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Abstract: This paper considers linear models with misspecification of the form

f(x) = E(y|x) =
∑p

j=1
θjgj(x) + h(x), where h(x) is an unknown function. We

assume that the true response function f comes from a reproducing kernel Hilbert

space and the estimates of the parameters θj are obtained by the standard least

squares method. A sharp upper bound for the mean squared error is found in terms

of the norm of h. This upper bound is used to choose a design that is robust against

the model bias. It is shown that the continuous uniform design on the experimental

region is the all-bias design. The numerical results of several examples show that

all-bias designs perform well when some model bias is present in low dimensional

cases.
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1. Introduction

This paper considers the design problem for linear regression given by

yi =
p∑

j=1

θjgj(xi) + εi, i = 1, . . . , n, (1.1)

when there is deviation (misspecification or bias) from the assumed model form.
Here the specified functions gj are linearly independent, the xi are n points drawn
from the design region X ⊂ Rs. The εi are i.i.d. random errors with mean 0 and
variance σ2. We represent the true response by

f(x) =
p∑

j=1
θjgj(x) + h(x),

yi = f(xi) + εi, i = 1, . . . , n,
(1.2)

where h is an unknown function from some class H, which will be specified
later. Since the bias h is unknown and may vary freely in H, the designs must
be chosen such that the fitted model provides an adequate approximation to a
range of possible true models, i.e., is robust to the exact form of the true model
in some sense. This is the fundamental goal of model-robust design.



1054 RONG-XIAN YUE AND FRED J. HICKERNELL

The model-robust design problem has been studied by many authors, whose
investigations differ in specification of the class H, the design region, the regres-
sors, and in the loss functions used. Box and Draper (1959) and Kiefer (1973)
restrict their attentions to finite dimensional H and the least squares estima-
tors or linear estimators. Huber (1975), Marcus and Sacks (1978), Pesotchinsky
(1982), Li and Notz (1982), Li (1984) and Wiens (1990, 1992), and some oth-
ers deal with infinite dimensional H. Some of them take H = {h : |h(x)| ≤
φ(x), x ∈ X} with various assumptions being made about φ. The designs con-
structed appear to be quite sensitive to the assumed form of φ. The others take
H = {h :

∫
X [h(x)]2dx ≤ c,

∫
X gj(x)h(x)dx = 0, j = 1, . . . , p}, and use the least

squares estimators. Here c is assumed known, and the second condition ensures
the identifiability of the θj. One criticism of this specification is that only designs
which are absolutely continuous on X have a finite loss. The reason is that such
a H includes h which have an arbitrarily high, narrow spike above any points
in X . The review by Chang and Notz (1996) provides a good summary of the
previous work in this subject.

In this paper, we assume that H is a reproducing kernel Hilbert space ad-
mitting a reproducing kernel K(x,w) and an inner product 〈·, ·〉. The definition
of a reproducing kernel is a function on X × X such that K(·,w) ∈ H for all
w ∈ X , and

h(w) = 〈h,K(·,w)〉, for all h ∈ H and all x ∈ X . (1.3)

We also assume that∫
X

gj(x)h(x)dx = 0, j = 1, . . . , p, for any h ∈ H. (1.4)

For the details of reproducing kernel Hilbert spaces, we refer to Aronszajn (1950),
Saitoh (1988) and Wahba (1990). It can be shown that any reproducing property
is symmetric in its arguments and positive definite:

K(x,w) = K(w,x) for all x,w ∈ X ,

n∑
i=1

n∑
j=1

aiajK(xi,xj) ≥ 0 for all ai ∈ R and any xi ∈ X .

As was done in the previous work mentioned above, we confine ourselves to
the use of the least squares estimators both because these estimators do not
depend on the type of deviation from the model, and because in the case of small
deviations, the least squares estimators perform well, as was shown by Marcus
and Sacks (1978) and Sacks and Ylvisaker (1978).
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2. Development of Design Criteria

Assume the true response is given by (1.2), and the class H is as specified
above. Let ξn be a sequence of n design points xi in X , y be the vector of n

observations, yi. Let g be the vector of p regressors gj , and X be the design
matrix, i.e., X = (g(x1), . . . ,g(xn) )�. Our consideration here is limited to the
designs ξn with nonsingular information matrix M = X�X. Then the least
squares estimator of θ = ( θ1, . . . , θp )� in the assumed model is θ̂ = M−1X�y.

Let f∗(x) = θ�g(x) and f̂(x) = θ̂
�
g(x) for x ∈ X . We consider the integrated

mean squared error over the region X :

R(ξn, h) =
∫
X

E[f̂(x) − f∗(x)]2dx. (2.1)

Introducing the matrix and vector

G =
∫
X
g(x)g�(x)dx, h = (h(x1), . . . , h(xn) )�, (2.2)

the loss function R(ξn, h) can be expressed as follows:

R(ξn, h) = σ2tr{M−1G} + h�XM−1GM−1X�h. (2.3)

The first term in (2.3) is the contribution from the variance error, and the second
term is the contribution from the bias error. The following theorem provides a
sharp upper bound for R(ξn, h), all h ∈ H.

Theorem 1. Suppose the true model is given by (1.2). Assume that the class
of deviations, H, is a reproducing kernel Hilbert space admitting the reproducing
kernel K(x,w) and that H satisfies condition (1.4). Let k be the vector of n

functions K(·,xi), i = 1, . . . , n, and let K be the matrix with entries K(xi,xj),
i, j = 1, . . . , n. Define

Q = G
1
2M

−1
X

�
KXM

−1
G

1
2 . (2.4)

Then
R(ξn;h) ≤ σ2tr{M−1

G} + λmax(Q)‖h2‖, (2.5)

where λmax(Q) is the maximum eigenvalue of the matrix Q. Let vmax(Q) be the
(scaled) eigenvector of Q corresponding to λmax(Q), and let

W (x) = v�
max(Q)G

1
2M

−1
X

�k(x). (2.6)

Then equality in (2.5) is attained when h is a constant multiple of W .
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Proof. Comparing with (2.3) and setting A = XM−1LM−1X�, we need only
show that

h�Ah ≤ λmax(Q)‖h‖2. (2.7)

First, using reproducing property (1.3) and the definition of k, we have

h = ( 〈K(·,x1)h〉, . . . , 〈K(·,xn)h〉 )� = 〈kh〉.

Put B = G
1
2M−1X� and ζ = Bk. Then the left hand side in (2.7) can be written

as

h�
Ah = (Bh)�(Bh) = 〈ζ�h〉〈ζh〉 =

p∑
j=1

〈ζjh〉2, (2.8)

where the ζj are the components of ζ.
On the other hand, h ∈ H can be expressed as a sum of an element in

span{ζ1, . . . , ζp} and its orthogonal complement. That is, h = h0 + h1 with
h0 =

∑p
j=1 bjζj ≡ b�ζ and 〈ζj, h1〉 = 0, j = 1, . . . , p for a set of some constants

bj. Let ej be the the jth column vector of Ip. Then for each j,

〈ζj, h〉 =
p∑

α=1

bα〈ζj, ζα〉 = e�
j (BKB�)b = e�

j Qb. (2.9)

Therefore we have

‖h‖2 = ‖h0‖2 + ‖h1‖2 = b�〈ζ, ζ�〉b+ ‖h1‖2 = b�Qb+ ‖h1‖2,

which implies that
b�
Qb ≤ ‖h‖2, (2.10)

equality holding when h = b�ζ. On the other hand, applying (2.9) to (2.8), we
obtain

h�
Ah =

p∑
j=1

b�
Q

�eje
�
j Qb = b�

Q
2b

since
∑p

j=1 eje
�
j = Ip. From the extremal properties of eigenvalues, it follows

that
h�
Ah ≤ λmax(Q)b�

Qb,

equality holding when b = vmax(Q). The desired results then follow from (2.10).

Remark 1. We call the function W (·) defined in (2.6) a worst-case bias. From
its definition,

‖W‖2 = 〈W,W 〉 = v�maxG
1
2M−1X�〈k,k�〉XM−1G

1
2vmax

= v�
maxQvmax = λmaxv�

maxvmax = λmax(Q),
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i.e., the quantity λmax(Q) is the squared norm of the worst-case bias. The in-
equality (2.7) provides a sharp upper bound for the bias term in the right hand
side of (2.3) for any h ∈ H. This bound is composed of two parts: ‖h‖2, which
can be viewed as a measure of the size of variation or fluctuation of the bias, and
‖W‖2 = λmax(Q), which is a measure of the worst-case bias. This quantity de-
pends only on the design points (and the specification of the reproducing kernel).
At these points, the inequality (2.7) is similar to the quadrature error bound in
the literature having the form∣∣∣∣∣

∫
X

h(x)dx− 1
n

n∑
i=1

h(xi)

∣∣∣∣∣ ≤ D(ξn)V (h).

See, for example, Niederreiter (1992) and Hickernell (1996).

Remark 2. The reproducing kernel K(·, ·) contains information about the worst
possible bias h(w) at a fixed point w in X . Let h∗

w be the function in H that
maximizes h(w) over H subject to ‖h‖ = 1, i.e., h∗

w = argmax ‖h‖=1
h(w). This

function is determined by the reproducing kernel as follows:

h∗
w(x) = [K(w,w)]−1/2K(x,w), x ∈ X . (2.11)

To see why, note that for any h ∈ H with ‖h‖ = 1, we have

h(w) = 〈K(·,w)h〉 ≤ ‖K(·,w)‖ ‖h‖ = ‖K(·,w)‖ = [K(w,w)]1/2

by (3.1), and the equality holds when h = h∗
w ∝ K(·,w). The value K(w,w)

is positive because the reproducing kernel is positive definite. By definition we
then have h∗

w(x) = c(w)K(x,w) for some c depending only on w. The value of
c(w) follows from the requirement that

‖h∗
w‖ = c(w)‖K(·,w)‖ = c(w)[K(w,w)]1/2 = 1.

Thus c(w) = [K(w,w)]−1/2 and (2.11) is proved. Furthermore, note that
h∗
w(w) = [K(w,w)]1/2, so that the reproducing kernel for H can be expressed

in terms of the worst function h∗
w as follows:

K(x,w) = h∗
w(w)h∗

w(x) = h∗
x(x)h∗

x(w).

In the next section we will display examples of h∗
w for various w in the one-

dimension case.

Our criteria for choosing designs come from the upper bound for R(ξn, h)
given in (2.5). We define

Jv(ξn) = tr{M−1G},
Jb(ξn) = λmax(Q) = λmax

(
M−1GM−1X�KX

)
,

(2.12)
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and
J(ξn; r) = rJv(ξn) + (1 − r)Jb(ξn), (2.13)

where

r =
σ2

‖h‖2 + σ2
. (2.14)

We call Jv and Jb a variance discrepancy and a bias discrepancy, respectively,
while J(ξn; r) is a weighted average of them. The upper bound for R(ξn, h) can
be written as (‖h‖2 +σ2)J(ξn; r). It is clear that r in (2.14) is independent of the
design ξn and reflects the relative proportion of the variance to bias. Values of r

near 0 mean small variance error or serious bias, while values of r near 1 mean
large variance error or small bias. Thus r can be understood as the prior belief of
the experimenter as to the nature of the true response function. For a given value
of r, J(ξn; r) depends only on the design points, but not on the bias function
h. The smaller the value of J(ξn; r), the better the design ξn is. Therefore, for
fitting the linear model with bias by using the least squares, we should choose
a design such that J(ξn; r) is as small as possible. The design that minimizes
J(ξn; r) for a given r ∈ [0, 1] is called compound optimal and denoted by ξr

n. In
particular, ξr

n with r = 0 is called an all-bias design and ξr
n with r = 1 is called

an all-variance design. It is known that the all-variance design is L-optimal if
the assumed linear model is exactly correct (Atkinson and Donev (1992)). The
meaning of the all-bias design is analogous to the uniform design introduced by
Fang and Wang (1994).

Further, in order to compare the behaviour of different designs, such as the
all-variance and all-bias designs described above, we define the efficiency of a
design, ξ̃n, as follows:

Eff(ξ̃n; r) =
minξn J(ξn; r)

J(ξ̃n; r)
. (2.15)

Introducing the concept of a design measure ξ, a probability measure on X
with mass n−1 on each points xi, we write

n−1M =
∫
X
g(x)g�(x)dξ(x) ≡M ξ,

n−2
X

�
KX =

∫
X×X

g(x)g�(w)K(x,w)dξ(x)dξ(w) ≡ P ξ.

Then the bias discrepancy Jb can be expressed by Jb(ξ) = λmax(M−1
ξ GM

−1
ξ P ξ).

Note that this expression is well defined for any probability measure ξ on X with
nonsingular information matrix M ξ. It is clear that Jb(ξ) ≥ 0 for any ξ, equality
holding when ξ is the uniform measure on X . This implies that the uniform
design on X is an all-bias design in the view of approximate designs. However,
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for finite n it has not yet proved possible to obtain any analytic minimization for
Jb(ξn) in the general case.

Before ending this section, we give a construction of a reproducing kernel
K for H which satisfies condition (1.4). We suppose that the underlying true
response function f(·) comes from a reproducing kernel Hilbert space, F , admit-
ting a reproducing kernel K0. Then for a set of linearly independent functions
g1, . . . , gp from F , we have the following theorem.

Theorem 2. Suppose that the Hilbert space F has a reproducing kernel K0 with∫
X K0(x,x)dx < ∞, and that F is a direct sum of span{g1, . . . , gp} and H which

satisfies condition (1.4), i.e.,

F = span{g1, . . . , gp} ⊕ H,

∫
X
g(x)h(x)dx = 0, h ∈ H. (2.16)

Let η be a vector of p functions
∫
X gj(x)K0(x, ·)dx, j = 1, . . . , p, and let Ψ be a

p × p matrix whose (i, j)th entry is
∫
X×X gi(x)gj(w)K0(x,w)dxdw. Define

K(x,w) = K0(x,w) − η�(x)Ψ−1η(w). (2.17)

Then such K is the reproducing kernel for the subspace H.

Proof. For the fixed gj ∈ F , consider the following linear functionals on F :

Tj(f) =
∫
X

gj(x)f(x)dx, f ∈ F , j = 1, . . . , p. (2.18)

Note that

|Tj(f)| =
∣∣∣∣
∫
X
〈gjK0(·,x)〉 〈fK0(·,x)〉dx

∣∣∣∣
≤

∫
X
‖gj‖ ‖K0(·,x)‖2 ‖f‖dx =

∫
X

K0(x,x)dx ‖gj‖ ‖f‖.

It follows from the assumption on K0 that the Tj are bounded. Let ηj be the
representers for Tj :

Tj(f) = 〈ηjf〉, f ∈ F , j = 1, . . . , p. (2.19)

We have

ηj(x) = 〈ηj ,K0(·,x)〉 = Tj(K0(·,x)) =
∫
X

gj(w)K0(w,x)dw, (2.20)

which means that the jth component of η in (2.17) is the representer ηj. Further,
from (2.18) and (2.19), we have

〈ηi, ηj〉 = Ti(ηj) =
∫
X

gi(x)ηj(x)dx =
∫
X×X

gi(x)gj(w)K0(x,w)dxdw,
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which means that the (i, j)th entry of Ψ in (2.17) is 〈ηi, ηj〉. We show that
η1, . . . , ηp are linearly independent. Suppose the equality a�η ≡ a1η1(x) + · · · +
apηp(x) = 0 holds for a set of constants aj . Then 0 = 〈a�η,g�〉 = a�〈η,g�〉 =
a�G, the last equality holding due to (2.18), (2.19) and the definition of G in
(2.2). But G is nonsingular, so a = 0 and the η1, . . . , ηp are linearly independent.
Hence ψ is nonsigular.

It remains to be shown is that the function K given in (2.17) satisfies (1.3).
For any fixed w ∈ X , from (2.18), (2.19) and (2.17) we have for each j∫

X
gj(x)K(x,w)dx = 〈ηj ,K(·,w)〉 = 〈ηj ,K0(·,w)〉 − 〈ηj ,η

�〉Ψ−1η(w)

= ηj(w) − e�
j ΨΨ−1η(w) = 0,

where ej is as in (2.9). It follows that K(·,w) ∈ H for any w ∈ X . Furthermore,
for any h ∈ H ⊂ F ,

〈h,K(·,w)〉 = 〈h,K0(·,w)〉 − 〈h,η�〉Ψ−1η(w) = h(w),

since 〈h, ηj〉 =
∫
X gj(x)h(x)dx = 0 for j = 1, . . . , p. Therefore, K is the repro-

ducing kernel for H.

Remark 3. The result in Theorem 2 is different from that of Wahba (1978,
Section 3). As the condition (1.4) is not assumed there.

3. Illustrative Examples

In this section we present some numerical results on the all-bias, all-variance
and compound optimal designs for several models. Throughout, the design region
is the unit cube in Rs, i.e., X = [0, 1]s. A generic point in [0, 1]s is denoted by
x = (x1, . . . , xs)�, and the point xi is written as xi = (x1

i , . . . , x
s
i )

�. Suppose
that the underlying true response functions, represented by

f(x) = θ�g(x) + h(x) with
∫
[0,1]s

g(x)h(x)dx = 0,

come from the space F = ⊗sWm, the tensor product of Wm with itself s times.
Here, Wm is the so-called Sobolev-Hilbert space defined by

Wm : Wm[0, 1] =
{
f : f, f ′, . . . , f (m−1) absolutely continuous, f (m) ∈ L2[0, 1]

}
.

The positive integer m indicates the degree of smoothness of functions in this
space. It is known that Wm is a Hilbert space with reproducing kernel (Wahba
(1990), Section 10.2)

K∗
0 (x,w) =

m∑
l=0

1
(l!)2

Bl(x)Bl(w) +
(−1)m+1

(2m)!
B2m({x − w}), (x,w) ∈ [0, 1]2
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under the square norm

‖f‖2 =
m−1∑
l=0

[∫ 1

0
f (l)(x)dx

]2

+
∫ 1

0

[
f (m)(x)

]2
dx, f ∈ Wm.

Here Bl is the lth Bernoulli polynomial, and { · } is the fractional part of a real
number, i.e., {t} = t (mod 1). It follows that the tensor product space F is a
Hilbert space with reproducing kernel K0(x,w) =

∏s
k=1 K∗

0 (xk, wk). Then for
a given regressor vector g(x) the reproducing kernel for the subspace H is well
defined by (2.17). For simplicity we only consider the case m = 1.

Example 1. Location model with bias. In the true model (3.1), g(x) ≡ 1. In
this case, the reproducing kernel for H is

K(x,w) =
s∏

k=1

[
1 + B1(xk)B1(wk) +

1
2
B2({xk − wk})

]
− 1.

We first give the norm of a function defined in this subspace. In the one-
dimensional case, s = 1, the square norm of h ∈ H is ‖h‖2 =

∫ 1
0 [h′(x)]2dx,

since here
∫ 1
0 h(x)dx = 0. The function h∗

w defined in (2.11) is displayed in
Figure 1 for each given value of w ∈ [0, 1].

0

0 0

1

1

1

0.5

0.5

0.5

-0.5

x

w

w

h
∗ (x

)

Figure 1. The plots of h∗
w(x) given in (2.11) for the one-dimensional location

model with bias given in Example 1.

For the multi-dimensional case, the norm of a function in H is more com-
plicated and is best defined using the ANOVA decomposition of a function. For
u ⊆ S ≡ {1, . . . , s}, let |u| denote the cardinality of u, and ū denote the com-
plement S − u. By [0, 1)u we denote the |u|-dimensional unit cube involving the
coordinates in u, by xu we denote the coordinate projection of x onto [0, 1)u,
and dxu =

∏
k∈u dxk. The ANOVA decomposition of h ∈ H takes the form
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h(w) =
∑

u⊆S hu(x) (see Owen (1992)), where the terms hu are defined recur-
sively starting with h∅ =

∫
[0,1)s h(x)dx = 0, and using the rule

hu(x) =
∫
[0,1)ū

[
h(x) −

∑
v⊂u

hv(x)

]
dxū, ∅ �= u ⊆ S.

Then the square norm of h is given by (Hickernell (1996))

‖h‖2 =
∑
u⊆S

∫
[0,1)s

[
∂|u|hu

∂xu

]2

dx =
∑
u⊆S

∫
[0,1)u

[∫
[0,1)ū

∂|u|h
∂xu

dxū

]2

dxu.

Consider the designs for this model. Clearly, the criterion J(ξn; r) in (2.13)
depends on the design points only through Jb. For the one-dimensional case,
s = 1, straightforward calculations give

Jb(ξn) =
1
n2

n∑
i=1

n∑
j=1

[
B1(xi)B1(xj) +

1
2
B2({xi − xj})

]

=
1

12n2
+

1
n

n∑
i=1

[
x(i) −

2i − 1
2n

]2

,

where x(1) ≤ · · · ≤ x(n) are the order statistics of x1, . . . , xn. It is clear that the

minimizer of Jb(ξn) in (3.4) is
{

2i−1
2n , i = 1, . . . , n

}
.

For multi-dimensional case, s > 1,

Jb(ξn) = −1 +
1
n2

n∑
i=1

n∑
j=1

s∏
k=1

[
1 + B1(xk

i )B1(xk
j ) +

1
2
B2({xk

i − xk
j })

]
.

For finite n, there is no analytic solution for this minimization problem, and
some numerical optimization methods must be used. For small n and small s, we
can find the minimizer, ξb

n, of Jb(ξn) over [0, 1]s by a constrained optimization
routine in MATLAB. Some of these results with s = 2 are shown in Figure 2 by
circles (◦). On the other hand, we also consider the following family of n-point
designs in [0, 1]s:

Pequ(s, n) ≡
{
{xi}n

i=1 : xk
1, . . . , x

k
n is a permutation of

1
2n

,
3
2n

, . . . ,
2n − 1

2n

}
.

A design in Pequ(s, n) implies that the possible levels for each factor are to be
equi-distributed in [0,1]. The designs, ξb

n,equ, that minimize Jb(ξn) over Pequ(2, n)
are shown in Figure 2 by dots (·). It is observed that the designs, ξb

n and ξb
n,equ,

are quite similar and uniformly scattered over the region [0, 1]2.
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Figure 2. The designs ξb
n (◦) and ξb

n,equ (·) for the two-dimensional location
model with bias given in Example 1.

Example 2. First-degree model with bias. For x = (x1, . . . , xs)� in [0, 1]s we
set

Φk(x) = 2
√

3B1(xk), k = 1, . . . , s.

The regressor vector here is g(x) = ( 1,Φ1(x), . . . ,Φs(x) )�. We then have G =
Is+1. From (2.17) we find the reproducing kernel for H:

K(x,w)=
s∏

k=1

[
1+B1(xk)B1(wk)+

1
2
B2({xk − wk})

]
−1−5

6

s∑
k=1

B1,3(xk)B1,3(wk),

where B1,3(·) is defined as

B1,3(·) = B1(·) − 2B3(·). (3.1)
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Under this subspace with s = 1, the functions h∗
w(x) for various w are shown in

Figure 3.
The compound optimal design ξr

n that minimizes J(ξn; r) over [0, 1]s for a
given r ∈ [0, 1] can be found numerically. Figure 4 shows the 8-run designs
with s = 1 and s = 2 corresponding to r = 0 (◦), 0.1 (·), . . ., 0.9 (·) and
1(×), respectively. The efficiencies of all-variance and all-bias designs calculated
from (2.15) are also shown in this figure. It is observed that the points of all-
bias designs ξb

n (◦) are uniformly scattered over the regions [0,1] and [0, 1]2,
respectively. The points of all-variance designs ξv

n (×) are located at the ends of
[0,1] for s = 1, and at the vertices of the cube for s = 2. As r increases from
0 to 1, one proceeds from all-bias designs to all-variance designs. For higher
dimensional cases, the efficiencies of all-bias designs are compared numerically
with those of all-variance designs. The results with n = 12 and s = 3, 4 are also
shown in Figure 4.

0

0 0

1

1
0.5

0.5
x

w

w

h
∗ (x

)

0.2

0.4

0.6

-0.2

Figure 3. The plots of h∗
w(x) given in (2.11) for the one-dimensional first-

degree model with bias given in Example 2.
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(ii)
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Figure 4. (i) The designs for the first-degree model with bias given in Example
2 with s = 1 and s = 2: ξr

n (·), ξb
n (◦) and ξv

n (×). (ii) The efficiencies
of the all-bias designs and all-variance designs: Eff(ξb

n; r) (solid), Eff(ξv
n; r)

(dashed).

The efficiency of the designs ξb
n is not so bad even without misspecification in

the model. We also observe that the efficiency of the all-variance design decreases
somewhat as the dimension increases, if misspecification is present. The efficiency
of the all-bias design also changes a bit as the dimension increases.

Example 3. Second-degree model with bias. For x = (x1, . . . , xs)� in [0, 1]s we
let Φk be the same as in Example 2, and let

Φkl(x) =

{
Φk(x)Φl(x), k < l,

6
√

5B2(xk), k = l.

The regressor vector here is g = (1,Φ1, . . . ,Φs,Φ12, . . . ,Φs−1,s,Φ11, . . . ,Φss)�.
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Then we have G = Ip, p = 1 + 2s + s(s − 1)/2. The reproducing kernel for H is

K(x,w)

=
s∏

k=1

[
1 + B1(xk)B1(wk) +

1
2
B2({xk − wk})

]
− 1 − 5

6

s∑
k=1

B1,3(xk)B1,3(wk)

−25
36

∑
1≤j<k≤s

B1,3(xj)B1,3(xk)B1,3(wj)B1,3(wk) − 105
2

s∑
k=1

B4(xk)B4(wk),

where B1,3(·) was defined in (3.1). The compound optimal designs can be found
numerically. For each r = 0, 0.1, . . ., 0.9 and 1, we find the 8-run compound
design ξr

n that minimizes J(ξn; r) over [0, 1]s for s = 1 and s = 2, respectively.
Some of these results are shown in Figure 5. The behaviours of ξb

n and ξv
n are

similar to those in Example 2. Figure 5 also shows the efficiencies of the designs
for this model when (s, n) = (3, 12) and (s, n) = (4, 18), respectively. It seems
that the efficiency of the all-bias design decreases as the dimension increases
if model misspecification is small, and the efficiency of the all-variance design
decreases with dimension if misspecification is large.
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s=3, n=12
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Figure 5. (i) The designs for the second-degree model with bias given in
Example 3 with s = 1 and s = 2: ξr

n (·), ξb
n (◦) and ξv

n (×). (ii) The
efficiencies of the all-bias designs and all-variance designs: Eff(ξb

n; r) (solid),
Eff(ξv

n; r) (dashed).

4. Summary

We have considered the design problem for fitting linear models with mis-
specification. It is assumed that the bias is a deterministic but unknown function
in a reproducing kernel Hilbert space. The model parameters are estimated by
standard least squares and the criterion for choosing designs is developed in terms
of a sharp upper bound for the integrated mean squared error of the estimates.
This criterion is a weighted average of the so-called bias discrepancy and vari-
ance discrepancy. The bias discrepancy is derived by using a reproducing kernel
Hilbert space approach.

The dependence of the efficiency of the all-variance and all-bias designs on
the number of experiments, the order of the model and the dimension remains
to be fully explored. However, numerical results for some specific cases suggest
certain trends. As expected, the all-variance design has a high efficiency when
the misspecification is small and the all-bias design has a high efficiency when the
misspecification is large. The efficiency of the all-variance becomes small when
the misspecification is large, and this trend is worse as the dimension increases.
The efficiency of the all-bias design is moderate, even when no misspecification
is present, however it too decays with increasing dimension.

Whereas the all-variance designs depend strongly on the form of the model,
the all-bias designs are relatively independent of the model, spreading the design
points evenly over the experimental domain. If one does not know the model a
priori, one might use any all-bias design to perform the experiment, and then use
standard variable selection techniques to identify the appropriate model.
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