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Abstract: Consider a statistical model parameterized by a scalar parameter of in-

terest θ and a nuisance parameter λ. Many methods of inference are based on

a “pseudo-likelihood” function, a function of the data and θ that has properties

similar to those of a likelihood function. Commonly used pseudo-likelihood func-

tions include conditional likelihood functions, marginal likelihood functions, and

profile likelihood functions. From the Bayesian point of view, elimination of λ is

easily achieved by integrating the likelihood function with respect to a conditional

prior density π(λ|θ); this approach has some well-known optimality properties. In

this paper, we study how close certain pseudo-likelihood functions are to being of

Bayesian form. It is shown that many commonly used non-Bayesian methods of

eliminating λ correspond to Bayesian elimination of λ to a high degree of approxi-

mation.
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1. Introduction

Consider a statistical model parameterized by a scalar parameter of interest
θ and a nuisance parameter λ. The presence of the nuisance parameter λ often
makes likelihood inference about θ difficult, from both the practical and theoret-
ical points of view. Hence, many methods have been proposed for eliminating
λ from the likelihood function. These methods often lead to the construction
of a “pseudo-likelihood”, a function of the data and θ with properties similar
to those of a likelihood function. Commonly used pseudo-likelihood functions
include conditional, marginal, and profile likelihood functions. See, for example,
Barndorff-Nielsen and Cox (1994) for a detailed discussion of likelihood-based
inference.

From the Bayesian point of view, elimination of λ is easily achieved by “in-
tegrating out” λ using π(λ|θ), a conditional prior density for λ given θ. The
integrated likelihood function is treated as a genuine likelihood function for θ
when forming the posterior distribution of θ. The Bayesian method of eliminat-
ing λ, along with Bayesian methods in general, has some well-known optimality
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properties. The drawback of Bayesian methods, of course, is that the prior distri-
bution must be specified. Hence, non-Bayesian methods of eliminating nuisance
parameters are still routinely used. See Basu (1977), Dawid (1980) and Bernardo
and Smith (1994, Appendix B) for further discussion.

Any method of eliminating λ that corresponds to integration with respect to
a prior density will enjoy the same optimality properties as a genuine Bayesian
analysis. Let �̄(θ) denote a pseudo-likelihood function for θ based on the obser-
vation of a random variable Y . Then �̄(θ) corresponds to Bayesian elimination
of λ provided there exists π(λ|θ) such that

�̄(θ) = c(y)
∫

Λ
�(θ, λ)π(λ|θ)dλ; (1)

here c depends only on Y and Λ is the space of possible λ. When (1) holds,
�̄(θ) will be said to be (exactly) Bayesian with respect to the prior π(λ|θ). As
in Berger, Liseo and Wolpert (1997), we will not require π(λ|θ) to be a proper
density.

Many commonly used pseudo-likelihood functions do not satisfy (1) for any
choice of prior density. The goal of this paper is to study how close (1) is to being
satisfied for several non-Bayesian methods of eliminating nuisance parameters.
One result of this analysis is that it is possible to identify those non-Bayesian
methods that are closest to being Bayesian; these methods may be expected to
yield good results for a wide variety of models.

This analysis is related to, but different than, the frequency properties of
quantiles of the posterior distribution, a problem which has received considerable
attention; see, for example, Datta (1996), DiCiccio and Martin (1991, 1993),
Datta and Ghosh (1995), Ghosh and Mukerjee (1993), Nicolau (1993), Severini
(1991, 1993), Stein (1985) and Tibshirani (1989). Other related results are given
by Liseo (1993) and Berger, Liseo and Wolpert (1997) on integrated likelihood
functions, Pierce and Peters (1994), Severini (1994), and Berger, Boukai and
Wang (1997) on the relationship between Bayesian and non-Bayesian methods,
and Reid (1995) on the relationship between Bayesian and non-Bayesian large-
sample theory.

The outline of the paper is as follows. In Section 2, the details of approxi-
mately Bayesian elimination of nuisance parameters are presented. These results
are applied to conditional and marginal likelihood functions in Section 3 and to
profile likelihood functions in Section 4. A brief discussion is given in Section 5.

2. Approximately Bayesian Elimination of Nuisance Parameters

Let �(θ, λ) denote the likelihood function for (θ, λ) based on Y1, . . . , Yn and
let �̄(θ) denote a pseudo-likelihood function for θ. Given a conditional prior
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density π(λ|θ), let

H(θ) = log
∫
�(θ, λ)π(λ|θ)dλ.

We will say that �̄(θ), or L̄ = log �̄(θ), is jth-order asymptotically Bayesian with
respect to π(λ|θ) if

L̄(θ0 + δ/
√
n) − L̄(θ0) = H(θ0 + δ/

√
n) −H(θ0) +Op(n−j/2)

for all θ0; here (θ0, λ0) denotes the true parameter point. In this case, the pseudo-
likelihood function �̄(θ) is locally equivalent to an integrated likelihood function
to order Op(n−j/2).

We assume that the sequence of log-likelihood functions {L(θ, λ)} is Laplace-
regular in the sense of Kass, Tierney and Kadane (1990) and all prior densities
are assumed to be six-times differentiable. In addition, assume that (θ̂, λ̂), the
maximum likelihood estimator of (θ, λ), is consistent and asymptotically nor-
mally distributed with covariance matrix I(θ, λ)−1 where I(θ, λ) denotes the
Fisher information matrix which is positive-definite and differentiable. These
same conditions are assumed to hold for λ̂θ, the maximum likelihood estimator
of λ for fixed θ. Sufficient conditions for these results are given, e.g., by Lehmann
((1983), Section 6.4) in the i.i.d. case and by Amemiya ((1985), Section 4.1) in
more general settings. Finally, all pseudo-likelihood functions are assumed to be
three-times differentiable functions of θ.

Under these regularity conditions,

H(θ) ≡ log
∫
�(θ, λ)π(λ|θ)dλ = c(Y )+

1
2
ψ̂(θ)+ log π(λ̂θ|θ)+Lp(θ)+Rn(θ) (2)

where c(Y ) depends only on Y , ψ̂(θ) = log |Σθ| and −Σθ is the inverse of the
Hessian of L(θ, λ) with respect to λ evaluated at λ̂θ (Kass, Tierney and Kadane
(1990)). Here Rn(θ) satisfies Rn(θ) = Op(n−1) and Rn(θ0 + δ/

√
n) − Rn(θ0) =

Op(n−3/2).

3. Conditional and Marginal Likelihood Functions

In some cases, a pseudo-likelihood function may be based on either the
marginal or conditional distribution of a given statistic. For instance, suppose
that the minimal sufficient statistic model may be written S = (T,A) such that
the density of S satisfies p(s; θ, λ) = p(t|a; θ)p(a; θ, λ); throughout the paper den-
sity functions will be denoted by the generic symbol p with the argument indi-
cating the density function under consideration. In this case, a pseudo-likelihood
function may be based on p(t|a; θ). The function p(t|a; θ) is Bayesian with respect
to π(λ|θ) provided ∫

p(a; θ, λ)π(λ|θ)dλ
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does not depend on θ for each a. This case was studied by Severini (1995) who
called such a statistic a Bayes-ancillary statistic for θ in the presence of λ.

This condition is satisfied if A is S-ancillary. A statistic A is said to be
S-ancillary for θ in the presence of λ if the family of density functions {p(a; θ, λ) :
λ ∈ Λ} is the same for each θ (e.g., Barndorff-Nielsen (1978)). The following
result is given in Dawid (1980).

Proposition 3.1. If S, the minimal sufficient statistic of the model, may be writ-
ten S = (T,A) such that the density of S satisfies p(s; θ, λ) = p(t|a; θ)p(a; θ, λ)
and A is S-ancillary, then the conditional likelihood function given by p(t|a; θ) is
exactly Bayesian.

Proof. Since A is S-ancillary there exists a function h(λ; θ0, θ1), taking values
in Λ, such that for any θ0, θ1, λ, p(a; θ0, λ) = p{a; θ1, h(λ; θ0, θ1)} for almost all
a. Fix θ1; the distribution of A depends only on the parameter φ = h(λ; θ, θ1)
which takes values in the set Λ. Hence, A is Bayes-ancillary with respect to any
prior under which θ and φ are independent.

One situation in which conditional inference is often used is in inference
about the canonical parameter of an exponential family model. Suppose that T
is a scalar statistic and A is a vector statistic with the same dimension as λ such
that the density of (T,A) is of the form

exp{nθt+ nλTa− nd(θ, λ) +Q(t, a)}. (3)

Let dλλ(θ, λ) = ∂2d(θ, λ)/∂λ2.

Proposition 3.2. Suppose the density of the minimal sufficient statistic S =
(T,A) is of the form (3). Then the conditional likelihood function based on the
conditional density of T given A is third-order Bayesian with respect to the prior
density π(λ|θ) = |dλλ(θ, λ)|.
Proof. By Pace and Salvan ((1992), Section 5) the conditional likelihood func-
tion satisfies

L̄(θ) = nθT + nλ̂T
θ A− nd(θ, λ̂θ) +

1
2

log |dλλ(θ, λ̂θ)| +B(Y ) +Op(n−3/2),

where B(Y ) depends only on the data. Let H(θ) denote the integrated likelihood
function with respect to a prior π(λ|θ). Since Lp(θ) = nθT + nλ̂T

θ A− nd(θ, λ̂θ),

L̄(θ) = H(θ) + log |dλλ(θ, λ̂θ)| − log π(λ̂θ|θ) +B1(Y ) +Op(n−3/2),

where B1(Y ) depends only on Y , yielding the result.

Note that dλλ(θ, λ) is Iλλ(θ, λ), the Fisher information matrix for λ for fixed
θ. Hence, the effective prior density is the square of the conditional prior density
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of λ given θ that is often recommended, |Iλλ(θ, λ)|1/2. Although this result is
somewhat surprising, there is another interpretation of |dλλ(θ, λ)|. In the model
(3), consider the nuisance parameter φ = E(A; θ, λ); the maximum likelihood
estimate of φ for fixed θ is independent of θ, so that θ and φ are unrelated in a
certain sense. The prior |dλλ(θ, λ)| corresponds to a uniform prior on φ.

Example 1. Poisson regression
Let Y1, . . . , Yn denote independent Poisson random variables such that Yj

has mean exp{λ+θXj}, where X1, . . . ,Xn are known constants. The conditional
distribution of the data given A =

∑
Yj does not depend on λ and the conditional

likelihood function is given by

�c(θ) =
exp{θ∑

XjYj}
[
∑

exp{θXj}]A .

Since A is Poisson with mean φ ≡ ∑
exp{λ + θXj}, A is S-ancillary and, by

Proposition 3.1, �c(θ) is exactly Bayesian with respect to any prior such that φ
and θ are independent.

Example 2. Comparison of binomial probabilities
Let Y and X denote independent binomial random variables each with index

n and success probabilities p and q, respectively. Let θ = log{p(1− q)/[q(1−p)]}
and take λ = log( q

1−q ). The conditional distribution of Y,X given A = X + Y

does not depend on λ and the conditional likelihood function is given by

�c(θ) =
exp{θY }∑min(n,A)

j=0

(n
j

)( n
a−j

)
exp{jθ}

.

According to Proposition 3.2, �c(θ) is third-order asymptotically Bayesian with
respect to

π(λ|θ) =
exp{θ + λ}

(1 + exp{θ + λ})2 +
exp{λ}

(1 + exp{λ})2 .

Another approach to eliminating a nuisance parameter is to use a marginal
likelihood function. Suppose that the distribution of a statistic T does not depend
on λ; then inference about θ may be based on the marginal distribution of T . The
function p(t; θ) is Bayes with respect to π(λ|θ) provided the following integral
does not depend on θ: ∫

p(a|t; θ, λ)π(λ|θ)dλ.
One common class of models for which a marginal likelihood function exists

is composite transformation models. Here we give only a brief overview of trans-
formation models; for more details see Barndorff-Nielsen, Blæsild and Eriksen
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(1989). In particular, we assume that the model is a standard composite trans-
formation model in the sense of Barndorff-Nielsen, Blæsild and Eriksen ((1989),
Section 8). Let X denote a random variable taking values in X and let G denote
a group of transformations g : X �→ X such that each g ∈ G is one-to-one and
onto. Let P = {Pη : η ∈ H} denote a set of probability measures containing the
distribution of X. We will say that P is a transformation model with group G if
for each η ∈ H, g ∈ G, there exists a unique η∗ ∈ H such that Pη(B) = Pη∗(gB)
for all measurable sets B. We denote η∗ by gη and, hence, we consider G as a
group of transformations acting on H as well.

Let P = {Pθ,λ : θ ∈ Θ, λ ∈ Λ} denote a set of probability distributions of a
random variable Y . This model is called a composite transformation model with
index parameter θ and group parameter λ if P may be written as P = {Pθ : θ ∈
Θ} such that each Pθ = {Pθ,λ : λ ∈ Λ} forms a transformation model with group
G. The following result is discussed in Barndorff-Nielsen, Blæsild and Eriksen
((1989), Section 8).

Proposition 3.3. Suppose that the family of distributions of Y forms a compos-
ite transformation model with index parameter θ and group parameter λ. Then
the marginal likelihood function based on the maximal invariant statistic is ex-
actly Bayesian with respect to the right-invariant measure on G, the group of
transformations.

Example 3. Exponential regression
Let Y1, . . . , Yn denote independent exponential random variables such that Yj

has mean [λ exp{θXj}]−1, where X1, . . . ,Xn are fixed constants. The marginal
likelihood based on the distribution of the maximal invariant statistic (Y2/Y1, . . . ,

Yn/Y1) is given by
exp{θ∑

Xj}
[
∑
Yj exp{θXj}]n . (4)

This model is clearly a composite transformation model with λ as the group
parameter; the right-invariant measure has density λ−1. It is straightforward to
show that the integrated likelihood function with respect to this density is exactly
the marginal density (4). Hence, according to Proposition 3.3, the marginal
likelihood function is exactly Bayesian.

Example 4. Dispersion parameter in a normal-theory linear model
Let Y denote an n-dimensional multivariate normal random variable with

mean vector Xβ and covariance matrix Σ(θ); here X is an n × p matrix of full
rank. This is a composite transformation model with group parameter β. The
maximal invariant statistic is A = Y −PXY where PX is a linear transformation
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representing projection onto the linear space spanned by the columns of X. The
marginal likelihood function based on A is given by

exp{−1
2A

′Σ(θ)−1A+ 1
2AΣ(θ)−1X(X ′Σ(θ)−1X)−1X ′Σ(θ)−1A}

|Σ(θ)|1/2|X ′Σ(θ)−1X|1/2

(e.g., McCullagh and Nelder (1989), Section 7.2). According to Proposition 3.3,
this marginal likelihood function is exactly Bayesian with respect to the right-
invariant prior density 1.

4. Profile Likelihood and Related Methods

The pseudo-likelihood functions considered in the previous section can only
be applied in special circumstances. In this section, we analyze some pseudo-
likelihood functions that are generally applicable. We first consider the proper-
ties of the profile log-likelihood function Lp(θ) = L(θ, λ̂θ) where λ̂θ denotes the
maximum likelihood estimate of λ for fixed θ. Let

µλλθ(θ, λ) = plim
1
n
Eθ,λ[

∂3L

∂λ2∂θ
(θ, λ)].

Proposition 4.1. The profile likelihood function is second-order asymptotically
Bayes with respect to the prior density given by

π(λ|θ) = exp{−1
2

∫ θ

tr[Iλλ(t, λ)−1µλλθ(t, λ)]dt}f(λ),

where θ and λ are orthogonal parameters and f(·) is an arbitrary function of λ.

Proof. Without loss of generality we assume that θ and λ are orthogonal. Using
(2), Lp(θ) is second-order asymptotically Bayesian provided that there exists a
prior π(λ|θ) such that

d

dθ
log π(λ̂θ|θ) |θ=θ0

+
1
2
ψ̂′(θ0) = Op(n−1/2).

Since ψ̂(θ) = − log | − Lλλ(θ, λ̂θ)|, it follows that

ψ̂′(θ0) = tr[Iλλ(θ0, λ0)−1µλλθ(θ0, λ0)] +Op(n−1/2).

Let f(·) be arbitrary. Under orthogonality of θ and λ,

d

dθ
log π(λ̂θ|θ) |θ=θ0

=
∂

∂θ
log π(λ|θ) |(θ,λ)=(θ0,λ0)

+Op(n−1/2)

so that Lp(θ) is second-order asymptotically Bayesian by taking π(λ|θ) to satisfy

log π(λ|θ) = −1
2

∫ θ

tr[Iλλ(t, λ)−1µλλθ(t, λ)]dt + log f(λ).
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Although the profile likelihood function is often useful, it is not a genuine
likelihood function. For instance, since it treats the nuisance parameter as fixed
at the value λ̂θ, it may overstate the amount of information available about θ.
Hence, adjusted versions of the profile likelihood are sometimes used; see, for
example, Cox and Reid (1987), Barndorff-Nielsen and Cox (1994) and DiCiccio
Martin, Stern and Young (1996) for further discussion. For instance, the ad-
justed profile log-likelihood function proposed by Cox and Reid (1987) is given
by Lap(θ) = Lp(θ) + ψ̂(θ)/2 where θ and λ are orthogonal parameters. The fol-
lowing property of �ap(θ) was recognized by Sweeting (1987); the proof follows
immediately from the expansion (2).

Proposition 4.2. The adjusted profile likelihood function �ap(θ) is third-order
asymptotically Bayes with effective prior density π(λ|θ) = 1.

Note that Lap(θ) has an important drawback: it depends on the orthogo-
nal parameterization used, although any two versions of Lap(θ) agree to order
Op(n−1) for θ of the form θ = θ0 + O(n−1/2). Hence, two different versions of
Lap(θ) are both third-order asymptotically Bayesian, although with respect to
different prior distributions. Since the effective prior density of λ given θ is uni-
form, this suggests that in computing Lap(θ) the model should be parameterized
so that it is reasonable to take λ as uniformly distributed.

The adjusted profile likelihood is closely related to the modified profile
likelihood, proposed by Barndorff-Nielsen (1983). The modified profile likeli-
hood function does not require an orthogonal parameterization and it is invari-
ant under interest-respecting parameterizations; see, e.g., Barndorff-Nielsen and
Cox (1994). The profile log-likelihood function and the modified profile log-
likelihood function are locally equivalent to second-order and, hence, the modified
profile log-likelihood function is second-order asymptotically Bayesian (Severini
(1998b)).

Example 5. Variance of a normal distribution
Let Y1, . . . , Yn denote independent normally distributed random variables

each with mean λ and variance θ. The profile log-likelihood function for θ is
given by

Lp(θ) = −n
2

log θ − 1
2θ

∑
(Yj − Ȳ )2

while the adjusted profile log-likelihood is given by

Lap(θ) = −n− 1
2

log θ − 1
2θ

∑
(Yj − Ȳ )2.

According to Proposition 4.2, Lap(θ) is third-order asymptotically Bayesian with
respect to the prior density π(λ|θ) = 1; since Lap(θ) is identical to the marginal
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log-likelihood function based on
∑

(Yj − Ȳ )2, Lap(θ) is exactly Bayesian with
respect to this prior density.

According to Proposition 4.1, the profile log-likelihood function is second-
order approximately Bayesian with respect to a prior density of the form

π(λ|θ) = exp{−1
2

∫ θ

tr[Iλλ(t, λ0)−1µλλθ(t, λ0)]dt}f(λ) = f(λ)/
√
θ.

The profile likelihood function is exactly Bayesian with respect to the prior den-
sity θ−1/2 corresponding to f(λ) = 1.

Example 6. Index of a negative binomial distribution
Let Y1, . . . , Yn denote independent observations each with density function

Γ(θ + y)
Γ(y + 1)Γ(θ)

λyθθ

(λ+ θ)y+θ
, y = 0, 1, . . . ,

where θ > 0 and λ > 0. This is a negative binomial distribution with mean λ

and variance θ + θ2/λ; the parameters λ and θ are orthogonal.
The profile log-likelihood function for θ is given by

Lp(θ) =
∑

log Γ(θ + Yj) − n log(θ) + nθ log(θ) − n(Ȳ + θ) log(Ȳ + θ).

The adjusted profile log-likelihood function is given by

Lap(θ) =
∑

log Γ(θ+Yj)−n log(θ)+(nθ−1/2) log(θ)−(nȲ +nθ−1/2) log(Ȳ +θ).

It is straightforward to show that the conditional distribution of the data given
Ȳ depends only on θ; the conditional log-likelihood function given Ȳ is given by

Lc(θ) =
∑

log Γ(θ + Yj) − n log(θ) + log Γ(nθ)− log Γ(nθ + nȲ ).

According to Proposition 4.1, Lp(θ) is second-order asymptotically Bayes
with respect to a prior density of the form

π(λ|θ) = [exp{−1
2

∫ θ

tr[Iλλ(t, λ0)−1µλλθ(t, λ0)]dt}]
1
2 f(λ) =

√
θ

θ + λ
f(λ).

For instance, if we take f(λ) = λ−1/2 we have that Lp(θ) is second-order asymp-
totically Bayes with respect to the prior density

π1(θ|λ) = [
θ

λ(θ + λ)
]
1
2 .

This is the Jeffreys’ prior density for λ for fixed θ. Direct computation shows
that the profile likelihood function is, in fact, third-order asymptotically Bayesian
with respect to π1.
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According to Proposition 4.2, Lap(θ) is third-order asymptotically Bayesian
with respect to the prior density π2(λ|θ) = 1. The conditional log-likelihood
function is exactly Bayesian with respect to the prior density π3(λ|θ) = λ−1.
Hence, each of Lp(θ), Lap(θ), and Lc(θ) are equivalent to log-integrated likelihood
functions to a high-degree of approximation, although with respect to different
prior densities.

5. Discussion

In this paper it has been shown that many commonly used non-Bayesian
methods of eliminating a nuisance parameter correspond to integration with re-
spect to some prior density to a high degree of approximation. For instance,
the marginal likelihood function in a composite transformation model is exactly
Bayesian and the conditional likelihood function for a canonical parameter of an
exponential family model and the adjusted profile likelihood function are both
approximately Bayesian to order Op(n−3/2). From the Bayesian point of view,
these results offer an explanation as to why many ad hoc non-Bayesian methods
of eliminating a nuisance parameter are often successful in practice.

One difficulty in using Bayesian methods in practice is that the prior density
π(λ|θ) must be specified. Recent work has shown that standard methods of con-
structing a default prior for the full parameter (θ, λ), such as Jeffreys’ method,
do not necessarily work well for inference regarding θ with λ taken as a nuisance
parameter; see, for example, Berger and Bernardo (1989) and Kass and Wasser-
man (1996). This fact has led to the development of more sophisticated methods
of constructing a default prior, such as the reference prior of Berger and Bernardo
(Bernardo (1979), Berger and Bernardo (1992a, b), Bernardo and Smith (1994,
Section 5.4), Ghosh and Mukerjee (1992)). Unfortunately, it is often non-trivial
to determine these priors.

Another approach to Bayesian inference regarding θ suggested by the results
presented here is to use an easily implemented non-Bayesian method of elim-
inating λ which corresponds to Bayesian elimination of λ to a high degree of
approximation. Bayesian inference may then be based on the resulting pseudo-
likelihood function.
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