. We performed a simulation for a similar sets of
β, σ, as above, and the results are listed in Table 2.

The results indicate that Nakamura’s corrected MPLE performs quite well
for the given sample size. At the same time, for most of the situations we have
simulated, our variance estimator performs better than that of Nakamura. Es-
pecially in situations where βσ is large and Nakamura’s estimator leads to large
biases, our estimator still gives quite good results (see Table 1). When the cen-
soring percentage increases, both variance estimators become less accurate. The
improvement of our estimator also becomes less dramatic. It is interesting to
note from the simulation that although the theory is developed for the Cox pro-
portional hazards model under random censoring, Nakamura’s corrected MPLE
and our variance estimator both perform as well for the model under Type-II
censoring.

The performance of the corrected baseline hazard estimator Λ̂0(t,X) has
been simulated and presented in Kong, Huang and Li (1998). Those results indi-
cate that Λ̂0(t,X) is a good estimator of Λ0(t). Since the variance estimator of β̂

depends on Λ̂0(t,X), the performance of the former also reflects the performance
of the latter. Therefore, the fact that our variance estimator of β̂ performs well
in the simulation gives us a positive indication about Λ̂0(t,X).
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Table 2. Simulation for the corrected MPLE of β and its standard deviation
estimators under random censoring. M(β̂) is the mean of 500 independent β

estimates. SD(β̂) is the standard deviation of these 500 β estimates. M1(SD)
is the square root of the average of 500 variance estimates using Nakamura’s
variance estimator. M2(SD) is the square root of the average of 500 vari-
ance estimates using our variance estimator. In this table, n = 400 and the
percentage of failure is listed in the table.

β σ % of failure M(β̂) SD(β̂) M1(SD) M2(SD)
0.5 0.6 75% 0.5094 0.0840 0.0747 0.0819
0.5 0.5 25% 0.5115 0.1326 0.1253 0.1280
0.6 0.5 75% 0.6147 0.0899 0.0743 0.0812
0.7 0.5 50% 0.7057 0.1069 0.0937 0.1024
0.8 0.4 50% 0.8042 0.0996 0.0933 0.0990
0.9 0.3 25% 0.8909 0.1621 0.1314 0.1337
1.0 0.3 75% 1.0095 0.0979 0.0782 0.0861
1.0 0.4 75% 1.0118 0.1184 0.0836 0.0976
1.0 0.5 50% 1.0093 0.1368 0.1105 0.1281
1.0 0.6 50% 1.0257 0.1940 0.1324 0.1628
2.0 0.15 75% 2.0385 0.1364 0.1158 0.1231
2.0 0.2 75% 2.0457 0.1593 0.1216 0.1339
2.0 0.25 63% 2.0436 0.2346 0.1883 0.2109
2.0 0.3 63% 2.0409 0.2857 0.2101 0.2459
2.0 0.35 75% 2.1046 0.2520 0.1650 0.2210

7. Remarks

In this paper, we have shown that both Nakamura’s corrected MPLE and our
corrected cumulative baseline hazard estimator for the Cox proportional hazards
model under additive measurement error are consistent and obey the Central
Limit Theorem. Consistent estimators for their respective variance and vari-
ance functions have also been derived. The corrected MPLE and the corrected
cumulative baseline hazard estimator are both easy to implement given the mea-
surement error variance, which is usually estimated from validation data. But
the corrected MPLE may not always exist because the derivative of the cor-
rected score function is not always negative at a certain neighborhood of true β.
This usually happens when the measurement error is large. In our simulation, if
|σβ| ≥ 0.8, the corrected MPLE often fails to converge. To derive the modified
Breslow estimator, any β estimator can be used. However, the resulting hazard
estimator may not be consistent unless a consistent β estimator is applied.

The formulas for estimating the variance and variance functions of the cor-
rected MPLE and the corrected cumulative baseline hazard estimators are com-
plicated. Especially in the latter case, in which several unknown values are
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replaced by their estimators, such replacements may increase the variation of the
estimators and make them less accurate. However, both estimators are consis-
tent. So if the sample size is large enough, these formulas will produce accurate
estimates. In our simulation where the sample size is 400 and censoring changes
from 100 to 300, our variance estimator significantly improves the accuracy of
the estimator suggested by Nakamura (1992). This is especially true when Naka-
mura’s estimator gives a large bias.

Given the complexity of deriving the variance function estimator of the cor-
rected cumulative baseline hazard estimator, one can consider a few alternatives.
In the case where the measurement error variance is small, the estimator sug-
gested by Kong, Huang and Li (1998) can be applied. When the sample size is
small and only the variances at a small number of time points are of interest, the
Bootstrap (Efron and Tibshirani (1993)) method can be applied.

The estimators discussed in this paper can be applied only to additive mea-
surement error models. In this situation, the validation data are used only for
estimating the measurement error variance. For more general measurement er-
ror models, one can apply the regression calibration method (Wang, Hsu, Feng
and Prentice (1997)) or the likelihood method proposed by Wulfsohn and Tsiatis
(1997). In those cases, more information is needed from the validation data. The
regression calibration method is easy to implement, and its limiting properties
are discussed in Wang, Hsu, Feng and Prentice (1997). The implementation of
the likelihood method requires a much more complicated procedure, and it is not
yet clear whether it is in fact consistent.
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