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Abstract: This paper focuses on the bias of the group sequential estimate of treat-

ment effect for correlated data using the generalized estimating equation (GEE)

method and the Lan and DeMets alpha-spending function. Linear and logistic re-

gressions are used to examine (a) the magnitude of the bias of a sequential estimate

with correlated data; (b) the influence of the true correlation structure on bias. A

bias-corrected sequential estimate is proposed using a Brownian motion approxi-

mation and numerical simulation. Logistic regression is used to illustrate and to

assess the performance of the proposed method.
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1. Introduction

Introduced by Pocock (1977) and O’Brien-Fleming (1979), group sequential
analysis has increasingly become a standard method in clinical trials. It has been
known that sequential analysis is prone to exaggeration of treatment effect due
to early stopping of a trial (Emerson and Fleming (1990), Hughes and Pocock
(1988), Hughes, Freedman and Pocock (1992), Pinheiro and DeMets (1997) and
Li and DeMets (1996)). The boundaries in group sequential methods are de-
termined under the null hypothesis for the protection of the overall type-I error
rate. When the null hypothesis is not true, the trial will stop only when the
sequential estimate is large in absolute value, which leads to a biased estimate
of the treatment effect. Traditional estimates of treatment effect are not always
adjusted for sequential monitoring.

Whitehead (1986) proposed an adjustment to the maximum likelihood es-
timate following a sequential probability ratio or triangular test. Whitehead’s
method relies on the feasibility of an assessment of the sequential bias when the
treatment effect is given. With a known correlation structure for correlated data,
the distribution of the sequential estimate can be approximated by Brownian mo-
tion, and thus its bias can be assessed (Pinheiro and DeMets (1997)). When the
true correlation structure of the observations is unknown, the performance of
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bias reduction using Brownian motion is unclear. Since the GEE method for
correlated data (Liang and Zeger (1986)) does not require knowledge of the true
correlation structure given the alpha-spending function, the boundaries can be
determined using the asymptotic normality of the GEE estimate and Mulnor’s
subroutine (Schervish (1984)) for calculation of multivariate normal boundaries
(Wei, Su and Lachin (1990) and Lee and DeMets (1991)). But the lack of the
known correlation structure prevents one from assessing the bias of the sequential
estimate, and thus Whitehead’s adjustment does not seem feasible. Perhaps the
most forbidding factor in using Whitehead’s adjustment to the GEE estimate
is the extremely low speed of Mulnor’s subroutine when the dimension of the
multivariate normal distribution is higher than 3.

The paper is organized as follows. First, group sequential analysis for cor-
related data is briefly reviewed in Section 2. In Section 3, bias of the group se-
quential estimate using the independence working correlation in GEE estimation,
and the alpha-spending function in conjunction with the multivariate integration
method, is examined for linear and logistic regressions. The influence of the true
correlation structure on the sequential bias is studied using one-dependent, AR-1,
exchangeable and independence structures. A bias-corrected sequential estimate
using the independence working correlation structure in the GEE estimation and
Brownian motion approximation is proposed in Section 4. The procedure is il-
lustrated using logistic regression. Finally, Section 5 contains some discussion.

2. Group Sequential Analysis for Correlated Data

Let K be the total number of interim analyses, and N(k) be the number
of subjects available for the kth interim analysis, k = 1, . . . ,K. Let β be the
unknown parameters, γ the component of β corresponding to the treatment ef-
fect of interest, and γ̂(k) the estimate of γ at the kth interim analysis using
the GEE method. Then, under regularity conditions, the joint distribution of
(γ̂(1), . . . , γ̂(k)) is asymptotically normal with mean (γ, . . . , γ). For a detailed de-
scription of GEE estimation for group sequential analysis, see Gange and DeMets
(1996).

Let ψk = Var −1(γ̂(k)), k = 1, . . . ,K. Then the amount of information
accumulated by the kth interim analysis is defined as ψk, where ψK measures
the total information available by the end of the trial. The information fraction
at the kth analysis is t∗k = ψk/ψK = Var (γ̂(K))/Var (γ̂(k)).

The information fraction t∗ is needed for determination of boundaries for
sequential monitorings. Once t∗k is determined, or estimated using calendar time
or number of responses observed or other means, one can use the alpha-spending
function α(·) of Lan and DeMets (1983) to calculate the amount of significance
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level spent at the kth analysis. Given t∗k, the sequential boundaries c1, . . . , cK
are calculated via

P
(∣∣∣γ̂(1)

√
ψ1

∣∣∣ ≤ c1, . . . ,
∣∣∣γ̂(k−1)

√
ψk−1

∣∣∣ ≤ ck−1,
∣∣∣γ̂(k)

√
ψk
∣∣∣ > ck

)
=α(t∗k)−α(t∗k−1),

for k = 1, . . . ,K.
In the following, the sequential bias is examined for four true correlation

structures: one-dependent R1, exchangeable R2, AR-1 R3 and independence
R4 = I (Liang and Zeger (1986)). When the working correlation matrix R is
the true correlation matrix, the sequence {γ̂(j)} has an independent increment
structure, i.e., for j < k < l, Cov (γ̂(k) − γ̂(j), γ̂(l) − γ̂(k)) = 0 (Gange and DeMets
(1996)). Hence the Brownian motion approximation and existing software (Re-
boussin, DeMets, Kim and Lan (1992)) can be used to calculate the sequential
boundaries. Even if R is not the true correlation matrix, the joint distribution
of (γ̂(1), . . . , γ(k)) is still asymptotically normal. Using the asymptotic normality
of (γ̂(1), . . . , γ̂(k)) and Mulnor’s subroutine, one can still calculate the asymptotic
sequential boundaries using the alpha-spending function.

3. Bias of Group Sequential Estimate

We now examine the bias associated with group sequential analysis for cor-
related data. For independent data, the naive or MLE estimate following early
stopping has considerable bias. Let γ̂ denote the estimate of γ at stopping time
τ , where τ is defined as inf{k| |γ̂(k)

√
ψk| > ck, k = 1, . . . ,K − 1}, or τ = K

otherwise. The expectation of γ̂ equals

E(γ̂) = ΣK
k=1E

{
γ̂(k)I

[|γ̂(j)
√
ψj |≤cj ,j=1,...,k−1,|γ̂(k)

√
ψk|>ck]

}

+E
{
γ̂(K)I

[|γ̂(j)
√
ψj |≤cj ,j=1,...,K]

}
,

where I[A] is the indicator function of an event A. Let b(γ) denote the bias of γ̂,
i.e., b(γ) = E(γ̂)− γ. One can see that if γ = 0, i.e., there is no treatment effect,
then b(0) = 0 since the joint distribution of {γ̂(i)} in this situation is symmetric
about zero. If γ is positive, then for K = 2, the simplest case with only one
interim monitoring,

b(γ) = E(γ̂(1)) + E
{

(γ̂(2) − γ̂(1))I
[|γ̂(1)

√
ψ1|≤c1]

}
− γ

≈ E
{

(γ̂(2) − γ̂(1))I
[γ̂(1)

√
ψ1≤c1]

}
.

Note that only when γ̂(1)
√
ψ1 is small, is the difference γ̂(2) − γ̂(1) taken into

account in the bias calculation. Thus γ̂ tends to be an over-estimate for positive
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γ. Also, the later the first interim analysis, the closer γ̂(2) and γ̂(1), and thus the
smaller the bias in general.

The marginal distributions we examine here are Gaussian and binomial. The
former corresponds to the usual linear regression with normal deviates and the
latter to the logistic regression. Assume that the observations are from a ran-
domized clinical trial with treatment effect γ, and let y denote the response and
x be 1 if the subject receives treatment, 0 otherwise. The pair-wise correlation
ρ is 0.3 or 0.7, reflecting different levels of correlation. The sample size n is 100
with 50 subjects in each group. The true correlation structures used in the simu-
lation are the one-dependent R1, exchangeable R2, AR-1 R3 and independence
R4, while the working correlation is the independence structure. For simplicity,
assume that observations from each subject are evenly spaced throughout the
course of the trial. Thus the design of the trial is completely balanced in terms
of data collection. The simulation was performed with 2000 replicates. The null
hypothesis is γ = 0, and the alternative γ �= 0 with the type-I error equal to 0.05
for a two-sided test.

3.1. Linear regression

For linear regression, y = ξ + γx + ε, ε ∼ N(0,σ2). Assume σ2 = 1 and
ξ = 1. Suppose that there are ten observations from each subject and that the
trial is monitored at the times when 2, 5, 7 and 10 observations from each subject
are collected. Thus the number of subjects available at each interim analysis is
N(1) = N(2) = N(3) = N(4) using previous notation.

Figure 1 presents plots of bias for ρ = 0.3 (smoothed using a second degree
local regression, similarly for Figures 2, 3, 4 and 5). Overall, the O’Brien-Fleming
boundaries have smaller bias than Pocock’s boundaries. The power is almost
the same for the O’Brien-Fleming and Pocock boundaries, with their average
power shown in Figure 1. Pocock’s boundaries produce a large bias for small
values of γ, while O’Brien-Fleming’s boundaries have their peaks when Pocock’s
boundaries are almost unbiased. However, this occurs for an extremely large,
almost unlikely treatment effect. The Pocock boundaries are smaller than the
O’Brien-Fleming boundaries for early monitoring and thus produce larger bias
than O’Brien-Fleming boundaries for a small treatment effect. For the O’Brien-
Fleming boundaries, since it is very hard to stop early for a small treatment
effect, the trial will be carried almost to its designed end and thus the bias is
much smaller than for the Pocock boundaries. These properties are consistent
with those observed by others such as Pinheiro and DeMets (1997) and Li and
DeMets (1996).
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Figure 1. Bias and average power for linear regression with ρ = 0.3.

The influence of true correlation structure is clearly demonstrated here by
the similar bias patterns of plots a, c, and d of Figure 1. For the one-dependent
structure, only adjacent observations are correlated. For the AR-1 structure,
correlation of observations more than one-lag apart is almost negligible. Thus
biases from these correlation structures behave almost the same as for the in-
dependence correlation structure. Interestingly, the exchangeable structure has
much smaller bias compared to other structures, including even the independence
correlation. In fact, because of the correlation among all observations from a sin-
gle subject, (γ̂(1), . . . , γ̂(k)) are more correlated with each other than for the other
three correlation structures, and hence produce less bias. The value of pair-wise
correlation ρ has little influence on the overall level of correlation for the three
correlation structures R1, R2, and R4, and thus their bias pattern and magni-
tude for ρ = 0.7 are almost the same as for ρ = 0.3. Figure 2 shows the bias
for the exchangeable structure with ρ = 0.7. For the exchangeable structure,
the magnitude of bias for ρ = 0.7 should be less than for ρ = 0.3 since interim
estimates are more correlated for larger values of ρ than for smaller values.

3.2. Logistic regression

Suppose that the response y is binary with possible values 0 and 1, and
let p be the probability that y is equal to 1. Thus p = eξ+γx/(1 + eξ+γx).
Assume that ξ = .1. Suppose there are eight observations from each subject and
that the trial is monitored at the times when 2, 4, 6 and 8 observations from
each subject are collected. Figure 3 is the counterpart of Figure 1 for logistic
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regression. Again, bias for one-dependent, AR-1 and independence structures
is almost the same, and the exchangeable structure has smaller bias than the
other three. For Pocock’s boundaries, the pattern of bias is similar to the linear
regression case; for O’Brien-Fleming’s boundaries, the bias keeps increasing for
the range of γ examined. The probability of 1 is 0.52 and 0.83 for γ equal to 0
and 1.5 respectively. Thus the range of increase of response rate from control to
treatment group is from 0% to 60% for γ ∈ (0, 1.5). The average power reaches
100% when γ = 1.0 for all four situations. Thus O’Brien-Fleming’s boundaries
produce less bias than Pocock’s for most practical situations. Similar to the
linear regression case, the bias for ρ = 0.7 is almost the same as for ρ = 0.3
for the one-dependent, AR-1 and independence structures, and smaller than for
ρ = 0.3 for the exchangeable structure (not shown here).
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Figure 2. Bias and average power for linear regression for true exchangeable
correlation structure with ρ = 0.7.

3.3. Influence of different monitoring patterns

Simulations comparing different monitoring schemes in various scenarios re-
vealed that early monitoring schemes have larger bias than later schemes for
both O’Brien-Fleming and Pocock’s boundaries. See Qu and DeMets (1998) for
details. Similar results were observed by others, including Li and DeMets (1996)
and Pinheiro and DeMets (1997).

4. Bias Reduction of Group Sequential Estimate

4.1. Bias estimation

We now consider the Whitehead bias correction. The Whitehead bias-
corrected estimate γ∗ is defined as the solution of

γ∗ = γ̂ − b(γ∗). (1)
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The bias of γ∗ is b∗(γ∗) = E(γ∗) − γ = [E(γ̂) − γ] − E[b(γ∗)] = b(γ) − E[b(γ∗)].
So the bias of γ̂ is reduced by the amount of E[b(γ∗)]. See Li and DeMets (1996)
for more discussion of the properties of γ∗.
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Figure 3. Bias and average power for logistic regression with ρ = 0.3.

In practice, (1) can be solved numerically using Newton-Raphson iteration

γ∗i = γ∗i−1 +
(γ̂ − γ∗i−1) − b(γ∗i−1)

1 + b′(γ∗i−1)
, i = 1, 2, . . . ,

where b′(γ) denotes the derivative of the bias function b(γ), and γ∗0 = γ̂. The
iteration requires evaluation of b′(γ) which can be done numerically. The key
in using the Whitehead correction is the estimate of the sequential bias given
the treatment effect. In the following, we are going to use Brownian motion to
approximate the sequential bias b(γ).

Recall the information fraction t∗k = ψk/ψK . If the working correlation is the
true correlation, then for k < l, Cov (γ̂(k), γ̂(l)) = Var (γ̂(l)) (Gange and DeMets
(1996)). As a result

 γ̂(1)

. . .

γ̂(K)


 ∼ N




 γ

. . .

γ


 , ψ−1

K

(
min(t∗i , t∗j)
t∗i · t∗j

)
i,j


 . (2)

Define
BN (t∗k) =

√
t∗k γ̂

(k)
√
ψk.

Then, we have (a) E[BN (t∗k)] = t∗k · (
√
ψK · γ); (b) Var [BN (t∗k)] = t∗k; and (c)

Cov [BN (t∗k), BN (t∗l )] = min{t∗k, t∗l }. Hence, BN (t∗) resembles a Brownian motion
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on [0,1]. Thus, instead of Mulnor’s subroutine, one can use the existing subrou-
tine of Reboussin, DeMets, Kim and Lan (1992) for the calculation of sequential
boundaries. Since (2) is the true joint distribution of the interim estimate, one
can use it to estimate the bias of the sequential estimate of γ. Given the sequen-
tial boundaries {ck} calculated under null hypothesis γ = 0, and a value of γ,
one proceeds as follows:
1. Calculate ψ1, . . . , ψK and t∗1, . . . , t∗K under the alternative hypothesis;
2. Generate γ̂(1), . . . , γ̂(K) from distribution (2);
3. Compare

{∣∣∣γ̂(k)
√
ψk
∣∣∣} with {ck} and calculate γ̂ = γ̂(τ), where τ is the stop-

ping time;
4. repeat steps 2 and 3 a total of M times.
Let {γ̂i}Mi=1 be the M estimates of γ. The sequential bias of γ is then estimated
as

b(γ) = ΣM
i=1

γ̂i
M

− γ.

For the sake of simulations in this paper, {ψk}, {t∗k} and {ck} are calculated using
the known values of the nuisance parameters involved in the models. In practice,
one has to calculate ψk, t∗k and ck under the null hypothesis using the updated
estimate of nuisance parameters at each monitoring. When the study is stopped
at some interim monitoring with the sequential estimate γ̂, one can follow the
above four-step procedure to estimate the bias of the sequential estimate.

4.2. Numerical simulations

The above procedure is based on the assumption that the working correlation
R is the true correlation structure. In practice, the true correlation is unknown,
one has to choose a working correlation, and one of the possible choices is the
independence working correlation. If the independence structure is close to the
true correlation, then this procedure should give satisfactory results. If the in-
dependence structure is far from correct, the general performance of using the
independence structure is unknown. For the previous logistic regression exam-
ple with ρ = 0.3, Figure 4 shows the bias of the original and bias-corrected
sequential estimate using the O’Brien-Fleming boundaries. The bias correction
is surprisingly good even for the true exchangeable structure, and the amount of
bias reduction is almost the same for all four structures. Since the bias for the
exchangeable model is relatively smaller than that for the other three structures,
the procedure over-corrects the sequential estimate slightly. But the magnitude
of over-correction is almost negligible compared to the original bias. In fact, no
matter what the true correlation structure is, the mean of (2) is always correct.
Whether the working correlation is the true structure or not only influences the
variance structure of (2).
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Figure 4. Bias reduction using O’Brien-Fleming’s boundaries and the inde-
pendence working correlation structure for logistic regression with ρ = 0.3.

The first half of Table 1 summarizes the operating characteristics of the origi-
nal and bias-corrected sequential estimates for the true one-dependent correlation
structure for γ = 0, 1.4(0.2). Although the bias of the corrected estimate is much
smaller than it is for the original estimate, its standard deviation is almost the
same. This is consistent with the fact that the bias-corrected estimate actually
shrinks the original sequential estimate. The ratio of bias to the true value of
γ is significantly smaller for the corrected bias than for the original bias. The
second half of Table 1 presents the results for the true exchangeable structure
for which the standard deviation of the bias-corrected estimate is slightly smaller
than that of the original. Since the true one-dependent structure is almost the
same as the independence working correlation, its standard deviation is smaller
than for the exchangeable case. The comparison of operating characteristics of
the two estimates for the true AR-1 and independence structures is much the
same as for the one-dependent and thus is not shown here.

The last column of Table 1 shows the difference between the bias of the
initial estimate b(γ) and that of the bias-corrected estimate b∗(γ). For the val-
ues of γ in the table, one can see that the difference between these two biases
is almost the same for the one-dependent and exchangeable structures. This is
also true for other values of γ in our simulations and for all the four correlation
structures examined in this paper in our simulations (not shown here). Once
the initial estimate γ̂ is obtained, the bias-corrected estimate is derived using (1)
in conjunction with (2). Although the initial estimate is biased, its magnitude
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is mainly determined by the true value of γ. Thus the bias-corrected estimate
is primarily determined by the true value of γ through distribution (2). If the
initial estimate is very close to the true value, then the bias-corrected estimate
will over-correct the bias. Nevertheless, the overall bias reduction using White-
head adjustment and Brownian motion estimation is substantial compared to the
original estimate.

Table 1. Operating characteristics of sequential and bias-corrected esti-
mates using O’Brien-Fleming’s boundaries for logistic regression with true
one-dependent or exchangeable correlation structure with ρ = 0.3.

γ b(γ) std( γ̂) b(γ)/γ b∗(γ) std(γ∗) b∗(γ)/γ b(γ) − b∗(γ)
One-dependence

0.0 –0.015 0.209 * –0.013 0.196 * –0.001
0.2 0.011 0.228 0.059 –0.002 0.214 –0.009 0.013
0.4 0.024 0.247 0.062 –0.001 0.235 –0.004 0.027
0.6 0.047 0.262 0.079 0.011 0.255 0.019 0.036
0.8 0.039 0.275 0.049 –0.001 0.268 –0.001 0.040
1.0 0.064 0.288 0.064 0.018 0.280 0.018 0.046
1.2 0.073 0.353 0.061 0.022 0.347 0.018 0.051
1.4 0.057 0.360 0.041 0.002 0.358 0.001 0.056

Exchangeable
0.0 –0.005 0.283 * –0.005 0.264 * 0.000
0.2 –0.005 0.296 –0.025 –0.017 0.277 –0.089 0.013
0.4 0.016 0.319 0.042 –0.008 0.304 –0.019 0.025
0.6 0.003 0.334 0.005 –0.029 0.322 –0.048 0.033
0.8 0.043 0.347 0.054 0.003 0.337 0.004 0.041
1.0 0.034 0.353 0.034 –0.012 0.344 –0.012 0.046
1.2 0.061 0.420 0.051 0.010 0.413 0.008 0.051
1.4 0.053 0.422 0.038 –0.000 0.419 –0.000 0.054

Sometimes, the nature of the observations may be useful in determining the
form of the true correlation structure, as in a family cohort study where the cor-
relation of any two family members is often the same for the whole family and
thus leads to an exchangeable structure. For a fixed sample size, use of true corre-
lation in the GEE estimation enjoys several desirable statistical properties, such
as small variance and high power. Unfortunately, the relation between power
and bias is not monotonic at the micro level in the group sequential method.
Consider the logistic regression model again and assume that the true exchange-
able correlation is used in the GEE estimation. The information fractions for the
uniform monitoring using the independence correlation in the GEE estimation
are 0.25, 0.50, 0.75 and 1, and the corresponding O’Brien-Fleming boundaries
are 4.332, 2.963, 2.359 and 2.014.
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The information fractions using the true exchangeable structure are 0.596,
0.816, 0.930 and 1. Using the Brownian motion approximation, the O’Brien-
Fleming boundaries are 2.679, 2.259, 2.143 and 2.091. Since observations from a
single subject are all correlated, the two observations obtained at the first interim
analysis contain information about observations not collected, and the amount
of statistical information reaches almost 60% of the total available. Thus the
O’Brien-Fleming boundary for the first monitoring is only 2.679.

Figure 5 shows the bias of the original and bias-corrected sequential estimates
using the true correlation structure in both the GEE estimation and the Brownian
motion approximation. Both types of bias are much larger than their counterpart
in Figure 4. Table 2 shows power and average stopping time (AST) using the true
exchangeable and the independence working correlation structures. Obviously,
the independence structure has a larger average stopping time (AST) because
of its larger boundaries. But the independence structure gives almost the same
power as the true correlation structure. Thus using the independence structure
only delays the stopping time of the trial. Therefore, bias using the independence
working correlation is smaller than that using the true exchangeable correlation,
as indicated in Figures 4 and 5.
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Figure 5. Bias reduction using O’Brien-Fleming’s boundaries and the true
exchangeable correlation structure for logistic regression with ρ = 0.3.

5. Discussion

This paper examines the bias of the group sequential estimate of treatment
effect with correlated data using GEE estimation. Because the true correlation
structure is unknown in most practical cases, our results focus on the use of
the independence working correlation structure. Our simulation results are very
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close to what were reported for independent observations by others. With the
independence working correlation model, the influence of the true correlation
structure is determined by the overall level of correlation of observations from
individual subjects. The higher the overall level of correlation, the smaller the
bias of the sequential estimate. For the four correlation structures we examined,
only the true exchangeable correlation structure distinguishes itself from other
structures by having smaller bias.

Table 2. Power and average stopping time (AST) of sequential analysis
with O’Brien-Fleming’s boundaries calculated using the independence work-
ing correlation or the true exchangeable correlation structure for logistic re-
gression with ρ = 0.3.

γ 0.0 0.2 0.40 0.60 0.80 1.0 1.2 1.4
Independence Power 0.042 0.097 0.269 0.466 0.709 0.838 0.926 0.971

AST 3.977 3.951 3.805 3.578 3.217 2.897 2.582 2.372
Exchangeable Power 0.053 0.093 0.248 0.480 0.690 0.865 0.933 0.977

AST 3.925 3.845 3.580 3.179 2.677 2.126 1.836 1.506

Tables 1 and 2 present results using the O’Brien-Fleming’s boundaries for
logistic regressions. Similar simulations were also performed for Pocock’s bound-
aries, and the results were similar. These are summarized in Qu and DeMets
(1998).

We showed the magnitude of bias reduction for the logistic regression with
equally spaced observations. However, with a fixed set of boundaries {ck} and for
a given set of information fractions {t∗i } and ψK , the level of reduction is irrelevant
to the model assumption since distribution (2) is determined completely by {t∗i }
and ψK . Thus, the results we observed reflect the performance of this method in
general. For most realistic situations, the O’Brien-Fleming type boundaries give
relatively small bias compared to the Pocock type boundaries. Also, given the
information fractions, the amount of reduction using (2) is positively related to
the magnitude of the original bias in general.
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