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Abstract: Let G(·) be a Borel function applied to a stationary, possibly long-
memory, sequence of standard Gaussian random variables {Xi}. Define the first
passage time T (c) = inf{n ≥ 1, Sn ≥ c}, c > 0, for partial sums Sn =

∑n

i=1
G(Xi).

Suppose G(Xi) has finite positive mean µ. When G(Xi) itself is positive or its neg-
ative part is under some moment conditions, it is proved that E(T (c)/c)γ → µ−γ

for γ > 0 as c tends to infinity.
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1. Introduction

Let {Yi, i ∈ Z} be an i.i.d. sequence with finite EYn = µ > 0. For partial
sums Sn =

∑n
i=1 Yi, define the first passage time T (c) = inf{n ≥ 1, Sn ≥ c}, c >

0. An important property regarding the asymptotic behavior of T (c) is the
so-called elementary renewal theorem (cf. Bhattacharya and Waymire (1990),
p.217) which asserts that

lim
c→∞E(T (c)/c) = 1/µ. (1.1)

In view of a wide-range of applications that have been generated by (1.1), par-
ticularly in the context of sequential analysis, it is necessary to extend (1.1) from
the i.i.d. case to other dependent time series. Lai (1977, Theorem 3) established
(1.1) for certain types of stationary strong mixing sequences. For more restric-
tive classes of weakly dependent stationary sequences such as absolutely regular
(or weak Bernoulli) sequences and functionals of Markov chains and of moving
averages having C1 spectral density, (1.1) can be strengthened to a Blackwell
type renewal theorem (Berbee (1979) and Lalley (1986)). This note aims to ex-
tend Lai’s result in another direction to show that (1.1) still holds for a class of
stationary sequences which may not be strongly mixing. The model we consider
is defined by Yi = G(Xi), where G(·) is a Borel function and {Xi, i ∈ Z} is
a stationary sequence of standard Gaussian random variables whose covariance
function r(n) = EXiXi+n satisfies (1.2) below. The stationary sequences {Xi}
with

r(n) = |n|−θL(n) (1.2)
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for some 0 < θ < 1 and slowly varying L(n) have increasingly gained attention
in recent years from statisticians and probabilists. The assumption of (1.2) has
proved to be a useful and parsimonious way to describe the covariances of many
empirical time series that have been documented in such diverse applied areas
as river flows in hydrology (Mandelbrot and Taqqu (1979)), security prices and
asset returns in finance (Cutland, Kopp and Willinger (1993)) and network traf-
fic in telecommunication (Willinger, Taqqu, Leland and Wilson (1993)). The
basic asymptotic property (1.1) of T (c) with regard to the aggregations of those
series mentioned above would naturally be worthy of investigation. A sequence
{Xi} which satisfies (1.2) is known to be not strongly mixing (cf. Rosenblatt
(1961)) and is nowadays often referred to as a long-memory sequence (or a se-
quence with long-range dependence) to reflect the fact that

∑
n r(n) = ∞, or,

assuming some regularity conditions on r(n), that the spectral density of {Xi}
behaves like xθ−1 (modulo a slowly varying factor) as x → 0 (see e.g. Cox (1984),
Beran (1992), Künsch (1986) and Robinson (1994), for reviews and more refer-
ences on long memory sequences ). An immediate consequence of (1.2) is the
Var (

∑n
i=1 Xi) = n2−θL(n), which is the main feature often used to distinguish

long-memory sequences from traditional short memory dependent series such as
Markov and ARMA processes. Long-memory sequences are closely related to
the self-similar processes introduced by Mandelbrot and van Ness (1968). One
well-known example of a long-memory sequence is fractional Gaussian noise, a
stationary Gaussian sequence {Zi, i = 1, 2, . . .} with EZi = 0, EZ2

i = σ2
x and

Cov (Zi, Zi+n) = σ2
x(|n + 1|2H − 2|n|2H + |n − 1|2H)/2

∼ σ2
xH(2H − 1)|n|2H−2,

where 1/2 < H < 1, and “∼” means the ratio of the right side and left side is
asymptotically one. Here H is called the self-similarity parameter (cf. Samorod-
nitsky and Taqqu (1994), Ch. 7).

We shall prove (1.1) with Sn =
∑n

i=1 G(Xi) under some moment condi-
tions on G(Xi). The Gaussian sequences {Xi} under consideration can be long-
memory as well as short-memory. The paper’s main results, Theorems 1 and 2,
are stated and proved in Section 2. The key ingredient of the proof is a proposi-
tion, possibly be of independent interest. That is established in the Appendix.

2. Main Results

For the rest of the paper, we focus on Yi = G(Xi) for a Borel function G(·)
such that EYi = µ is finite, and assume that the covariance function r(n) =
EXiXi+n of the stationary Gaussian sequence {Xi} satisfies

|r(n)| ≤ |n|−λL(n), ∀ |n| ≥ 1, (2.1)
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for some λ > 0 and for slowly varying function L(n). The bound Condition (2.1)
contains (1.2) and covers most of the common seen Gaussian models in time
series analysis, including the ARMA and the fractional ARIMA processes (cf.
Brockwell and Davis (1987)). Let

Sn =
n∑

i=1

Yi with S0 = 0, S∗
n =

n∑
i=1

(Yi − µ),

T (c) = inf{n ≥ 1, Sn ≥ c}. (2.2)

For any random variable X, let X+ = X ∨ 0 and X− = −(X ∧ 0). Statements
of the main theorems follow.

Theorem 1. Assume (2.1), Yi ≥ 0 a.s. and 0 < EYi = µ < ∞. Then for all
γ > 0

lim
c→∞E

(T (c)
c

)γ
=

1
µγ

. (2.3)

Theorem 2. Assume (2.1), EYi =µ > 0 and E(Y −
i )q <∞ for q > max{2, 12/λ}.

Then (2.3) holds for γ satisfying 0 < γ < (qλ/4 − 3)/(3 + λ) .

The proofs have two main steps. First we establish an upper bound for
P{max1≤j≤n |S∗

j | ≥ εn}, ε > 0. To achieve this, we reduce the problem to the
i.i.d. case by partitioning {Y1, . . . , Yn} into an appropriate number of blocks so
that elements of each block can be treated as if they were independent. The
next step is to use the bound to construct an γ-integrable “last time”, sup{n ≥
1, |∑n

i=1 YiI(Yi ≤ b)−nEY1I(Y1 ≤ b)| ≥ nε} for some b > 0, to dominate T (c)/c.
Then (2.3) is derived by using the ergodicity of {Yi}.

Introduce an auxiliary i.i.d. sequence {Y ′
i , i ≥ 1} with Y ′

i
d= Yi, and set

S′
n =

∑n
j=1(Y

′
j −µ). For β with 1 > β > 3/(3+λ), define dn = [nβ] ([x] denotes

the integer part of x).

Proposition. Suppose E(Yi − µ)2 < ∞. Then for all ε > 0,

P{ max
1≤j≤n

|S∗
j | ≥ εn} = O(nβ(P{|S′

[n/dn]| ≥ εnd−1
n })1/2), (2.4)

as n −→ ∞.

Define the last time

Nε = sup{n ≥ 1, |S∗
n/n| ≥ ε}, ε > 0,

with the convention that supφ = 0. To prove the theorems, we use the proposi-
tion to show the intergrability of Nγ

ε for various γ.
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Suppose 0 ≤ Yi < b a.s. and let σ2 = Var (Yi). Applying Bennett’s inequality
(cf. Shorack and Wellner (1986), p.851) to the right-hand side of (2.4), we get
for all γ > 0,

∞∑
n=1

nγ−1P{ max
1≤j≤n

|S∗
j | ≥ εn}

= O(
∞∑

n=1

nγ−1+β exp{− [n/dn]ε2

4σ2
· 1
(1 + b(3σ2)−1)

}) < ∞. (2.5)

Combining (5.11) and (5.12) of Lemma 2 of Chow and Lai (1975) (cf. Lai (1977),
Lemma 4, with α = 1 and pα − 1 = γ) shows that

E(sup{n ≥ 1, |S∗
n| ≥ 2εn})γ ≤ γ

∫ ∞

0
tγ−1P{sup

j≥[t]
j−1|S∗

j | ≥ 2ε}dt

≤ (2γ − 1)−1γ ·
∫ ∞

0
tγ−1P{max

j≤[t]
|S∗

j | ≥
ε

2
t}dt

≤ O(
∞∑

n=1

nγ−1P{ max
1≤j≤n

|S∗
j | ≥ εn}). (2.6)

With (2.5) this implies

ENγ
ε < ∞ for all γ > 0. (2.7)

Assume Yi < b a.s. and the conditions of Theorem 2. It follows that

ENγ
ε < ∞ for 0 < γ < (qλ/4 − 3)/(3 + λ). (2.8)

To see this, note that since q > 4(3 + 3γ + γλ)/λ, we can choose β sufficiently
close to 3/(3 + λ) so that (1 + γ)/(1− β) < 1 + (q/4). Chebyshev’s inequality in
qth power applied to the right-hand side of (2.4) yields

∞∑
n=1

nγ−1P{ max
1≤j≤n

|S∗
j | ≥ εn} = O

( ∞∑
n=1

(n1−β)
γ+1
1−β

−2− β
1−β

− q
4

)

= O
( ∞∑

n=1

n
1+γ
1−β

−2− q
4

)
< ∞.

Here, in the first bound we use the Von Bahr relation E|S′
m|q = O(mq/2) with

q > 2 (cf. Shorack and Wellner (1986), p.857). From (2.6) we get (2.8).
Using (2.7) and (2.8), we can prove Theorems 1 and 2 simultaneously.

Proof of Theorems 1 and 2. We adopt the approach used in Theorem 3 of Lai
(1977). Since |r(n)| −→ 0 as n −→ ∞, by Maruyama’s theorem (cf. Rosenblatt
(1961)) both {Xi} and {Yi} are ergodic. Hence

lim
n→∞Sn/n = µ a.s.,
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which in turn gives, by noting that ST (c)−1/T (c) < c/T (c) ≤ ST (c)/T (c),

lim
c→∞(T (c)/c)γ = µ−γ a.s. (2.9)

We now show (2.3). Let S′′
n =

∑n
j=1 YjI(Yj ≤ b), where b > 0 is sufficiently

large so that EYjI(Yj ≤ b) ≥ µ/2, and define L = sup{n ≥ 1, S′′
n ≤ nµ/3}. If

n ≥ max{L + 1, 3µ−1c}, then Sn ≥ S′′
n > nµ/3 ≥ c. Hence T (c) ≤ L + 3µ−1c.

This implies that, for c ≥ 1 and γ > 0, (T (c)/c)γ is bounded by the random
variable (L+3µ−1 +1)γ . Note here that T (c) does not depend on the truncation
value b although L does. If we can show ELγ < ∞ then the desired result
(2.3) follows by applying the Dominated Convergence Theorem to (2.9). We can
choose small ε > 0 so that

L ≤ L∗ ≡ sup{n ≥ 1, |S
′′
n

n
− EY1I(Y1 ≤ b)| ≥ ε}.

By (2.7) and (2.8), E(L∗)γ < ∞ holds (1) for all γ > 0 if Yi > 0 a.s. as assumed
in Theorem 1, or (2) for the γ specified in Theorem 2 if the conditions of Theorem
2 are met. The proof is complete.

Appendix

To prove the Proposition, we need two lemmas. The first is a variant of
Lévy’s Inequality which can be proved by similar argument (cf. Chow and Teicher
(1988), pp.70-72).

Lemma 1. Let {Zi, i ≥ 1} be a sequence of independent random variables. Set
Vm =

∑m
i=1 Zi and Vn,j =

∑j
i=1 Zn−i+1, 1 ≤ j ≤ n. Assume

min
1≤j≤n

P{Vn,j ≥ 0} = v+
n > 0 and min

1≤j≤n
P{Vn,j ≤ 0} = v−n > 0.

Then for all y > 0

P{ max
1≤j≤n

|Vj | ≥ y} ≤ (vn)−1P{|Vn| ≥ y}

with vn = min{v+
n , v−n }. Suppose the independent sequence {Zi} is identically

distributed with mean zero and finite variance. Then the sequence {vn} can be
replaced by some positive constant independent of n and y.

Let Hk(x) denote the kth Hermite polynomial with leading coefficient one
and let φ(x) = (2π)−1/2e−x2/2 be the standard Gaussian density. The next lemma
is due to Taqqu (1977).

Lemma 2. Let (Z ′
1, . . . , Z

′
m) be a Gaussian random vector with joint probability

density function f(x1, . . . , xm). Assume EZ ′
i = 0,Var (Z ′

i) = 1 and |EZ ′
iZ

′
j| <
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1/(m − 1), for all i �= j. Then

f(x1, . . . , xm) =
∞∑

q=0

∑
k1+···+km=2q

0≤k1,...,km≤q

{
E

m∏
i=1

Hki
(Z ′

i)
} m∏

i=1

Hki
(xi)

ki!
· φ(xi). (A.1)

The series representation (A.1) is uniformly convergent over Rm.

Proof of Proposition. For fixed positive integers n and k, 1 ≤ k ≤ n, each sum
S∗

k =
∑k

i=1(Yi−µ) is decomposed into dn sub-sums each of which has m(k, i, n)+1
summands,

S∗
k =

dn∑
i=1

m(k,i,n)∑
j=0

(Yi+jdn − µ) ≡
dn∑
i=1

S(i, dn,m(k, i, n)) (A.2)

(
∑b

a x = 0 if a > b). For notational convenience let m(n, i, n) = n(i). For each
i, 1 ≤ i ≤ dn, the length m(k, i, n)+ 1 of the sub-sum S(i, dn,m(k, i, n)) is given
by

m(k, i, n) =

{
[k/dn] if i + [k/dn]dn ≤ k

[k/dn] − 1 if i + [k/dn]dn > k,

Fix n. Note that when k < dn the sum S(i, dn,m(k, i, n)) is zero if i > k and, for
fixed i, some elements in {S(i, dn,m(k, i, n))|k = 1, . . . , n} may have duplicates.
In other words, with i and n fixed,

{S(i, dn,m(k, i, n))|k=1, . . . , n} − {S(i, dn, l)|l=0, 1, . . . , n(i)} ⊆ {0}. (A.3)

Hence

max
1≤k≤n

|S∗
k| ≤ max

1≤k≤n

dn∑
i=1

|S(i, dn,m(k, i, n)| (by (A.2))

≤
dn∑
i=1

max
1≤k≤n

|S(i, dn,m(k, i, n)| (A.4)

=
dn∑
i=0

max
0≤l≤n(i)

|S(i, dn, l)| (by (A.3)).

Set

pi(ε, n) = P{ max
0≤l≤n(i)

|S(i, dn, l)| ≥ εnd−1
n }.

By (A.4)

P{ max
1≤k≤n

|S∗
k| ≥ εn} ≤

dn∑
i=1

pi(ε, n). (A.5)
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Observe that the indices of the summands in S(i, dn, l) are at least dn apart from
one another. With this in mind, the next step is to use Lemma 2 to approximate
pi(ε, n). For each n ∈ Z, define

r∗(n) = sup
|n|≤j

|r(j)|.

Since sup|n|≤j j−λL(j) is also regularly varying with the same exponent −λ (cf.
Seneta (1976), pp.20-21), direct computation shows that for large n,

(r∗(dn))1/2(n/dn)3/2 = o(1). (A.6)

Note by (A.6) that for all j1 �= j2,

n(i)|EXi+j1dnXi+j2dn | = n(i)|r((j1 − j2)dn)| ≤ n(i)r∗(dn) < 1.

Hence Lemma 2 is applicable as {max0≤l≤n(i) |S(i, dn, l)| ≥ εnd−1
n } is an event of

the (n(i) + 1)-dimensional Gaussian vector (Xi,Xi+dn , . . . ,Xi+n(i)dn
). First, set

Bi(ε, n) =
{
(x0, . . . , xn(i)) ∈ Rn(i)+1

∣∣∣ max
0≤l≤n(i)

|
l∑

t=0

(G(xt) − µ)| ≥ εnd−1
n

}
.

By the stationarity of Yi’s and (A.1),

pi(ε, n) =
∞∑

q=0

∑
k0+···+kn(i)=2q

0≤k0,...,kn(i)≤q

{
E

n(i)∏
j=0

Hkj
(X1+jdn)√

kj !

}

·
∫

Bi(ε,n)

n(i)∏
j=0

Hkj
(xj)√
kj!

· φ(xj)dxj . (A.7)

It follows from the Cauchy-Schwartz inequality and the fact
∫

H2
k(x)φ(x)dx = k!

that

∣∣∣ ∫
Bi(ε,n)

n(i)∏
j=0

Hkj
(xj)√
kj!

· φ(xj)dxj

∣∣∣ ≤ ( ∫
Bi(ε,n)

n(i)∏
j=0

φ(xj)dxj

)1/2

= (P{ max
0≤l≤n(i)

|S′
l| ≥ εnd−1

n })1/2 (A.8)

≤ B(P{|S′
[n/dn]+1| ≥ εnd−1

n })1/2

for some positive constant B independent of n and ε. The last inequality is from
Lemma 1. It is known (cf. the proof of Proposition 3.1 of Taqqu (1977)) that

∞∑
q=0

∑
k0+···+kn(i)=2q

0≤k0,...,kn(i)≤q

∣∣∣E n(i)∏
j=0

Hkj
(X1+jdn)√

kj !

∣∣∣≤ ∞∑
q=0

∑
k0+···+kn(i)=2q

0≤k0,...,kn(i)≤q

n(i)∏
j=0

{r∗(dn)(n(i)−1)}kj/2
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≤
( ∞∑

q=0

[r∗(dn)(n(i) − 1)]q/2
)[n/dn]−1

≤ max
1≤i≤dn

exp{−([n/dn] − 1) log(1 −
√

r∗(dn)(n(i) − 1))} (A.9)

= |O(1)| (by (A.8)).

Combining (A.5), (A.7), (A.8) and (A.9), we get (2.4). The proof is complete.
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Künsch, H. R. (1986). Statistical aspects of self-similar processes. Proc. First World Congress

of the Bernoulli Society, Tashkent 1, 67-74.

Lai, T. L. (1977). Convergence rates and r-quick versions of the strong law for stationary mixing

sequences. Ann. Probab. 5, 693-706.

Lalley, S. (1986). Renewal theorem for a class of stationary sequences. Probab. Theory Related

Fields 72, 195-213.

Mandelbrot, B. B. and Taqqu, M. S. (1979). Robust R/S analysis of long run serial correlation.

Proceedings 42nd Session of the ISI, Manila Book 2, 69-100.

Mandelbrot, B. B. and van Ness, J. W. (1968). Fractional Brownian motion, fractional noise

and applications. SIAM Review 10, 422-437.

Robinson, P. M. (1994). Time series with strong dependence. Adv. in Econometrics, Sixth

World Congress, 47-96. Cambridge University Press, Cambridge.

Rosenblatt, M. (1961). Independence and dependence. Proc. Fourth Berkeley Symp. Math.

Statist. Probab, 431-443. University of California Press, Berkeley.

Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes: Stochas-

tic Models with Infinite Variance. Chapman & Hall, New York.



NOTE ON FIRST PASSAGE TIMES OF STATIONARY SEQUENCES 733

Seneta, E. (1976). Regularly Varying Functions. Lecture Notes in Mathematics. Vol. 508.

Springer-Verlag, New York-Berlin.

Shorack, G. and Wellner J. (1986). Empirical Processes with Applications to Statistics. John

Wiley, New York.

Taqqu, M. S. (1977). Law of the iterated logarithm for sums of non-linear functions of Gaussian

variables that exhibit a long range dependence. Z. Wahrsch. verw. Gebiete 40, 203-238.

Willinger, W., Taqqu, M. S., Leland, W. E. and Wilson, D. V. (1995). Self-similarity in high-

speed packed traffic: analysis and modeling of ethernet traffic measurements. Statist. Sci.

10, 67-85.

Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan.

E-mail: hcho@stat.sinica.edu.tw

(Reveived December 1997; accepted July 1998)


