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NONLINEAR CENSORED REGRESSION
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Abstract: In the standard accelerated lifetime model, log lifetime is, up to noise,
a linear function of a vector of covariables. In the present paper this model is
extended to admit general nonlinear functional relationships. A Weighted Least-
Squares estimator for the unkown true parameter is proposed. Consistency and

asymptotic normality are shown when the lifetimes are subject to censoring but
the covariables are known. The accuracy of the procedure is demonstrated in a
small sample simulation study under various degrees of censoring.
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1. Introduction and Main Result

Assume that we observe a sample of independent identically distributed ran-
dom vectors (Xi, Yi) in d + 1-dimensional Euclidean space, 1 ≤ i ≤ n, defined
on some probability space (Ω,A,P). Denote with m(x) = E(Y1|X1 = x) their
common regression function. Under a linear model assumption, the admissible
m’s are of the form m(x) =< θ, x >= θ1x1 + · · · + θdxd, where θ ranges in a
suitable parameter set Θ and the “true parameter” θ0 is unknown. Linearity
may be very restrictive and not appropriate for modelling the dependence struc-
ture between X and Y in various situations. At the other extreme, starting with
Nadaraya (1964) and Watson (1964), there has been much interest in the estima-
tion of m in a completely nonparametric framework. This requires some amount
of smoothing of the data and may lead to a less precise fit than in a parametric
setup.

A compromise between a linear and a nonparametric approach which may
be flexible enough to model various data structures is given by the nonlinear
regression model. See Seber and Wild (1989) for a comprehensive treatment of
the subject. Now, the admissible m’s are of the form m(x) = f(x, θ0), where
f(x, θ0) is a known function, θ0 is a p-dimensional parameter, and p and d may
be different. In other words, Y may be written as

Y = f(X, θ0) + ε with E(ε|X) = 0. (1.1)

If m(x) = f(x, θ0), the condition E(ε|X) = 0 is automatically satisfied and more
flexible than the assumption that the error variable ε has expectation zero and
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is independent of X. Actually, in many heteroscedastic models, ε is given as
ε = σ(X)ε̃, where ε̃ is a centered random variable independent of X and σ is a
given scale function, which in addition may depend on an unknown parameter.
The parameter θ0 may be estimated by the Least-Squares Method or any of
its robust or weighted modifications. For nonrandom design Jennrich (1969)
proved strong consistency of the Least-Squares Estimator and derived its limit
distribution. See also Malinvaud (1970). More recent notable contributions are
Wu (1981) and Richardson and Bhattacharyya (1986).

In the present paper we consider a nonlinear regression model in the context
of survival analysis. Now the variable Yi may be viewed as the lifetime, or a
monotone transformation of it, of an individual, whileXi is a vector of covariables
to be sampled at the entry into, or in the course of a follow-up study. Since Yi

is not always available, standard methods which require knowledge of all Y ’s are
not applicable. Under random censorship, rather than a random variable Yi, one
observes Zi together with an indicator δi such that Zi = Yi if and only if δi = 1. In
censored regression two models which have often been discussed in the literature
are the accelerated lifetime model and the Cox proportional hazards model; see,
for example, Kalbfleisch and Prentice (1981). In the first model it is assumed
that Y = log lifetime satisfies (1.1) with ε independent of X. In most cases,
f(x, θ) =< θ, x >. In the Cox proportional hazards model, the hazard function
factors into a baseline function which only depends on time and another factor
which only depends on the covariables. Doksum and Gasko (1990) pointed out
that, rather than (1.1), the Cox model is a particular example of a transformation
model. Nonproportional hazards models were considered by Carter, Wamper
and Stablein (1983) in modelling the impact of drug combinations on survival in
cancer chemotherapy. Their discussion was in terms of hazard functions rather
than regression. Since there is a one-to-one correspondence between the two,
each of their models could be rephrased so as to become a model equation for
m. Equation (1.1) is more appropriate than the Cox Model if one wants to
describe the functional relationship between log-lifetime and the covariable vector
X rather than modelling the conditional survival and hazard functions. In the
(log-)linear case this model has been studied in a couple of papers. See Andersen,
Borgan, Gill and Keiding (1993, p.581) for a brief review. A statistical analysis
of a general nonlinear regression model under censorship, however, still seems to
be missing.

In the linear case, a standing assumption throughout the literature was that,
modulo further regularity conditions, Z = min(Y,C) and δ = 1{Y ≤C}, where C
is a censoring variable such that Y and C are independent conditionally on
X. Buckley and James (1979) initiated the study of a modified Least-Squares
Estimator of θ0 in which the observable, possibly censored, Zi were replaced
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by their conditional expectations w.r.t. Yi. This approach required estimation
of the error distribution via Kaplan-Meier. For a criticism of the state of art
at about the early nineties, see Ying (1993). Ritov (1990) and Tsiatis (1990)
studied extensions of R-estimators of θ0 under censorship, but under regularity
conditions which are difficult to check in practice. Fygenson and Ritov (1994)
and Akritas, Murphy and LaValley (1995) considered extensions of the Sen-
Theil estimator of θ0 to the linear censored regression model. The advantage
of their approach was that the resulting estimating equation is monotone so
that the estimator is essentially unique. The limit variance is complicated and
requires some smoothing. All of these approaches do not seem to allow for simple
generalizations to the nonlinear case.

In the present paper we adopt and extend a methodology of Stute (1993)
designed to estimate the joint distribution of (X,Y ) when Y is subject to censor-
ing and X is observable. There a weighted Least-Squares Estimator was shown
to be strongly consistent when f in (1.1) is linear. See also Zhou (1992). In
the present paper we obtain consistency and asymptotic normality of a weighted
Least-Squares Estimator for a general smooth f . See Theorems 1.1 and 1.2.
Proofs will be deferred to the Appendix. In Section 2 we provide simulation
results on a particular bivariate regression model.

To make things more rigorous some notation will be required. Neglecting
the covariables for a moment, denote with F the unknown distribution function
of the Y ’s. The nonparametric Maximum-Likelihood Estimator of F is given
by the time-honoured Kaplan-Meier (1958) estimator F̂n. Following Stute and
Wang (1993), F̂n may be written as a weighted sum of Dirac-measures:

F̂n =
n∑

i=1

WinDZi:n ,

where

Win =
δ[i:n]

n− i+ 1

i−1∏
j=1

(
n− j

n− j + 1

)δ[j:n]

.

Here Z1:n ≤ · · · ≤ Zn:n are the Z-order statistics and δ[i:n] is the δ associated with
Zi:n. A detailed study of the W ’s in connection with the Strong Law of Large
Numbers under censoring has been carried out in Stute and Wang (1993). In the
presence of covariables, Stute (1993) extended F̂n so as to obtain a consistent
estimator of the joint distribution function F 0(x, y) = P(X ≤ x, Y ≤ y) of
(X,Y ), namely

F̂ 0
n(x, y) =

n∑
i=1

Win1{X[i:n]≤x, Zi:n≤y}.



1092 WINFRIED STUTE

It was also shown that the Weighted Least-Squares Estimator minimizing

n∑
i=1

Win

[
Zi:n− < θ,X[i:n] >

]2

is strongly consistent. For a general f we are led to consider

Sn(θ) =
n∑

i=1

Win

[
Zi:n − f(X[i:n], θ)

]2

and then take any (measurable) minimizer θn of Sn as an estimator of θ0. Note
that Sn incorporates all Z’s and not just those bounded away from the least
upper bound of the support of the Z’s, as is done in most work on Kaplan-Meier.
Our θn should not be confused with the Least Squares Estimator proposed by
Miller (1976) in the linear case. That method was based on the Kaplan-Meier
weights of the residuals rather than the observed Z’s.

We now state and discuss the conditions needed for Theorem 1.1. First
note that Win, and hence Sn(θ), are well-defined without any assumption on the
censoring mechanism. As such, for the computational part, we do not have to
assume that Z = min(Y,C) where C is a proper censoring variable. Actually,
as was pointed out in Stute (1996b), almost sure and distributional convergence
of Kaplan-Meier integrals carries through if only the (Zi, δi), 1 ≤ i ≤ n, are
i.i.d. Independence of Y and C is just needed to identify the limit. Tsiatis
(1975), among others, showed the fully nonparametric character of the censorship
model in that the target quantities cannot be consistently estimated from a set
of censored data without assuming an identifiability condition, similarly in the
context of the present paper. The parameter θn minimizing Sn(θ) will turn out to
converge with probability one and in distribution (when properly standardized)
under no assumption on the censoring mechanism. Conditions (i) and (ii) below
are needed for identifiability. Let Z = min(Y,C) where

(i) Y and C are independent,
(ii) P(Y ≤ C|X,Y ) = P(Y ≤ C|Y ).

Furthermore assume that
(iii) EY 2 <∞,
(iv) Θ is compact,
(v) f(x, θ) is continuous in θ for each x,
(vi) f2(x, θ) ≤M(x) for some integrable function M ,
(vii) L(θ, θ0) = E {f(X, θ) − f(X, θ0)}2 > 0 for θ �= θ0.
As mentioned earlier, independence of Y and C is a standard assumption in the
random censorship model when no covariables are present. There is no reason
to replace this widely accepted assumption by conditional independence when
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covariables are present. Condition (ii) may be interpreted as a Markov prop-
erty of the vector (X,Y, δ). In terms of Turnbull (1992), (X,Y, δ) constitutes a
“serial system” as opposed to the “parallel system”, which typically appears in
multivariate lifetime estimation.

A vector (X,Y,C) satisfying (i) and (ii) may be generated in the following
way: take (X,Y ) from a given joint distribution or, as in our context, through
a given regression model (plus noise). In order to determine C and hence Z,
generate a Bernoulli random variable δ with

P(δ = 1|X = x, Y = y) = 1 −G(y−),

where G is the distribution function of C. Given Y = y and δ = 1, C is taken
from G restricted (and normalized) to [y,∞), while for δ = 0, C is distributed
according to G restricted to [0, y). It is easily seen that C has distribution G

and is independent of Y . Hence (i) and (ii) are satisfied. This algorithm puts no
obvious restriction on the joint distribution of X and C. Of course, (ii) is also
satisfied if C is independent of (X,Y ). This assumption underlies our simulation
results reported in Section 2.

The second moment assumption (iii) is always needed in Least-Squares Es-
timation. It may be neglected if we consider robustified versions of θn. Assump-
tions (iv) and (v) guarantee that a minimizer θn exists. (iv) and (vi) are not
needed for linear f ’s, while (v) is evidently true in this case. If f(x, ·) admits a
continuous extension to the compactification of Θ, (iv) becomes superfluous. See
Richardson and Bhattacharyya (1986) for a discussion of this issue. Condition
(vi) together with (v) and dominated convergence guarantee that all relevant
integrals (such as L) are continuous in θ. It is also needed to show that Sn con-
verges with probability one uniformly in θ ∈ Θ. Finally, (vii) guarantees that θ0
may be identified from a sample of (X,Y )’s. It holds true for linear f ’s if X has
a finite second moment and is not concentrated on a hyperplane.

Technically, consistency and asymptotic normality of θn will be shown by
first considering a linear approximation of θn and then applying a Strong Law of
Large Numbers and a Central Limit Theorem for Kaplan-Meier integrals

∫
ϕdF̂ 0

n ,
respectively, for proper vector-valued functions ϕ. For example, consider

Sn(θ) =
∫
ϕ(x, y)F̂ 0

n (dx, dy)

with ϕ(x, y) = {y−f(x, θ)}2. Recall G and introduce H, the d.f. of the observed
Z’s. By (i), 1 −H = (1 − F )(1 − G). Let τH = inf{x : H(x) = 1} be the least
upper bound for the support of H. Similarly for F and G. Clearly, there will be
no data beyond τH . So, if

∫
ϕdF 0 is a parameter of interest, the best we can hope
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for is to consistently estimate the integral restricted to y ≤ τH . More precisely,
the theorem in Stute (1993) asserts that with probability one

lim
n→∞

∫
ϕdF̂ 0

n =
∫

{Y <τH}
ϕ(X,Y )dP +1{τH∈A}

∫
{Y =τH}

ϕ(X, τH )dP,

where A is the set of H atoms, possibly empty. For Sn(θ) we get

lim
n→∞Sn(θ) =

∫
{Y <τH}

{Y − f(X, θ)}2dP +1{τH∈A}
∫

{Y =τH}
{τH − f(X, θ)}2dP

=
∫

{Y <τH}
{ε+ f(X, θ0) − f(X, θ)}2dP

+1{τH∈A}
∫

{Y =τH}
{ε+ f(X, θ0) − f(X, θ)}2dP . (1.2)

For most lifetime distributions considered in the literature τF = ∞ = τG and
therefore τH = ∞. In such a situation the above limit is, because of (1.1),
Var(ε)+L(θ, θ0) which, by (vii), attains its minimum at θ = θ0. Stute and Wang
(1993) contains a more detailed discussion of situations when the limit of Kaplan-
Meier integrals equals the target. If the limit does not happen to coincide with
Var(ε) + L(θ, θ0), the identifiability function (vii) needs to be replaced by the
more general (1.2). For notational convenience we assume throughout without
further mention that the limit is Var(ε) + L(θ, θ0). To demonstrate the wide
applicability of our results, however, the censoring distribution in our simulation
study will have compact support included in that of Y , so that (1.2) applies.

Theorem 1.1. Let θn be a minimizer of Sn. Then under (i) − (vii), with
probability one,

lim
n→∞ θn = θ0

and
lim

n→∞Sn(θn) = σ2 ≡ Var(ε).

For asymptotic normality, further smoothness assumptions are needed. Consider,
in place of (v), the condition

(viii) f(x, ·) is twice continuously differentiable.
The matrix

Ω =
{∫

∂f(X, θ0)
∂θr

∂f(X, θ0)
∂θs

dP

}
1≤r, s≤p

(1.3)

becomes part of the limit covariance matrix of θn, as usual. A change due to
censoring comes up in another matrix

∏
to be defined below. Introduce the sub-

distribution functions H̃11(x, y) = P(X ≤ x, Z ≤ y, δ = 1) and H̃0(y) = P(Z ≤
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y, δ = 0). These functions may be consistently estimated by their empirical
counterparts. Furthermore, put

γ0(y) = exp




y−∫
−∞

H̃0(dz)
1 −H(z)




and, for every real-valued function ϕ,

γϕ
1 (y) =

1
1 −H(y)

∫
1{y<w}ϕ(x,w)γ0(w)H̃11(dx, dw),

γϕ
2 (y) =

∫ ∫ 1{v<y, v<w}ϕ(x,w)γ0(w)
{1 −H(v)}2

H̃0(dv)H̃11(dx, dw).

Note that for a continuous H, γ0 = (1−G)−1, see Stute and Wang (1993). Stute
(1996a) then showed that under weak moment assumptions on ϕ, in probability,

∫
ϕd

(
F̂ 0

n − F 0
)

= n−1
n∑

i=1

{ϕ(Xi, Zi)γ0(Zi)δi + γϕ
1 (Zi)(1 − δi) − γϕ

2 (Zi)}

+o(n−1/2) ≡ n−1
n∑

i=1

ψϕ
i + o(n−1/2). (1.4)

The ψ’s are independent and identically distributed with expectation zero. In
this paper we shall have to consider several ϕ’s at the same time, namely

ϕr(x, y) = {y − f(x, θ0)}∂f(x, θ0)
∂θr

, 1 ≤ r ≤ p.

Set ∏
= (σrs)1≤r, s≤p with σrs = cov (ψϕr

1 , ψϕs
1 ) . (1.5)

If γ0, γ
ϕr
1 and γϕr

2 were known
∏

could be estimated by the sample covariance∏
n of the ψ’s. In practice, of course, they are not. Note, however, that each of

the γ’s is a function of the H’s. Replacing these by their empirical counterparts,
we arrive at estimated γ’s. Inserting these into

∏
n we obtain an estimator of∏

which can be computed from the data. An alternative method to estimate Π
would be an adaptation of the Jackknife to the regression case, as studied for
ordinary Kaplan-Meier integrals in Stute (1996b). This will be done in detail in
the example of Section 2.

We finally have to state the assumptions for (1.4). Put

T (w) =
w−∫
0

G(dy)
{1 −H(y)}{1 −G(y)} .

Assume that for 1 ≤ r ≤ p,
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(ix)
∫ {ϕr(X,Z)γ0(Z)δ}2

P <∞
and
(x)

∫ |ϕr(X,Z)|T 1/2(Z)dP <∞.
Condition (ix) guarantees that the first term in the expansion (1.4) has a finite
second moment. Assumption (x) is mainly to control the bias of a Kaplan-Meier
integral. An extensive discussion of this issue may be found in Stute (1994). In
particular, it was found that the bias may decrease to zero at any rate n−δ, δ < 1

2 .
Consequently, we cannot expect (1.4) without a first moment condition pushing
the bias below n−1/2. The function T is related to the variance process of the
empirical cumulative hazard function for the censored data. Consult Stute (1995)
for further discussion.

Theorem 1.2. Assume that θn is an interior point of Θ. Then, under (i) – (x),

n1/2(θn − θ0) → N (0,Ω−1
∏

Ω−1) in distribution,

where Ω and
∏

are given in (1.3) and (1.5).

Observe that if there is no censoring, all δ’s equal 1 and γϕ
2 ≡ 0 so that the

expansion (1.4) collapses to the sample mean of ϕ(Xi, Yi), 1 ≤ i ≤ n. Thus, if
in addition ε is independent of X,

∏
becomes σ2Ω so that the limit variance

simplifies to the familiar σ2Ω−1. Also the function T is identically zero so that
(x) is trivially true. Condition (ix) reduces to

∫
ϕ2

r(X,Y )dP <∞. In the general
situation, under continuity, the integral (ix) equals

∫
{Y <τH}

ϕ2
r(X,Y )/{1 −G(Y )}dP .

Summarizing, we see that consistency holds under no extra conditions on the
censoring mechanism while asymptotic normality requires some extra (weak)
moment conditions guaranteeing that in the right tails the censoring variables do
not dominate the variables of interest.

2. Simulation Study

To demonstrate the validity of our results for finite sample size, we report
on a small simulation study with

f(x, θ) = (θ1 + θ2)−1 exp(θ1x1 + θ2x2)

as the underlying admissible nonlinear regression functions. The sample (Xi, Yi),
1 ≤ i ≤ n, was generated as follows: each Xi = (X1

i ,X
2
i ) consisted of two

independent random variables from the uniform distribution on [0, 3]. The noise



NONLINEAR REGRESSION 1097

variable εi was chosen to be standard normal and independent of Xi. The true
parameter was set equal to θ0 = (θ01, θ02)t = (0.5, 0.3)t so that

Yi =
5
4

exp
(
0.5X1

i + 0.3X2
i

)
+ εi, 1 ≤ i ≤ n.

The censoring distribution G was equal to the uniform distribution on [0,20],
[0,12] and [0,10], respectively, corresponding to light, medium and heavy censor-
ing. Ci was taken to be independent of (Xi, Yi).

For the minimization of Sn we applied a modified Gauss-Newton algorithm
implemented in the National Physical Laboratory Algorithms Library (LSFDN2).
Theorem 1.2 will serve as a basis for the computation of confidence regions. The
components of the matrix Ω were replaced by the sample means of

{
∂f(Xi, θn)

∂θr

∂f(Xi, θn)
∂θs

}
, 1 ≤ i ≤ n.

Estimation of
∏

was already discussed in the previous section. Sample sizes
were n = 30, 50 and 100. Confidence intervals for θ01 and θ02 were computed
via Scheffé’s method. Finally, for each n, 1000 replications were performed and
their actual coverage frequencies compared with the nominal coverage level 0.95.

In Table 1 we present the average values of θn = (θn1, θn2)t in four different
situations.

Table 1. Average values of θn1 and θn2. Target values are θ01 = 0.5 and
θ02 = 0.3.

n = 30 n = 50 n = 100
no censoring

θn1 0.493 0.496 0.499
θn2 0.304 0.303 0.299

weak censoring
θn1 0.493 0.493 0.497
θn2 0.308 0.301 0.301

medium censoring
θn1 0.478 0.481 0.489
θn2 0.294 0.294 0.296

heavy censoring
θn1 0.470 0.477 0.482
θn2 0.286 0.288 0.294

It becomes clear that the bias slightly increases as censoring becomes more
and more substantial. Table 2 presents the associated limit covariance matrix
Ω−1ΠΩ−1 of n1/2(θn − θ0) together with its estimators for different sample sizes
and degrees of censoring. Again it turns out that the approximations work well
already for small to moderate sample size.
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Table 2. Estimated and limit covariance matrices of n1/2(θn − θ0).

n = 30 n = 50 n = 100 n = ∞
no censoring 0.032 -0.019 0.034 -0.021 0.035 -0.021 0.031 -0.020

-0.019 0.040 -0.021 0.041 -0.021 0.043 -0.020 0.043
weak censoring 0.050 -0.021 0.057 -0.026 0.055 -0.027 0.040 -0.012

-0.021 0.059 -0.026 0.062 -0.027 0.065 -0.012 0.067
medium censoring 0.076 -0.004 0.087 -0.011 0.078 -0.021 0.072 0.002

-0.004 0.098 -0.011 0.098 -0.021 0.103 0.002 0.133
heavy censoring 0.118 0.011 0.116 0.000 0.119 -0.005 0.088 0.009

0.011 0.131 0.000 0.129 -0.005 0.154 0.009 0.172

In Table 3 we present the actual coverage probabilities for θ01 and θ02 for
Scheffé confidence intervals derived from Theorem 1.2.

Table 3. 95% Confidence Intervals: Coverage Frequencies.

coverage
frequencies n = 30 n = 50 n = 100

of
no censoring θ01 0.97 0.96 0.96

θ02 0.96 0.96 0.96
weak censoring θ01 0.95 0.99 0.98

θ02 0.91 0.94 0.95
medium censoring θ01 0.90 0.90 0.94

θ02 0.92 0.93 0.96
heavy censoring θ01 0.90 0.92 0.92

θ02 0.90 0.97 0.96

The actual coverage frequencies are already acceptable under weak to mod-
erate censoring for sample size n = 30. To get a visual impression we now present
100 replicates of 95% confidence intervals (CI) for θ01 = 0.5 under medium cen-
soring. Due to loss of information, the average lengths of the intervals will slightly
increase for heavier censorship.

Appendix. Proofs

Proof of Theorem 1.1. As already mentioned in Section 1, the theorem in
Stute (1993) asserts that for each θ ∈ Θ and with probability one,

lim
n→∞Sn(θ) =

∫
{Y <τH}

{Y − f(X, θ)}2dP +1{τH∈A}
∫
{τH − f(X, θ)}2dP,

which under our standard assumption equals σ2 + L(θ0, θ). Use compactness
of Θ, continuity of f(x, ·) and (vi) to show that with probability one, Sn(θ)
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converges uniformly in θ. See, for example, Theorem 2 in Jennrich (1969). Now,
let θ′ be any limit point of (θn). Along a subsequence (nj) we have θnj →
θ′. By uniform convergence and continuity, Snj(θnj ) → σ2 + L(θ0, θ′). Since
also Snj(θ0) → σ2 and, by construction of θnj , Snj(θnj) ≤ Snj(θ0), we obtain
σ2 + L(θ0, θ′) ≤ σ2 and therefore L(θ0, θ′) = 0. This proves θ0 = θ′. Finally,
Sn(θn) → σ2 with probability one.

Figure 1. 100 95% CI’s for θ01 = 0.5, n = 30 and medium censoring.

Figure 2. 100 95% CI’s for θ01 = 0.5, n = 100 and medium censoring.

Proof of Theorem 1.2. Since θn is an interior point of Θ, there exists some θ1
n

between θn and θ0 such that

n1/2(θn − θ0) = −A−1
n n1/2 ∂Sn(θ0)

∂θ
(A.1)

with

An =
∂2Sn(θ1

n)
∂θ∂θ′

.

Put
bn = n1/2 ∂Sn(θ0)

∂θ
.
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We first show asymptotic normality of bn. Actually,

bn = −2n1/2
n∑

i=1

Win

{
Zi:n − f(X[i:n], θ0)

} ∂f(X[i:n], θ0)
∂θ

is a particular example of a Kaplan-Meier integral as studied in Stute (1996a).
Setting

ϕ(x, y) = {y − f(x, θ0)}∂f(x, θ0)
∂θ

,

we get

bn = −2n1/2
∫
ϕ(x, y)F̂ 0

n (dx, dy).

Note that ϕ is a vector-valued function. Write ϕ = (ϕ1, . . . , ϕp). From Theorem
1.1 in Stute (1996a) we obtain the representation in probability

∫
ϕr(x, y)F̂ 0

n(dx, dy) = n−1
n∑

i=1

ϕr(Xi, Zi)γ0(Zi)δi

+n−1
n∑

i=1

{γϕr
1 (Zi)(1 − δi) − γϕr

2 (Zi)} + o(n−1/2),

where γϕr
1 and γϕr

2 already appeared in Section 1. The second sum consists of
independent identically distributed random variables with zero mean. As to the
first sum, note that because of E(ε1|X1) = 0,

E{ϕr(X1, Z1)γ0(Z1)δ1} = E

[
{Y1 − f(X1, θ0)}∂f(X1, θ0)

∂θr

]
= 0.

Recalling the definition of
∏

in (1.5), the multivariate Central Limit Theorem
yields

bn
D−→N (0, 4

∏
) as n→ ∞. (A.2)

We now study

An = 2
n∑

i=1

Win

∂f(X[i:n], θ
1
n)

∂θ

∂f(X[i:n], θ
1
n)

∂θ′

−2
n∑

i=1

Win

{
Zi:n − f(X[i:n], θ

1
n)

} ∂2f(X[i:n], θ
1
n)

∂θ∂θ′
.

Apply a uniform version of the Strong Law of Large Numbers of Stute (1993)
and continuity to show that the first sum converges to Ω. Similarly, the second
goes to ∫

ε
∂2f(X, θ0)
∂θ∂θ′

dP = 0.

The assertion of Theorem 1.2 therefore follows from (A.1) and (A.2).
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