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Abstract: The concept of universal optimality from optimum design theory is intro-

duced into computer experiments, modeled as realizations of stationary Gaussian

processes. When the correlation function is a nondecreasing and convex function of

a distance measure, it is shown that a design is universally optimal if it is equidis-

tant and of maximum average distance. Examples of universally optimal designs

are given with respect to rectangular, Euclidean, Hamming, and Lee distances.
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1. Introduction

A computer experiment is modeled as a realization of a stochastic process,
often in the presence of nonlinearity and high dimensional inputs (see Sacks,
Welch, Mitchell and Wynn (1989)). In this setting good designs are critical to
efficient data analysis and prediction. Many authors have suggested designs,
among which two classes of designs are known to be efficient: Latin hypercubes
and maximin distance designs. Latin hypercubes, proposed by McKay, Beckman
and Conover (1979), are evenly distributed in each one-dimensional projection.
To improve their high-dimensional properties, Owen (1992) and Tang (1993)
proposed randomized orthogonal arrays and orthogonal array-based Latin hyper-
cubes, respectively. Maximin distance designs, proposed by Johnson, Moore and
Ylvisaker (1990), are D-optimal for extremely weak correlations. However, max-
imin distance designs need not have good projection properties under Euclidean
or rectangular distance. To overcome this shortcoming, Morris and Mitchell
(1995) suggested restricting designs to Latin hypercubes and proposed use of
maximin Latin hypercubes.

The purpose of this paper is to introduce the concept of universal optimality
from optimum design theory into computer experiments, and then to exhibit
some universally optimal designs with respect to different distance measures. The
paper is organized as follows. Section 2 develops a concept of universal optimality
based on correlation matrices. Section 3 presents examples of universally optimal
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designs with respect to rectangular, Euclidean, Hamming, and Lee distances. A
brief conclusion is given in Section 4.

2. A Concept of Universal Optimality

The original concept of universal optimality in Kiefer (1975) dealt with in-
formation matrices with zero row and column sums. Here we consider correlation
matrices with unit diagonal elements.

First we introduce the Bayesian approach of Currin, Mitchell, Morris and
Ylvisaker (1991). Let Y be a stationary Gaussian process on a design space Ω,
with mean zero and correlation function ρ(·, ·). For a design (subset) X of Ω, let
YX be the vector of Y (x), x ∈ X, and RX be the correlation matrix of YX . It
is well known that the posterior process given the observed response YX is also
Gaussian. The design problem is to minimize the amount of uncertainty in the
posterior process by choosing the design X. Taking entropy as the measure of
uncertainty, Shewry and Wynn (1987) showed that this is equivalent to maximiz-
ing the prior entropy of YX if Ω is finite. Under the assumption of stationarity,
this is the same as the D–criterion, i.e., maximization of det(RX).

Our concept of universal optimality is based on correlation matrices. Let
Cb = (1 − b)In + bJn be an n × n matrix, where In is the identity and Jn

consists of all 1’s. Let g be a permutation of {1, . . . , n}, Gg be the corresponding
permutation matrix of g (i.e., Gg is obtained by permuting the columns of In

according to g), and G
′
g be the transpose of Gg. Suppose that Rnis the set of all

n×n correlation matrices (i.e., nonnegative definite matrices with unit diagonal
elements) and that Φ : Rn → (−∞,+∞] satisfies
(a) Φ(·) is convex;
(b) Φ(Cb) is nondecreasing in 0 ≤ b ≤ 1;
(c) Φ(Rn) = Φ(G

′
gRnGg) holds for any permutation g and any Rn ∈ Rn.

Let Xn be the set of all n-run designs of Ω.

Definition 1. A design X∗ in Xn is called universally optimal if X∗ minimizes
Φ(RX), X ∈ Xn , for every Φ satisfying (a), (b) and (c).

Note that Φ(R) = − log det(R) satisfies (a), (b) and (c); therefore, universal
optimality covers the D–criterion. In addition, if the correlation function is
a strictly decreasing function of a distance measure, then universal optimality
covers the maximin distance criterion as well.

The correlation function is often taken to be a function of a distance measure
d on Ω. For an n-run design X, let dmin(X) = min{d(x, x′) : x, x′ ∈ X,x �= x′}
and dave(X) = [n(n − 1)]−1 ∑

x �=x′ d(x, x′) denote the minimum and average dis-
tance between all pairs of different points of X, respectively. Clearly, dmin(X) ≤
dave(X). A design is called equidistant if dmin(X) = dave(X).
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Proposition 1. Suppose that the correlation function ρ(·, ·) is a nonnegative,
nonincreasing, and convex function of a distance measure d(·, ·). If X∗ ∈ Xn

satisfies (i) X∗ is equidistant, (ii) dave(X∗) = maxX∈Xn
dave(X), then X∗ is

universally optimal.

Proof. For any X ∈ Xn , the n×n correlation matrix of YX is RX = (ρ(x, x′)) =
(ρ(d(x, x′))). By (c) and (a),

Φ(RX) = (n!)−1
∑

g

Φ(G
′
gRXGg) ≥ Φ((n!)−1

∑

g

G
′
gRXGg) = Φ(Cb),

where Cb = (1− b)In + bJn with b = [n(n−1)]−1 ∑
x �=x′ ρ(d(x, x′)). In particular,

by (i), RX∗ = Cb∗ where b∗ = ρ(dave(X∗)). Then, by the assumption of the
correlation function ρ and (ii),

b ≥ ρ(dave(X)) ≥ ρ(dave(X∗)) = b∗ ≥ 0.

Thus, by (b), Φ(RX) ≥ Φ(Cb) ≥ Φ(Cb∗) = Φ(RX∗). This completes the proof.

3. Examples

This section presents some examples of universally optimal designs that come
from applying Proposition 1 to the special case Ω = {0, . . . , q − 1}s with different
distance measures. In particular, rectangular, Euclidean, Hamming and Lee
distances will be considered. For simplicity in notation, let Fq = {0, . . . , q − 1}
and F s

q = {0, . . . , q − 1}s. F s
q is often viewed as a lattice in the unit cube [0, 1]s

if Fq is mapped into [0, 1] by: x �→ (x + 0.5)/q.
To apply Proposition 1, we require suitable correlation functions. There are

many examples of correlations in the literature that are functions of rectangular
or Euclidean distance. It is less common to find correlations that are functions
of Hamming or Lee distance. Here are some examples. If the random process
Y is periodic on F s

q , or if F s
q is viewed as a torus lattice, Lee distance is more

suitable than rectangular or Euclidean distance. For a two-dimensional example
see Martin (1982), who studied designs for stationary torus lattice processes. On
the other hand, if the predictors or factors of Y are categorical or qualitative
rather than quantitative in nature, correlation functions might best be functions
of Hamming distance. Indeed only Hamming distance is studied in classical
factorial designs.

Since the focus here is on distance measures rather than on correlation func-
tions, we simply assume that the correlation function is a nonnegative, nonin-
creasing, and convex function of any distance measure in question. Thus, in
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order to prove universal optimality, it is sufficient by Proposition 1 to verify that
a design is of maximum average distance and equidistant.

Here are some additional definitions and notation for the following examples.
Let a = (a1, . . . , as) and b = (b1, . . . , bs) be two vectors over Fq. Rectangular
distance is given by dR(a, b) =

∑ |ai − bi|; Euclidean distance is dE(a, b) =
{∑(ai − bi)2}1/2; Hamming distance is dH(a, b) = card{i : ai �= bi, 1 ≤ i ≤ s};
and Lee distance is dL(a, b) =

∑
min{|ai − bi|, q − |ai − bi|}. Note that Lee

distance depends on q. It is convenient to consider Fq as an integer ring modulo
q when dealing with Lee distance. In particular, Fq is a finite field if q is a prime
number.

An n×s matrix A over Fq is called an orthogonal array of size n, s constraints,
q levels, strength t, and index λ if any set of t columns of A contains all qt

possible row vectors exactly λ times. Such an array is denoted by OA(n, s, q, t).
Clearly n = λqt. An OA(n, s, q, 2) is saturated if n − 1 = s(q − 1). Moreover,
an OA(n, s, n, 1) is called a Latin hypercube here. For convenience, a design is
written as a matrix, each row corresponding to a run. Thus, an n × s matrix
over Fq is an n-run design on F s

q .

A. Rectangular and Euclidean distances

Let X be an n × s matrix over Fq. It can be shown that dave(X) ≤ (q −
1)ns/[2(n− 1)] for rectangular distance and dave(X) ≤ (q − 1){ns/[2(n − 1)]}1/2

for Euclidean distance. A necessary condition for equality is that all elements
of X are either 0’s or (q − 1)’s and that the number of 0’s and of (q − 1)’s
in each column of X are the same. For rectangular distance this condition is
also sufficient. It can be shown (see Hamming distance below) that saturated
OA(n, s = n − 1, 2, 2) are equidistant and of maximum average distance. Thus,
by Proposition 1, they are universally optimal with respect to both rectangular
and Euclidean distances. In general, by multiplying OA(n, n − 1, 2, 2) by q − 1,
one gets a universally optimal design over Fq with s = n − 1.

B. Hamming distance

The Plotkin bound in coding theory (see Berlekamp (1968), pp.311-315)
shows that, for any n× s matrix X over Fq, dave(X) ≤ (q− 1)ns/[q(n− 1)], with
equality if and only if X is an orthogonal array of strength 1. Using the Plotkin
bound, it is easy to show that Latin hypercubes have maximum average distance
and are equidistant. Thus, by Proposition 1, they are universally optimal with
respect to Hamming distance. Moreover, saturated orthogonal arrays of strength
2, OA(n, s, q, 2), are equidistant with respect to Hamming distance (see Lemma 1



UNIVERSALLY OPTIMAL DESIGNS 1087

of Mukerjee and Wu (1995)). Thus, by the Plotkin bound and Proposition 1,
they are universally optimal with respect to Hamming distance.

C. Lee distance

Again, the Plotkin bound shows that, for any n × s matrix X over Fq,
dave(X) ≤ (q2 −1)ns/[4q(n−1)] for odd q and dave(X) ≤ qns/[4(n−1)] for even
q. Equality holds if X is an orthogonal array of strength 1. Let A be a Latin
hypercube OA(n = q, s, q, 1) or a saturated OA(n, s, q, 2). Use of the Plotkin
bound shows that A has maximum average distance. Consider a new design,
B = [A, 2A, . . . , ((q − 1)/2)A] (mod q). If q is an odd prime number, it can be
shown that this n × ((q − 1)s/2) matrix B is equidistant and thus universally
optimal with respect to Lee distance over Fq. In particular, there are universally
optimal designs over Fq with n = qk and s = (n−1)/2 for any odd prime number
q and positive integer k.

Next let A be a saturated OA(n, n−1, 2, 2). Clearly A is universally optimal
with respect to Lee distance over F2 since Lee distance is the same as Hamming
distance over F2. Consider a new design, B = kA. It is easy to show that the
n × (n − 1) matrix B is equidistant and of maximum average distance and thus
universally optimal with respect to Lee distance over Fq with q = 2k, k a positive
integer. In particular, there are universally optimal designs over Fq with q = 2k,
n = 2l and s = n − 1 for any positive integers k and l. Note that these designs
only have two levels.

There is another class of universally optimal designs for q = 2k, k a positive
integer. Define a 2k × (2k −1) matrix A = (aij) by aij ≡ i× j (mod 2k), 1 ≤ i ≤
2k, 1 ≤ j ≤ 2k − 1. This design has 2k−i columns of 2k−i+1 levels, i = 1, . . . , k.
Satyanarayana (1979) pointed out that this design is equidistant and achieves
the Plotkin bound. Thus, by Proposition 1, it is universally optimal with respect
to Lee distance.

4. Conclusion

It is shown that saturated two-level orthogonal arrays of strength 2 are uni-
versally optimal with respect to both rectangular and Euclidean distances. Latin
hypercubes and saturated orthogonal arrays of strength 2 are shown to be uni-
versally optimal with respect to Hamming distance. Universally optimal designs
with respect to Lee distance are also derived from Latin hypercubes and saturated
orthogonal arrays.

Although only examples of designs on F s
q are given in this paper, the gener-

alization to Fq1
× · · · × Fqs

is straightforward. The application can also handle
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continuous design spaces. For example, Morris and Mitchell (1995) pointed out
that saturated two-level orthogonal arrays of strength 2 are maximin distance de-
signs in the unit cube with respect to both rectangular and Euclidean distances.
It is easy to show that they are universally optimal in the unit cube with respect
to both rectangular and Euclidean distances.
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