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GENERALIZED BAYES CONFIDENCE ESTIMATORS
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Abstract: A generalized Bayes confidence estimator γL with respect to the Lebesgue
prior is constructed for Fieller’s confidence set. It is compared with the confidence
coefficient γ under squared error loss. Besides its admissibility proved in Tsao
and Hwang (1997), γL is shown to dominate the confidence coefficient, under some
conditions, when dimension p is 2 or 3. For large p, it is shown that the domination
fails. Numerical integration suggests that γL fails to dominate γ when p ≥ 4. The
results seem surprising.
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1. Introduction

Ratio parameters are of importance in the fields of biology and bioassay. See,
for example, Finney (1978), Govindarajulu (1988), Chow and Liu (1992) and
Gleser and Hwang (1987). Fieller’s confidence set (1954), denoted by CF (X),
is a popular confidence set for a ratio, denoted by ρ. Despite its popularity, it
provides a well-known embarrassment to frequentist confidence theory. Namely,
with a positive probability, the set CF (X) can be the whole parameter space.
Nonetheless, it is not a trivially bad set estimator. Justification for it is well-
founded on pivotal quantity, likelihood ratio test and profile likelihood arguments.
See Tsao (1994) for discussion on these issues.

The possibility of infinite length of CF (X), however, cannot be avoided. In
fact, it was proved in Gleser and Hwang (1987) that any confidence interval hav-
ing almost surely finite length has zero confidence coefficient. A confidence coef-
ficient, according to Lehmann (1986), is the infimum of the coverage probability
over the parameter space. A remedy is to provide a data-dependent confidence
report, as proposed by Kiefer (1977) and Berger (1988). Conditional inference
by this approach has been carried out for various problems. See, for example,
Hwang and Brown (1991), Brown and Hwang (1990), Goutis and Casella (1992)
and Lu and Berger (1989a, b).

In the estimated confidence approach, a data-dependent estimator γ(X) is
thought to be an estimator of the indicator function

I[ρ ∈ CF (X)] =

{
1 if ρ ∈ CF(X)
0 otherwise.

(1)
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We evaluate γ(X) by a squared error loss function

L(γ(X), I[ρ ∈ CF (X)]) = (γ(X) − I[ρ ∈ CF (X)])2. (2)

An estimator γ(X) with smaller risk function is then considered better, while
terminologies such as Bayes, generalized Bayes, admissibility, inadmissibility, and
domination can be defined as usual.

In this study we consider the generalized Bayes estimator, γL(X), with re-
spect to a Lebesgue prior. In the problem of estimating the indicator function
of the usual γ = 1 − α confidence set for a normal mean, the generalized Bayes
procedure respect to a Lebesgue prior happens to be its confidence coefficient γ.
It is, however, not the case in Fieller’s problem. In fact, for 0 < γ < 1, γ is not
a generalized Bayes procedure with respect to any prior that has a well-defined
posterior probability. Comparison of these two estimators, γ and γL, is therefore
interesting. Note when CF (x) is the whole parameter space, γL(x) gives 1, as it
should. In this regard, γL is more appealing than γ.

Previous results about the estimated confidence approach apply only to es-
timation of a normal mean. Consider a p-dimensional normal observation with a
known nonsingular covariance matrix, which can be assumed to be identity ma-
trix without loss of generality. In estimating the indicator function corresponding
to the usual p-dimensional confidence sphere, it was shown that its confidence
coefficient γ is inadmissible if and only if p ≥ 4. See Robert and Casella (1994)
and Brown and Hwang (1990). Goutis and Casella (1992) considered the one
dimensional t-interval and provided estimators dominating its confidence coeffi-
cient. See Goutis and Casella (1995) for a review on the estimated confidence
approach. In all these studies, the dominating estimators are not shown to be
admissible. Indeed, they are likely not admissible, since they are not smooth.
We say “likely”, because there is no complete class theorem that implies the
inadmissibility of non-smooth estimators.

We give a representation of Fieller’s confidence set for all p ≥ 2 in Section
2. In Section 3, the behavior of γL(X) is examined through several of its func-
tional properties. Section 4 compares the risk functions of γL(X) and γ. It is
established that when p = 3, or equivalently when 2 ratios are involved, γL(X)
dominates γ for exhaustively selected values of γ. Further when p = 2, or equiv-
alently when one ratio is involved, domination holds for exhaustively selected
value of γ where γ > 0.67, an inequality that holds for most practical appli-
cations. Furthermore, for the case of one or two ratios, γL(X) is shown to be
admissible in Tsao and Hwang (1997). As far as we can tell, this is the first
result in estimated confidence approach where the confidence coefficient is shown
to be dominated by an admissible estimator. In Section 5, analytical argument
shows that the domination fails when the number of ratios is large. Numerical
calculations provided in Section 6, however, indicate that the domination fails
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when more than two ratios are involved. The result seems surprising and some
concluding remarks about it are given in Section 6.

2. Fieller’s Confidence Set

Let X = (X1, . . . ,Xp)′ have a p-dimensional normal distribution with mean
θ and covariance matrix σ2Ip where Ip is a pxp identity matrix and σ2 is known,
say σ2 = 1. The parameter of interest is ρ = (ρ1, . . . , ρp−1)′, where ρi = θi/θp,

i = 1, . . . , p − 1, and θp �= 0.
For p = 2, Fieller’s confidence set for ρ is

CF (X) = {ρ :
|X1 − X2ρ|√

1 + ρ2
<

√
c}, (3)

where c is the upper α cutoff point of a chi-square distribution with 1 degree of
freedom and X = (X1,X2)′. Note that

|X1 − X2ρ|√
1 + ρ2

<
√

c ⇔
{
|X1 − X2ρ|√

1 + ρ2

}2

< c

⇔ θ2
2X

2
1 + θ2

1X
2
2 − 2X1X2θ1θ2

θ2
1 + θ2

2

< c

⇔ X ′X − (X ′θ)2

|θ|2 < c.

Hence

CF (X) = {ρ : |X |2 − (X ′θ)2

|θ|2 < c}, (4)

where |X| and |θ| denote the usual Euclidean norm of X and θ, respectively.
For general p, if c is the upper α cutoff point of a chi-square distribution with

p − 1 degrees of freedom, (4) again has confidence coefficient γ = 1 − α. Scheffé
(1970) and Zerbe (1982) provided simultaneous confidence regions for ratios of
all contrasts in the setting of general linear model, similar in appearance to (4).
Note that (4) refers to a set of ρ’s even though the condition is expressed in terms
of θ. It is easy to see from (4) that CF (X) = Rp−1, the whole parameter space,
when |X |2 < c.

3. Basic Properties of γL(X)

Under squared error loss, the generalized Bayes procedure γL(X) is the pos-
terior mean. Tsao and Hwang (1997) derive the following representation for
γL(X), it depends on X only through its norm. Hence, from now on, γL(X) can
be denoted as γL(D), where |X| = D.
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Lemma 3.1.
γL(D) = P

{
Y1
Y2

> D2−c
c

}
, (5)

where Y1 is a non-central chi-square random variable with 1 degree of freedom and
noncentral parameter D, Y2 is a chi-square random variable with p − 1 degrees
of freedom, and Y1 and Y2 are independent.

As noticed earlier, CF (X) is the whole parameter space when D2 < c. Intu-
itively, a nice data-dependent confidence estimator will be 1 for such a case. An
immediate consequence of Lemma 3.1 is

Corollary 3.1. When D2 < c, γL(D) = 1.

The properties of γL(D) can be further scrutinized. Closed forms of the
derivatives of γL can be obtained when p equals 2 or 3. Further, if p equals 3,
a workable form of γL(D) can be written out explicitly. Details can be found in
the Appendix. Let φ be the probability density function of a standard normal
distribution. Then for D2 > c,

d
dDγL(D) =

−Cp

b

φ(
√

c)
Dp−1

B(D), (6)

where

Cp =
2
√

2π

Γ(p−1
2 )2

p−1
2

, b = b(D) =

√
D2 − c

c
, and

B(D) =
∫ ∞

b
√

c
sφ(s)(

√
cs − bc)p−2ds +

∫ ∞

−b
√

c
sφ(s)(

√
cs + bc)p−2ds. (7)

When p ≥ 2 is even,

B(D) =
∫ ∞

b
√

c
sφ(s)(

√
cs − bc)p−2ds + (

∫ ∞

b
√

c
+

∫ b
√

c

−b
√

c
)sφ(s)(

√
cs + bc)p−2ds.

Note that B(D) is positive. The first two integrals are evidently positive and, by
change of variables, the third is

∫ b
√

c

−b
√

c
sφ(s)(

√
cs + bc)p−2ds =

∫ b
√

c

0
s[(

√
cs + bc)p−2 − (

√
cs − bc)p−2]φ(s)ds ≥ 0.

When p is odd, it is easy to see that

B(D) = EZ(
√

cZ − bc)p−2, (8)

where Z ∼ N(0, 1). It then follows that B(D) is positive as well. Together with
Corollary 3.1, we have
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Proposition 3.1. For p ≥ 2, d
dDγL(D) ≤ 0 for all D �= √

c. Going further, we
have

Lemma 3.2. limD→∞ γL(D) = γ.

Proof. By the Dominated Convergent Theorem,

lim
D→∞

γL(D) = lim
D→∞

E

{
I
[
Y1

Y2
> D2−c

c

]}

= E

{
lim

D→∞
I
[
Y1

Y2
> D2−c

c

]}
.

Note that Y1 has the same distribution as (Z + D)2. Thus

E

{
lim

D→∞
I
[
Y1

Y2
> D2−c

c

]}
= E

{
lim

D→∞
I

[
(Z + D)2

Y2
> D2−c

c

]}

= E

{
lim

D→∞
I
[
D2(Y2 − c) < c(Y2 + Z2 + 2ZD)

]}
= E {I [Y2 < c]} = γ,

by definitions of c and γ.

4. Domination Results

Denote the risk functions of γ and γL(D) by R(γ, η) and R(γL, η) respec-
tively, where η = |θ|. To establish the domination result, we consider R(γ, η) −
R(γL, η), denoted ∆R(η). Easy calculations give

∆R(η) = 2EG(Y1) (9)

where

G(s) = E

{
(I[Y2 < c] − γ)T (s + Y2) − 1

2
T 2(s + Y2)

}
,

Y1 = X ′ (θθ′)
|θ|2 X, Y2 = X ′(I − θθ′

|θ|2 )X, (10)

and
T (s) = γL(

√
s) − γ for s ≥ 0.

Note that T (s) is between 0 and α by previous results. Also for a fixed θ, by
Cochran’s theorem, Y1 has a noncentral chi-square distribution with one degree
of freedom and noncentrality η while Y2 has a chi-square distribution with p− 1
degrees of freedom.

Using (6) and (7) for p = 2, 3, one can derive the closed forms of d
dDγL(D).
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Case 1: p = 2.

d
dDγL(D) =

−2
√

c exp(−D2/2)
πD

√
D2 − c

for D2 > c. (11)

Case 2: p = 3. Note that here e−c/2 = α, hence

d
dDγL(D) =

− exp(−c/2)c
D2

√
D2 − c

=
−αc

D2
√

D2 − c
for D2 > c.

Also for D2 > c,

γL(D) = 1 +
∫ D

√
c

d
dtγL(t)dt = γ + α(1 −

√
D2 − c

D
). (12)

These representations are crucial for establishing our domination results. To
show that γL dominates γ, we employ the single sign change argument. We need
the following definition.

Definition 4.1. A function f is of single sign change from negative to positive
(SCS+

−) on an interval J if there is a constant c ∈ J such that

f(x)




< 0 if x < c

= 0 if x = c
> 0 if x > c.

or f(x) remains positive or negative for all x ∈ J .
Single change of sign from positive to negative, (SCS−

+) on J is defined
similarly.

If we show that G(s) is a function of SCS+
− , the MLR property of a non-

central chi-square distribution implies that ∆R(η) is SCS+
− as well. This, to-

gether with the fact that ∆R(0) > 0, as established later by numerical inte-
gration, imply that ∆R(η) > 0 for every η > 0. The following lemma is the
key.

Lemma 4.1. Suppose f is a continuous function on [a, b) satisfying
a) limx→b f(x) = 0,
b) f ′(x) = p(x)f(x) + q(x), and f ′(x) is continuous for all x ∈ (a, b) where p(x)

is positive everywhere,
c) q(x) is SCS−

+.
Then f(x) is of SCS+

− on [a, b).

Proof. We prove the lemma by contradiction. Assume to the contrary that f

changes sign from positive to negative over the interval (a′, b′) ⊂ [a, b), and there
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exists c ∈ (a′, b′) such that

f(x)




> 0 if x ∈ (a′, c)
= 0 if x = c

< 0 if x ∈ (c, b′).
(13)

By the Mean Value Theorem, for every x ∈ (a′, b′), there exists a ξ that lies
between x and c such that

f ′(ξ) =
f(x) − f(c)

x − c
= p(ξ)f(ξ) + q(ξ).

Therefore

q(ξ) =
f(x) − f(c)

x − c
− p(ξ)f(ξ).

When x ∈ (a′, c), q(ξ) < 0. Consequently q(x) < 0 for all x > c by assumption
c). Thus f ′(x) < 0 for all x > c.

By continuity of f ′, given ε > 0 (small), there exists a cL > c such that
f(cL) = −ε and f ′(cL) < 0. By assumption a) and continous differentiability of
f , there exists cR > cL such that f(cR) = −ε and f(x) < −ε for x ∈ (cL, cR).

By the Mean Value Theorem, there is a c0 ∈ (cL, cR) such that f ′(c0) = 0.
This implies f(c0) > 0 because of assumption b). This contradicts our construc-
tion of cR and completes the proof.

We give the proofs of domination for p = 3 and 2. For p = 3 we can show
that for all 0 < α < 1, G(s) is of SCS+

− . For p = 2, however, lacking a workable
closed form for γL(X), an additional condition is needed. To show that G(s) is
of SCS+

− , we need to characterize its behavior for s > c, and s < c, as discussed
in the following lemmas. Proofs are in the Appendix.

Lemma 4.2. For p = 3, G(s) is SCS+
− over [0,∞).

Lemma 4.3. For p = 2, G(s) is SCS+
− over [0,∞) if

f2(c) <
γ(α − T (2c))

γ + T (2c)
, (14)

where f2 is the probability density function of a chi-squared random variable with
1 degree of freedom.

Note that if G(s) is SCS+
− then so is ∆R(η) = EG(Y1). Consequently, we

have

Theroem 4.1. For p = 2, if (14) holds and

∆R(0) = lim
η→0

∆R(η) > 0, (15)
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γL dominates γ.

Theroem 4.2. For p = 3, if

∆R(0) = lim
η→0

∆R(η) > 0, (16)

γL dominates γ.
A referee points out that the limits in (15) and (16) may not exist, since

when η = |θ| = 0, ρi = θi/θp is not defined. We note the difference ∆R(η) of the
risk functions of γ and γL does not depend on ρi but depends on θ only through
|θ|. (A justification of this statement about ∆R(η) follows from (9) and (10).)
Furthermore, since G(.) is bounded, a generalized dominated convergent theorem
(cf. Royden (1988), Theorem 17) implies that the limits in (15) and (16) exist
and equal ∆R(0), a quantity well-defined at η = 0.

Conditions (15) and (16) can be evaluated by numerical integration for a fixed
η. For p = 3, Table 1 shows that for 99 values of γ uniformly spaced in (0, 1),
(16) is satisfied, implying domination of γL over γ. Since ∆R(η) is continuous in
η, it seems reasonable to expect that γL dominates γ for all γ, 0 < γ < 1.

Table 1. ∆R(0) for p = 3

γ ∆R(0) γ ∆R(0) γ ∆R(0) γ ∆R(0)
0.01 0.0012162 0.26 0.0421758 0.51 0.0327029 0.76 0.0085522
0.02 0.003112 0.27 0.0426227 0.52 0.0316676 0.77 0.0078416
0.03 0.0053145 0.28 0.0429478 0.53 0.030775 0.78 0.0072418
0.04 0.0075773 0.29 0.0431842 0.54 0.0297499 0.79 0.00636
0.05 0.0099314 0.3 0.0434227 0.55 0.028731 0.8 0.005788
0.06 0.012297 0.31 0.0434982 0.56 0.0276547 0.81 0.0052094
0.07 0.0146368 0.32 0.0435851 0.57 0.0273746 0.82 0.0047539
0.08 0.0169498 0.33 0.0434931 0.58 0.0256009 0.83 0.0040578
0.09 0.019166 0.34 0.0433226 0.59 0.0246063 0.84 0.0036216
0.1 0.0212998 0.35 0.0432516 0.6 0.0235508 0.85 0.0031872
0.11 0.0233924 0.36 0.0428792 0.61 0.0225499 0.86 0.0027636
0.12 0.0253713 0.37 0.042525 0.62 0.0215082 0.87 0.0023544
0.13 0.0272196 0.38 0.0420643 0.63 0.0205517 0.88 0.0020149
0.14 0.0292862 0.39 0.0418755 0.64 0.0195065 0.89 0.0018693
0.15 0.0306482 0.4 0.0412745 0.65 0.0183772 0.9 0.0014261
0.16 0.0322192 0.41 0.040624 0.66 0.017345 0.91 0.0011935
0.17 0.0336685 0.42 0.0399966 0.67 0.0163782 0.92 0.0011517
0.18 0.035064 0.43 0.0393362 0.68 0.0149834 0.93 0.0008248
0.19 0.0363279 0.44 0.0386695 0.69 0.014592 0.94 0.0006719
0.2 0.0372924 0.45 0.0378998 0.7 0.0138499 0.95 0.000582
0.21 0.0384672 0.46 0.0370653 0.71 0.0127557 0.96 0.0004585
0.22 0.0394189 0.47 0.036174 0.72 0.0118114 0.97 0.000357
0.23 0.0402545 0.48 0.0353183 0.73 0.0108922 0.98 0.0002819
0.24 0.0415482 0.49 0.0345605 0.74 0.0101572 0.99 0.0001886
0.25 0.0416697 0.5 0.0336438 0.75 0.0095212
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Table 2. Condition (14); ∆ = γ(α−T (2c))
γ+T (2c) − f2(c)

γ ∆ γ ∆ γ ∆ γ ∆
0.6 -0.050293 0.7 0.0146347 0.8 0.0386677 0.9 0.0317731
0.605 -0.045872 0.705 0.0167088 0.805 0.0389902 0.905 0.030747
0.61 -0.041586 0.71 0.0186831 0.81 0.0392371 0.91 0.0296609
0.615 -0.037434 0.715 0.0205591 0.815 0.0394093 0.915 0.0285154
0.62 -0.033414 0.72 0.0223381 0.82 0.0395079 0.92 0.0273109
0.625 -0.029522 0.725 0.0240215 0.825 0.0395337 0.925 0.026048
0.63 -0.025758 0.73 0.0256106 0.83 0.0394876 0.93 0.0247269
0.635 -0.022119 0.735 0.0271069 0.835 0.0393707 0.935 0.023348
0.64 -0.018603 0.74 0.0285116 0.84 0.0391837 0.94 0.0219115
0.645 -0.015208 0.745 0.029826 0.845 0.0389276 0.945 0.0204177
0.65 -0.011933 0.75 0.0310513 0.85 0.0386032 0.95 0.0188665
0.655 -0.008775 0.755 0.0321888 0.855 0.0382113 0.955 0.017258
0.66 -0.005733 0.76 0.0332397 0.86 0.0377527 0.96 0.0155919
0.665 -0.002805 0.765 0.0342052 0.865 0.0372283 0.965 0.0138678
0.67 9.9839E-6 0.77 0.0350865 0.87 0.0366387 0.97 0.0120852
0.675 0.0027147 0.775 0.0358846 0.875 0.0359847 0.975 0.0102429
0.68 0.0053104 0.78 0.0366008 0.88 0.035267 0.98 0.0083393
0.685 0.0077987 0.785 0.0372361 0.885 0.0344864 0.985 0.0063718
0.69 0.0101811 0.79 0.0377917 0.89 0.0336434 0.99 0.0043359
0.695 0.0124593 0.975 0.0382685 0.895 0.0327388 0.995 0.0022226

Table 3. ∆R(0) for p = 2

γ ∆R(0) γ ∆R(0) γ ∆R(0) γ ∆R(0)
0.6 0.0426234 0.7 0.0346839 0.8 0.0177132 0.9 0.0055209
0.605 0.0421797 0.705 0.0357112 0.805 0.0170572 0.905 0.0050561
0.61 0.043645 0.71 0.0300372 0.81 0.0164623 0.91 0.0045548
0.615 0.0415281 0.715 0.0290171 0.815 0.0151837 0.915 0.0040869
0.62 0.0409672 0.72 0.0290637 0.82 0.0147872 0.92 0.0037061
0.625 0.0403595 0.725 0.0279089 0.825 0.0144841 0.925 0.0035594
0.63 0.0397185 0.73 0.0267908 0.83 0.0134233 0.93 0.0030734
0.635 0.0391153 0.735 0.027155 0.835 0.0133501 0.935 0.0029469
0.64 0.0382873 0.74 0.0262012 0.84 0.0125481 0.94 0.0020897
0.645 0.0386893 0.745 0.0252823 0.845 0.0132581 0.945 0.0018875
0.65 0.0375042 0.75 0.0248049 0.85 0.0115858 0.95 0.0016756
0.655 0.0368101 0.755 0.0242003 0.855 0.0102738 0.955 0.0012256
0.66 0.0423339 0.76 0.0232178 0.86 0.0098199 0.96 0.001037
0.665 0.0358066 0.765 0.0232965 0.865 0.0092425 0.965 0.0009423
0.67 0.037282 0.77 0.0218857 0.87 0.0089891 0.97 0.0005749
0.675 0.0348671 0.775 0.0208057 0.875 0.0089125 0.975 0.0004046
0.68 0.0336694 0.78 0.0205658 0.88 0.0086 0.98 0.000229
0.685 0.0334109 0.785 0.0198623 0.885 0.0071244 0.985 0.0001388
0.69 0.0338889 0.79 0.0212512 0.89 0.0091487 0.99 0.000752
0.695 0.032719 0.795 0.019602 0.895 0.0068402 0.995 0.000209
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For p = 2, conditions (14) and (15) obtain for 65 uniformly spaced values
of γ, where γ > .67. The inequality requires that the confidence coefficient is at
least .67, which seems to be a minor constraint in statistical applications.

5. An Asymptotic Theorem

What if p is larger than three? Numerical calculation suggests that γL does
not perform well when |θ| is close to 0. Asymptotically, we can show that when
|θ| = 0, γL is essentially 1 and therefore fails to dominate γ when 0 < γ < 1.

Theorem 5.1. When p is sufficiently large, γL(X) fails to dominate γ for
0 < γ < 1.

Proof. Note that R(γ, η) = γ − γ2. It is sufficient to show that for p large
enough,

sup
θ

Eθ(γL(X) − I [ρ ∈ CF (X)])2 > γ − γ2.

This would follow from the inequality

lim
p→∞ lim

t→0
Eθ(γL(X) − I [ρ ∈ CF (X)])2|θ=t(1,...,1) > γ − γ2.

We complete the proof by establishing the last inequality. Actually, the risk
depends on θ only through its norm. Therefore the choice of the ray, t(1, . . . , 1),
plays no crucial role and simplifies the forthcoming calculation. Since

(θ′X)2

|θ|2 =
t2(ΣXi)2

t2p
=

(ΣXi)2

p
,

I [ρ ∈ CF (X)] = I

[
D2 − (θ′X)2

|θ|2 < c

]

= I
[
D2 − pX̄2 < c

]
,

where X̄ denotes 1
pΣXi. Consequently,

lim
t→0

Eθ(γL(X) − I [ρ ∈ CF (X)])2 = Eθ=0(γL(X) − I
[
D2 − pX̄2 < c

]
)2.

Now we study the asymptotic behavior of D2 and c when θ = 0. Let

Zp =
D2 − p√

2p
.

It then follows from the Central Limit Theorem that as p → ∞, Zp → Z in
distribution, and

c − p√
2p

→ zα, (17)
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where zα denotes the α upper quantile of N(0, 1). Therefore by Equation (17)
and

√
p(X̄)2 → 0,

I
[
D2 − pX̄2 < c

]
= I

[
D2 − p√

2p
− p(X̄)2√

2p
<

c − p√
2p

]

→ I [Z < zα]

almost everywhere as p → ∞. Recall that

γL(D) = P
{

Y1
Y2

> D2−c
c

}
. (18)

The lower bound
D2 − c

c
→ 0 (19)

in probability as p → ∞. Note that

Y1

Y2
=

(Z + D)2/(p − 1)
Y2/(p − 1)

in distribution, where Z ∼ N(0, 1) is independent of Y2. It follows that

Y1

Y2
→ 1 (20)

in probability as p → ∞, since D√
p → 1 in probability when p → ∞. Combining

(18), (19), (20), we have γL(D) → 1 when p → ∞. Since γL and I [ρ ∈ CF (X)]
are bounded, uniform integrability implies

Eθ=0(γL(X) − I [ρ ∈ CF (X)])2 → Eθ=0(1 − I [Z < zα])2

= 1 − γ > γ − γ2 (21)

as long as 0 < γ < 1.

6. Numerical Study and Conclusion

Numerical studies show that γL fails to dominate γ even when p is as small
as 4. For γ = 0.95, the risk of γ is γ − γ2 = 0.0475 and this is smaller than
0.048, the risk of γL(X) at η = |θ| = 0 evaluated by numerical integration. Note
that when p equals 4, the asymptotic limit, 1 − γ, given in (21) is 0.05 which is
surprisingly close to 0.048, the risk of γL at η = 0.
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Figure 1. Ratios R(η, γ(X))/R(η, γ) for γ(X) = γ (dotted) and γL (solid).

The risks of γL relative to that of γ for p = 2, 3, 4 and various α are given
in Figure 1. They suggest that the improvement of γL over γ becomes smaller
as γ becomes larger, that the improvement becomes smaller as dimension, p,
increases. The numerical studies show that γL dominates γ if p ≤ 3, agreeing
with our analytical results. Yet the improvement of γL over γ is only 3%. Since γL

is admissible for p = 2 or 3, one is unlikely to find an estimator that substantially
improves on γ. The loss in efficiency in using γ is likely not great. Along with
conditional risk evaluation, this issue is discussed in Tsao and Hwang (1997). In
contrast, there is a different statistical setting where a 40% improvement can be
made in a conditional report compared with an unconditional one. See Example
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1 in Berger (1985). For γL, the domination fails in the neighborhood of |θ| = 0
when p is as small as 4 and α = 0.05.
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Appendix

Proof of (6).

d
dDγL(D) = d

dDP
{

Y1
Y2

> D2−c
c

}
=

∫ ∞

0
B1(t)f2(t)dt

where f2 denotes the density function of Y2, and B1(t) is given by

B1(t) = d
dDP

{
Y1
t > D2−c

c

}
= − d

dD

∫ ∞

−∞
I
[
(z − D)2 < tb2

]
φ(z)dz

= − d
dD

∫ D+b
√

t

D−b
√

t
φ(z)dz

= (1 − D

bc

√
t)φ(D − b

√
t) − (1 +

D

bc

√
t)φ(D + b

√
t).

By a change of variable,

d
dDγL(D) = Cp

∫ ∞

0
B1(t2)φ(t)tp−2dt,

where

Cp =
2
√

2π

Γ(p−1
2 )2

p−1
2

.

Since b2 = D2−c
c , it is easy to see that

φ(D + bt)φ(t) = φ(
√

c)φ( 1√
c
(Dt + bc))

and φ(D − bt)φ(t) = φ(
√

c)φ( 1√
c
(Dt − bc)).

Thus
d

dDγL(D) =
−Cp

bc
B2(D),
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where

B2(D) = φ(
√

c)
{ ∫ ∞

0
(Dt + bc)φ( 1√

c
(Dt + bc))tp−2dt

+
∫ ∞

0
(Dt − bc)φ( 1√

c
(Dt − bc))tp−2dt

}
.

Changing variables again gives

B2(D) =
cφ(

√
c)

Dp−1

( ∫ ∞

b
√

c
zφ(z)(

√
cz − bc)p−2dz +

∫ ∞

−b
√

c
zφ(z)(

√
cz + bc)p−2dz

)

=
cφ(

√
c)

Dp−1
B(D).

Consequently
d

dDγL(D) =
−Cpφ(

√
c)

bDp−1
B(D).

where B(D) is as defined in (7).

Proof of Lemma 4.2. Recall that T (s) = γL(
√

s) − γ. First we show that

G′(s) =
1
2
G(s) + h(s), (A.1)

where h(s) = α
2 T (s + c) − 1

2 (α − T (s)
2 )T (s) and is SCS−

+ . Note that (A.1) and
the continuity of h(s) imply that G is continuous differentiable on (0,∞).

G(s) =
∫ ∞

0
[(I [t < c] − γ)T (s + t) − T 2(s + t)

2
]f2(t)dt

=
∫ ∞

s
[(I [u < s + c] − γ)T (u) − T 2(u)

2
]f2(u − s)du

=
∫ s+c

s
T (u)f2(u − s)du −

∫ ∞

s
(γ +

T (u)
2

)T (u)f2(u − s)du.

Take the derivative

G′(s) = T (s + c)f2(c) − T (s)f2(0) +
∫ s+c

s
T (u) d

dsf2(u − s)du

+(γ +
T (s)

2
)T (s)f2(0) −

∫ ∞

s
(γ +

T (u)
2

)T (u) d
dsf2(u − s)du.

Because d
dsf2(u − s) = 1

2f2(u − s), f2(0) = 1
2 and f2(c) = α

2 , we have

G′(s) =
G(s)

2
+

α

2
T (s + c) − 1

2
(α − T (s)

2
)T (s)

=
G(s)

2
+ h(s).
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Now we are to show that h is SCS−
+ .

For 0 < s ≤ c, T (s) = α. Therefore, for such a range of s,

h(s) =
α

2
[T (s + c) − α

2
]

which is decreasing since T is. Note also that h(0) = α2/2 > 0. For s > c, plug
in the exact form of T (s) = α(1 −

√
s−c
s ) derived from (12), to get

h(s) =
α2

2

(
(1 −

√
s

s + c
) − 1

2
(1 − s − c

s
)
)

=
α2

2

(
1 −

√
s

s + c
− c

2s

)
.

This is decreasing in s by direct differentiation. Since h(c) < 0, this implies that
h(s) < 0 for s > c. In combination with the conclusion from the last paragraph,
we conclude that h(s) is SCS−

+ . By Lemma 4.1 with [a, b) = [0,+∞), G(s) is
SCS+

− over [0,+∞).

Proof of Lemma 4.3. The proof is similar to the one for p = 3, though more
tedious. Interested readers are referred to Tsao and Hwang (1998).
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