
Statistica Sinica 9(1999), 923-937

ON THE BIAS OF ESTIMATION OF A

BROWNIAN MOTION DRIFT FOLLOWING

GROUP SEQUENTIAL TESTS

Zhengqing Li and David L. DeMets

State University of New York at Albany and University of Wisconsin

Abstract: Group sequential tests have been widely used to control the type I error

rate at a prespecified level in comparative clinical trials. It is well known that due

to the optional sampling effect, conventional maximum likelihood estimates will

exaggerate the treatment difference, and hence a bias is introduced. We consider a

group sequentially monitored Brownian motion process. An analytical expression

of the bias of the maximum likelihood estimate for the Brownian motion drift is

derived based on the alpha spending method of Lan and DeMets (1983). Through

this formula, the bias can be evaluated exactly by numerical integration. We study

how the Brownian motion drift and various alpha spending functions and interim

analysis patterns affect the bias. A bias adjusted estimator is described and its

properties are investigated. The behavior of this estimator is studied for differing

situations.

Key words and phrases: Alpha spending function, interim analysis, maximum like-

lihood, robustness, stopping time.

1. Introduction

Group sequential methods for interim monitoring of clinical trials were in-
troduced by Pocock (1977) based on the work on repeated significance tests by
Armitage, McPherson and Rowe (1969). The basic idea is to adjust the critical
values used at the interim tests of the null hypothesis such that the overall type
I error rate is controlled at a prespecified level. Various group sequential strate-
gies have been proposed, including those of Pocock (1977) and O’Brien-Fleming
(1979). Two requirements of these methods were equal number of patients be-
tween interim analyses, and that the maximum number of interim analyses be
specified in advance. In order to avoid these conditions, Lan and DeMets (1983)
proposed a more flexible approach referred to as the alpha spending method.
The amount of type I error probability spent is a nondecreasing function of in-
formation fraction and thus induces a corresponding boundary.

Following the extensive studies of these group sequential tests, there is now a
general interest in studying point and interval estimates of treatment difference.
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It is well known that when a clinical trial stops early to reject the null hypoth-
esis of treatment equivalence, conventional maximum likelihood estimates will
usually overestimate the treatment difference (see for instance Siegmund (1978)
and Whitehead (1986)). The reason is that the sampling distributions of these
estimates are affected by the planned sequential or group sequential designs al-
though the estimates are not altered. If the observed treatment difference is
randomly greater than the true effect, the chances of stopping are higher than if
the observed difference is randomly less than the true effect. Bias is the differ-
ence between the average observed effect over the sampling space and the true
effect. Whitehead (1986) evaluated the magnitude of the bias of maximum likeli-
hood estimation approximately following the sequential probability ratio test and
the triangular test, and proposed a bias-adjusted estimate. Hughes and Pocock
(1988) did a simulation study based on an estimate of the risk ratio in a typical
post-myocardial infarction trial to examine the nature of this bias for various
group sequential plans. A Bayesian method, referred to as a shrunken estimate,
was proposed to assess the true treatment effect based on interim results (Hughes
and Pocock (1988), Pocock and Hughes (1989)). Emerson and Fleming (1990)
studied various point and interval estimates for a normal mean. Based on their
results, it appeared that the bias-adjusted estimate by Whitehead had the lowest
mean squared error among all the estimators considered.

It is well known that the alpha spending method based on the Brownian
motion process by Lan and DeMets (1983) provided a very general framework
for sequential monitoring of clinical trials (DeMets and Lan (1994), Lan and
Zucker (1992)). Asymptotically, many sequentially computed test statistics in
survival analyses (Sellke and Siegmund (1983)) as well as in the longitudinal
studies (Gange and DeMets (1996)) can be approximated by Brownian motion
processes (Lan and Zucker (1992)). It is the goal of this paper to study the
bias and the bias-adjusted estimate based on this general framework. Compared
to the simulation method used by Hughes and Pocock (1988) and the bias ap-
proximation by Whitehead (1986), our bias evaluation and the bias-adjusted
estimate are based on exact analytical expressions. Another significance of this
study is that the calculation of the bias and the bias-adjusted estimate can be
easily incorporated into an existing software (Reboussin, DeMets, Kim and Lan
(1995)) which has been used widely in group sequential analyses of clinical trials.
Pinheiro and DeMets (1995) also studied this bias for a Gaussian independent
increment structure. However, their methods of evaluating bias are different.
Their approach was more focused on the simulation method. The variance and
the mean squared error of the bias-adjusted estimate were only briefly considered.

In this paper, group sequential methods are described in Section 2, with an
emphasis on the alpha spending function approach. Section 3 gives an analytical
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expression for the bias of the maximum likelihood estimate of the Brownian
motion drift, which can be evaluated through numerical integration. We also
compare the bias curves for various alpha spending functions and interim analysis
patterns. The properties of a bias-adjusted estimator and its robustness are
investigated in Section 4.

2. Group Sequential Monitoring and the Alpha Spending Method

In a clinical trial comparing two treatments, we want to repeatedly test
the null hypothesis H0: there is no treatment difference in the accumulated data,
keeping the type I error to a prespecified level. Let Z(k) be the test statistic based
on the accumulated data at the kth interim analysis, and let M be the maximum
number of interim analyses. If there is a set of probabilities πk (k = 1, . . . ,M)
such that

∑
πk = α, then the boundary values {ck} can be evaluated through

numerical integration (Armitage, McPherson and Rowe (1969)) such that

pr{|Z(1)| < c1, . . . , |Z(k − 1)| < ck−1, |Z(k)| > ck|H0} = πk. (1)

Here the joint distribution (or asymptotic distribution) of {Z(1), . . . , Z(k)} needs
to be known, and for many test statistics it is a multivariate normal. At each
interim analysis, either the trial is stopped and H0 is rejected if |Z(k)| > ck

for some k, or otherwise the trial is continued and more data are collected. If
|Z(k)| < ck for all k, then H0 is not rejected.

The alpha spending function allocates the fixed type I error probability across
the course of the clinical trial as a function the information fraction. Let i(k)
represent the amount of information available at the kth interim analysis, and let
I represent the total information available at the end of the trial. The information
fraction at the kth interim analysis is defined as tk = i(k)/I. Lan and DeMets
(1983) then specified a nondecreasing function α∗(t), t ∈ [0, 1] such that α∗(0) = 0
and α∗(1) = α. The amount of type I error to spend at the kth analysis is
πk = α∗(tk)−α∗(tk−1). The boundary values ck, k = 1, . . . ,M can be determined
successively by (1). The alpha spending function of Lan and DeMets (1983)
has been applied to various settings such as repeated measurement data (Lee
and DeMets (1991)), ordinal categorical data (Gange (1994)) and survival data
(Tsiatis, Boucher and Kim (1995)).

Now consider a Brownian motion process W (t), t ∈ [0, 1], with drift µ and
unit variance. We want to test the null hypothesis H0 : µ = 0. The time scale
t for W (t) represents the information fraction after appropriate rescaling (Lan
and Zucker (1993)). Suppose that the interim analyses are conducted at times
with information fractions {t1, . . . , tM}, then the two-sided symmetric bound-
aries ck, k = 1, . . . ,M , for Z(k) = W (tk)/(tk)

1
2 can be calculated using an exist-

ing FORTRAN program very rapidly: see the University of Wisconsin-Madison



926 ZHENGQING LI AND DAVID L. DEMETS

Biostatistics Technical Report 95 by Reboussin, DeMets, Kim and Lan. The
stopping time for the process is

T = min
{
ti :

∣∣∣W (ti)/(ti)
1
2

∣∣∣ > ci, 1 ≤ i ≤ M
}

, (2)

or T = tM if
∣∣∣W (ti)/(ti)

1
2

∣∣∣ ≤ ci for all 1 ≤ i ≤ M. Note that the stopping time
T in (2) depends on the choice of information fractions {t1, . . . , tM}. To sim-
plify discussions, we assume that the information fractions are fixed in advance.
However, in the actual monitoring process, to stop or not depends only on the
current and past information fractions.

3. Bias in Estimating the Brownian Motion Drift

Interim analyses in many clinical trials can be approximated by Brownian
motion processes with a linear drift. The value of the drift is determined by
the treatment effect. In this section, we evaluate the estimation bias of the drift
and study its reduction methods for a group sequentially monitored Brownian
motion process. In Section 3.1, an exact bias evaluation formula is given, which
is applicable to any group sequential procedure which can be approximated by
a Brownian motion process. Section 3.2 studies the properties of the bias and
compares the bias curves for various group sequential boundaries and interim
analysis patterns.

3.1. An analytical expression

Consider the group sequentially monitored Brownian motion process W (t)
with drift µ, unit variance and the stopping rule in (2). The maximum likelihood
estimate of µ is µ̂ = W (T )/T . We shall consider the expectation of µ̂ under the
true drift µ

E(µ̂) = E{W (T )/T} =
M∑
i=1

E{W (T )/T |T = ti}pr(T = ti), (3)

where E{W (T )/T |T = ti} denotes the conditional expectation of W (T )/T given
that T = ti.

Let {c1, . . . , cM} be the symmetric boundaries for W (T )/(T )
1
2 . Define c∗i =

(ti)
1
2 ci − µti and b∗i = −(ti)

1
2 ci − µti. Then {b∗1, . . . , b∗M} and {c∗1, . . . , c∗M} are

the upper and lower boundaries for W (T ) − µT . Let σi = (ti − ti−1)
1
2 and σ1 =

(t1)
1
2 . Let φ denote the standard normal density function. Through recursive

integration we define the conditional density functions in a similar manner to
Armitage, McPherson and Rowe (1969) as

f1(u) = φ(u/σ1)σ−1
1 (4)
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and

fi(u) =
∫ b∗i−1

c∗i−1

σ−1
i φ(u/σi − x/σi)fi−1(x)dx. (5)

The recursive density functions describe the probability of (W (T )− µT, T ). Let
Pi denote the probability of stopping at or before the ith interim analysis. It can
be shown (see Appendix) that the overall bias of µ̂ following a group sequential
test can be expressed as

b(µ) =
M∑
i=1

E{W (T )/T |T = ti}(Pi − Pi−1) − µ

=
M−1∑
i=1

t−1
i

{ ∫ ∞

b∗i
ufi(u)du +

∫ c∗i

−∞
ufi(u)du

}
+ t−1

M

∫ ∞

−∞
ufM(u)du. (6)

Let Φ be the cumulative distribution function for a standard normal variable.
Define

Ri(x)=1−Φ
(b∗i − x

σi

)
+Φ

(c∗i −x

σi

)
, and Qi(x)=φ

(b∗i −x

σi

)
−φ

(c∗i − x

σi

)
.

Using Fubini’s theorem, the bias can be expressed as

b(µ) =
M−1∑
i=1

1
ti

∫ b∗i−1

c∗i−1

{σiQi(x) + xRi(x)}fi−1(x)dx +
1

tM

∫ b∗M−1

c∗M−1

xfM−1(x)dx, (7)

where c∗0 = b∗0 = 0 and f0(x) = 1. Computation of b(µ) at the first analysis
involves only the standard normal density, but for the second analysis and be-
yond, numerical integration is necessary. For example, it can be done using the
Newton-Cote methods similar to those described by Armitage, McPherson and
Rowe (1969). A FORTRAN program is available from the authors to carry out
the computation.

3.2. A numerical comparison

For symmetric boundaries, we have two conclusions immediately. (a) When
µ = 0, the bias is zero; if µ = 0, then c∗i = −b∗i , and fi(−u) = fi(u) recursively.
Therefore b(0) = 0 follows from the fact that the integrands in (6) are odd
functions. (b) b(µ) = 0 for a fixed sample size design. If data are reviewed
only at tM , then only the last term in (6) contributes bias, which is zero since
fM(u) = f1(u). The interpretation of (a) is clear. If the treatment difference is
very small, most trials will continue to the last planned analysis and the optional
sampling effect is weakened. Thus the group sequential procedure is very close
to a fixed sample size design, and the bias is very small.
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In comparative clinical trials, the treatment difference is often measured by
a sequence of statistics (Z1, Z2, . . .) which are independent normal variables with
unknown mean η and unit variance. Let N be the maximum sample size and
Sk = Z1 + · · · + Zk. We have the following analogy between the partial sum Sn

and the Brownian motion process W (t) (Kim and DeMets (1987)):

Snk
∼ N(nkη, nk), W (tk) ∼ N(tkµ, tk),

where nk is the accumulated sample size by the kth interim analysis and tk is
the information fraction at the kth interim analysis. The maximum likelihood
estimate of η is η̂ = Snk

/nk. Suppose that tk’s are proportional to the observed
sample size, i.e. tk = nk/N , then it follows from the arguments of Kim and
DeMets (1987) that µ̂/η̂ = (nk/tk)

1
2 and N = nk/tk = (µ/η)2. Let b̃(η) =

E(η̂) − η, then we have

b̃(η) = b(µ)/(N)
1
2 = b(N

1
2 η)/N

1
2 , and b̃(η)/η = b(µ)/µ.

That is, the proportion of the bias to the true parameter is common no matter
which measure, µ or η, is used.

To see how the bias is affected by different boundaries and interim analysis
patterns, we compare the bias curves for two-sided symmetric tests at α = 0.05
and the following three alpha spending functions:

α∗
1(t) = 2{1−Φ(zα/2/(t)

1
2 )}, α∗

2(t) = 2
[1
2
α log{1+(e−1)t}

]
, α∗

3(t) = 2(
1
2
αt).

Here α∗
1 and α∗

2 are known to generate boundaries similar to the O’Brien-Fleming
and the Pocock boundaries respectively at α = 0.05, and α∗

3 was previously
studied by Lan and DeMets (1983) and Kim and DeMets (1987). The most
conservative spending function is α∗

1, followed by α∗
3 and α∗

2.
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Figure 1. Bias curves for different alpha spending functions at the equal
interval analysis t(1) = {0.2, 0.4, 0.6, 0.8, 1.0}.
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Figure 1 plots the bias versus the Brownian motion drift for these three al-
pha spending functions at equal interval analysis t(1) = {0.2, 0.4, 0.6, 0.8, 1.0}.
One significant feature observed from Figure 1 is that the bias curves are uni-
modal for α∗

2 and α∗
3, while the curve for α∗

1 is multi-modal. This occurs because
the boundary values for α∗

1 (O’Brien-Fleming) are very conservative at the first
interim analysis and exhibit a large difference at different analyses. When the
drift µ is small the bias is small, since in this situation the design is close to a
fixed sample size design. As µ starts to increase, the stopping time exhibits a
large variability and the bias increases rapidly. As µ goes to 5 and beyond, the
majority of the trials using α∗

2 and α∗
3 tend to stop at the first interim analysis

and the bias starts to decrease. For trials using α∗
1, the bias decreases a little

(the first maximum) since most of the trials tend to stop at the second interim
analysis. However, the bias starts to increase as µ increases to 8 and beyond.
As µ increases to 11, the majority of the trials tend to stop at the first interim
analysis. Thus the bias decreases again to produce the second maximum. This
result is consistent with the simulation study by Hughes, Freedman and Pocock
(1992), as well as that by Pinheiro and DeMets (1995). Another feature observed
from the bias curves is that for small or moderate treatment effects, the conser-
vative boundaries based on α∗

1 (O’Brien-Fleming) can protect against severe bias
while the boundaries based on α∗

2 (Pocock) result in the largest bias among the
three alpha spending functions. This is consistently true for other interim anal-
ysis patterns. Furthermore, an order relation in bias for α∗ exists for small or
moderate µ. That is, the more convex α∗ is, the smaller the bias is. Actually,
the more convex α∗ is, the more likely a trial tends to stop late. Trials with a
small chance of stopping early will produce relatively less bias. These results are
also true for the later analysis pattern t(2) = {0.3, 0.6, 0.8, 0.9, 1.0} and the early
analysis pattern t(3) = {0.1, 0.2, 0.3, 0.6, 1.0}.

Figure 2 compares the bias for three interim analysis patterns based on α∗
2

and α∗
1 respectively. Note that for the Pocock-type boundary, the bias for the

equal interval analysis is consistently smaller than that for the early analysis, and
greater than that for the later analysis. However, for the O’Brien-Fleming-type
boundary, such an order relation does not exist and the biases are very close for
the three interim analysis patterns when the treatment effects are not large. This
is due to the fact that the O’Brien-Fleming-type boundary is extremely large at
the early analyses. For a small treatment effect and extremely large boundaries,
the probability of stopping early will be very small, and hence the bias produced
is small. However, for a large treatment effect, reviewing data more frequently
at later stages reduces the bias substantially.
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Figure 2. Bias curves for different interim analysis patterns. Figure (a) is
based on the Pocock-type boundary and (b) is based on the O’Brien-Fleming-
type boundary.

4. Bias Reduction

In this section, we first give a bias reduction method which is independent
of group sequential tests. Some analytical results concerning this bias reduction
method are given. In Section 4.2, simulation studies show that this method
is efficient in reducing the bias while keeping a relatively small variance. The
robustness of this method is studied for various group sequential boundaries and
interim analysis patterns.

4.1. The bias adjusted estimate and its properties

Let µ̂ be the estimate of µ based on the data. The expected value of µ̂ is
given by E(µ̂) = µ + b(µ) where b(µ) is the bias at µ. The ideal bias-corrected
estimate of µ would be µ̂ − b(µ). In practice, a corrected estimate of µ, say µ∗,
can be given by a solution to the following equation (Whitehead (1986))

µ∗ = µ̂ − b(µ∗), (8)

where b(µ∗) is the bias evaluated at the adjusted estimate µ∗.
Let b∗(µ) = E(µ∗) − µ denote the bias for the adjusted estimate µ∗. Thus

b∗(µ) = b(µ) − E{b(µ∗)}, and the amount of bias reduced by µ∗ is E{b(µ∗)}. If
µ∗ is very close to µ, E{b(µ∗)} will be close to b(µ), and hence b∗(µ) is much
smaller than b(µ). However, in general µ∗ is not unbiased although its bias is
very small.
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Consider the second order Taylor expansion:

b(µ∗) = b(µ) + (µ∗ − µ)b′(µ) +
1
2
(µ∗ − µ)2b′′(ξ),

where ξ is between µ∗ and µ. Then

E{b(µ∗)} = b(µ) + b∗(µ)b′(µ) +
1
2
E{b′′(ξ)(µ∗ − µ)2}.

Since b∗(µ) = b(µ) − E{b(µ∗)},

b∗(µ) = −1
2

E{b′′(ξ)(µ∗ − µ)2}
1 + b′(µ)

. (9)

As µ∗ is very close to µ, we have the approximation

b∗(µ) ≈ −1
2

b′′(µ)
1 + b′(µ)

MSE (µ∗). (10)

Therefore, whether the bias of µ∗ is positive or negative depends upon the con-
vexity of the bias curve around µ. µ∗ underestimates µ if b(µ) is convex around
µ and overestimates µ if b(µ) is concave.

Whitehead (1986) studied the large-sample variance of the bias-adjusted es-
timate µ∗, and found

Var (µ∗) ≤ Var (µ̂)
{1 + b′(µ)}2

. (11)

A slight modification can show that

MSE (µ∗) ≈ Var (µ̂)
{1 + b′(µ)}2

. (12)

Therefore, if b′(µ) ≥ 0, MSE (µ∗) ≤ MSE (µ̂) and Var (µ∗) ≤ Var (µ̂). For the
group sequential designs considered in this paper, b′(µ) is always positive for
small or moderate treatment effects, as indicated in Figure 1.

In practice, we can solve equation (8) using the Newton-Raphson method.
The initial value µ∗

0 = µ̂ could be used, and usually the first iteration

µ∗
1 = µ̂ − b(µ̂)

1 + b′(µ̂)
(13)

will give a good approximation. Notice that we need to evaluate b′(µ) in order
to solve for µ∗. Define Si(x) = b∗i φ{(b∗i − x)/σi} − c∗i φ{(c∗i − x)/σi}. Using
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the relation b′(µ) = E{W 2(T )/T − µT} − 1 (Whitehead (1986)), one has the
expression

b′(µ) + 1 =
M−1∑
i=1

1
ti

∫ b∗i−1

c∗i−1

[(x2 + σ2
i − xti)Ri + σi(x − ti)Qi + σiSi(x)]fi−1(x)dx

+
1

tM

∫ b∗M−1

c∗
M−1

(x2 + σ2
M − xtM )fM−1(x)dx.

This expression can be evaluated numerically in the same manner as that for
b(µ).

4.2. Robustness of the bias-adjusted estimate

In order to investigate the performance of the adjusted estimate µ∗ in (8),
a simulation study (simulation size=5000) is conducted based on three alpha
spending functions for three interim analysis patterns t(1), t(2) and t(3) respec-
tively. The group sequential boundaries are the two-sided symmetric boundaries
at α = 0.05, and the alternative is the Brownian motion drift at which the test
attains 90% power. The estimated biases, variances and mean squared errors of
the two estimators µ̂, µ∗ are given in Tables 1, 2 and 3. The estimated b′(µ) is
also given for each value of µ.

Table 1. Comparison of the maximum likelihood estimate and the bias-
adjusted estimate based on the boundaries for the uniform analysis t(1) =
{0.2, 0.4, 0.6, 0.8, 1.0}. The value of µ is chosen such that the test attains
90% power.

Boundary True b′(µ) Estimator Bias Variance MSE Bias
function µ percent

α∗
1 3.28 0.048 µ̂ 0.289 1.605 1.689 8.82

µ∗ 0.035 1.505 1.506 1.08
α∗

2 3.54 0.056 µ̂ 0.677 2.620 3.078 19.11
µ∗ 0.103 2.620 2.631 2.90

α∗
3 3.46 0.078 µ̂ 0.644 2.635 3.050 18.62

µ∗ 0.101 2.540 2.550 2.92

The standard error of the estimated bias is less than 0.025.

Note that the bias-adjusted estimate reduces the bias of the maximum like-
lihood estimate a great deal. For the three alpha spending functions, the bias
reduced by the adjusted estimator ranges from 84.3%, 81.4% and 88.6% to 88.4%,
95.3% and 94.0% for t(1), t(2) and t(3), respectively. For the conservative bound-
aries such as those of the O’Brien-Fleming type, the bias is reduced more ef-
fectively than for the Pocock-type boundary. Furthermore, the variance of the
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bias-adjusted estimator is generally smaller than that of the maximum likelihood
estimate. Consequently, the mean squared error is consistently reduced for all
boundaries and interim analysis patterns.

Table 2. Comparison of the maximum likelihood estimate and the bias-
adjusted estimate based on the boundaries for the later analysis t(2) =
{0.3, 0.6, 0.8, 0.9, 1.0}. The value of µ is chosen such that the test attains
90% power.

Boundary True µ b′(µ) Estimator Bias Variance MSE Bias
function µ percent

α∗
1 3.30 0.008 µ̂ 0.224 1.490 1.540 6.79

µ∗ 0.011 1.395 1.395 0.32
α∗

2 3.55 0.020 µ̂ 0.499 1.945 2.194 14.06
µ∗ 0.083 2.070 2.077 2.35

α∗
3 3.47 0.010 µ̂ 0.495 2.000 2.245 14.27

µ∗ 0.092 2.055 2.063 2.65

The standard error of the estimated bias is less than 0.025.

Table 3. Comparison of the maximum likelihood estimate and the bias-
adjusted estimate based on the boundaries for the early analysis t(3) =
{0.1, 0.2, 0.3, 0.6, 1.0}. The value of µ is chosen such that the test attains
90% power.

Boundary True b′(µ) Estimator Bias Variance MSE Bias
function µ percent

α∗
1 3.25 0.068 µ̂ 0.231 1.480 1.534 7.11

µ∗ 0.014 1.310 1.310 0.43
α∗

2 3.49 0.207 µ̂ 0.839 4.090 4.794 24.05
µ∗ 0.096 3.530 3.539 2.74

α∗
3 3.45 0.208 µ̂ 0.751 3.850 4.414 21.77

µ∗ 0.076 3.230 3.236 2.21

The standard error of the estimated bias is less than 0.030.

We also studied the bias-adjusted estimator for various values of the Brow-
nian motion drift for the two-sided symmetric O’Brien-Fleming-type boundary
for the uniform analysis pattern. The simulation results for 10 values of µ are
given in Table 4. Since the proportion of the bias to the true parameter is in-
variant in the scale of treatment difference, both |b(µ)|/µ and |b∗(µ)|/µ are listed
in Table 4. Note that the bias-adjusted estimate reduces the bias consistently
for all values of µ. Two important features can be observed by looking at b∗(µ).
First, b∗(µ) is negative as µ ∈ A− = {0.8, 1.6, 5.6, 6.4, 7.2, 8.0} and positive as
µ ∈ A+ = {2.4, 3.2, 4.0, 4.8}. It can be seen roughly from Figure 1 that b(µ) is
convex at µ ∈ A− and concave at µ ∈ A+. Secondly, for µ = 1.6 and 5.6, the
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bias b∗(µ) = E(µ∗) − µ is close to zero. This is because b′′(µ) is almost zero at
these two points. Therefore the simulation results are consistent with the results
given by (9) and (10).

Table 4. Comparison of the maximum likelihood estimate and the bias-
adjusted estimate for various values of drift based on the O’Brien-Fleming-
type boundary for the uniform analysis t(1) = {0.2, 0.4, 0.6, 0.8, 1.0}.

µ b′(µ) b(µ) Var (µ̂) |b(µ)|/µ (%) b∗(µ) Var (µ∗) |b∗(µ)|/µ (%)
0.8 0.073 0.044 1.224 4.97 -0.015 1.055 1.86
1.6 0.118 0.122 1.399 7.14 -0.007 1.192 0.46
2.4 0.113 0.219 1.559 8.79 0.020 1.365 0.83
3.2 0.055 0.288 1.634 8.91 0.042 1.519 1.30
4.0 0.001 0.308 1.730 7.54 0.032 1.705 0.79
4.8 -0.028 0.296 1.857 6.03 0.017 1.887 0.35
5.6 -0.043 0.267 2.035 4.65 -0.005 2.069 0.09
6.4 -0.038 0.233 2.356 3.65 -0.027 2.335 0.42
7.2 0.000 0.216 2.770 2.30 -0.049 2.665 0.68
8.0 0.057 0.238 3.277 3.65 -0.038 3.082 0.47

The standard error of the estimated bias is less than 0.030.

We also observed that the variance of the estimates µ̂ and µ∗ increased with
the drift µ. This is due to the fact that the probability of stopping early tends
to increase as the treatment effect increases. Less information will increase the
variation of the estimates. Furthermore, µ∗ exhibits smaller variability than µ̂

does when b′(µ) > 0. For the values of µ with b′(µ) < 0 (µ = 4.8, 5.6, 6.4), the
variance of µ∗ is slightly larger than that of µ̂. This confirmed the results in (11)
and (12). Fortunately, it rarely happens in practice that a clinical trial has a
drift greater than 5.

5. Discussion

It has been shown that the bias of the maximum likelihood estimate for the
Brownian motion drift is a function of the group sequential boundaries, informa-
tion fractions and the true Brownian motion drift. Therefore, for a given group
sequentially monitored clinical trial with the structure of a Brownian motion
process, the bias can be estimated based on the estimates of the information
fractions and the Brownian motion drift. However, the calculation of the bias-
adjusted estimate does not depend on the unknown Brownian motion drift. The
bias calculation method described needs numerical integration although alter-
natively one can calculate it by simulation (Pinheiro and DeMets (1995)). The
advantage of using our analytical expression is that it is very easy to incorporate
the calculation of the bias and bias-adjusted estimate into an existing Fortran
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program of Reboussin, DeMets, Kim and Lan (1995). We only considered the
bias evaluation for two-sided symmetric boundaries. For one-sided boundaries
(DeMets and Ware (1980)) or two-sided asymmetric boundaries (DeMets and
Ware (1982)), the bias can be evaluated similarly. Our study for the Brownian
motion process is based on the time scale of the information fraction. If the
process is monitored in another scale, such as information, the bias can still be
calculated after a simple transformation.

For practical interest, our study was more focused on small or moderate
treatment effects. A Brownian motion drift greater than 5 represents a large
treatment difference and rarely happens in practice. For example, the designs
considered in Section 4.2 attain 90% power at the Brownian motion drift around
3.5. Our study indicated that the conservative boundaries such as the O’Brien-
Fleming-type, with a more frequently later analysis pattern, could protect from
possible severe bias caused by the maximum likelihood estimate for small or
moderate treatment effects. This might provide some useful guidance in the
design and monitoring of a clinical trial. Furthermore, our study indicated that
the bias-adjusted estimator not only reduced the bias effectively, but also reduced
the variance in a realistic range of treatment effects.

After a sequential clinical trial, one may also want an interval estimate in
addition to a point estimate. The usual methodology for interval estimates is
based on orderings of the sampling space (Tsiatis, Rosner and Mehta (1984),
Chang (1989), Emerson and Fleming (1990)). However, as pointed out by Todd,
Whitehead and Facey (1996), the ordering approach does not result in an esti-
mator with a simple sampling distribution, it is difficult to remove the bias of
point estimates, to combine trial results with those of other trials, and to deduce
estimates and confidence intervals for functions of parameters. After modifying
the results by Woodroofe (1992), Todd, Whitehead and Facey (1996) gave an
approximate confidence interval based on the large sample approximation, and
suggested that the bias-adjusted estimate could be presented with Woodroofe’s
form of confidence interval. However, this confidence interval is based on the
maximum likelihood estimate instead of the bias-adjusted estimate. As an issue
for future research, it is desirable to construct a confidence interval based on the
bias-adjusted estimate.

Appendix

The derivation of the bias formula: It can be shown that fi describes the
probability of values of W (T ) − µT and the probability of stopping at ti. Let

1 − Pi =
∫ b∗i

c∗i
fi(x)dx, Qi =

∫ ∞

b∗i
fi(x)dx, and Ri =

∫ c∗i

−∞
fi(x)dx.
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Then 1 − Pi is the probability of not stopping at or before the ith analysis; Qi

is the probability of the event W (ti)/(ti)
1
2 ∈ [ci,∞]; Ri is the probability of the

event W (ti)/(ti)
1
2 ∈ [−∞,−ci]; Qi + Ri is the probability of stopping at the ith

analysis. Notice that

Pi − Pi−1 = Qi + Ri, and
i∑

j=1

(Qj + Rj) = Pi.

For i ≤ M − 1, it follows from (4) and (5) that the bias, given that the trial
has stopped at ti, is

E(µ̂|T = ti) − µ =
E{W (T )/T ;T = ti}

P (T = ti)
− µ

= t−1
i (Pi − Pi−1)−1E{W (T );T = ti} − µ

= t−1
i (Pi − Pi−1)−1E{W (T ) − µT ;T = ti}

= t−1
i (Pi − Pi−1)−1

{ ∫ ∞

b∗i
ufi(u)du +

∫ c∗i

−∞
ufi(u)du

}
,

where Pi is defined above and P0 = 0. At the last analysis, the trial is also
terminated even if W (T )/(T )

1
2 ∈ [−cM , cM ]. Thus by similar argument we have

E[W (T )/T |T = tM ] − µ = t−1
M (1 − PM−1)−1

∫ ∞

−∞
ufM (u)du.

Consequently, the bias formula (6) follows from (3).
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