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Abstract: Linear models with structured covariance matrices are applicable to a

wide variety of longitudinal data sets. This paper presents a method for construct-

ing simultaneous confidence bands for the growth or response curve. The bands can

be defined on finite intervals and various other subsets of the real line. Previous re-

sults on simultaneous confidence bands in linear regression with independent errors

are generalized to include correlated errors when the covariance matrix depends on

a finite number of unknown parameters. A correction for the additional variabil-

ity arising from estimation of unknown covariance parameters is presented. The

method is evaluated using data simulated from several different linear models, and

it is applied to the analysis of pig metabolite concentrations after brief myocardial

ischemia.
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1. Introduction

Longitudinal data arise in a wide variety of applications, including pharma-
cokinetics (Vonesh and Carter (1987)), health research (Jennrich and Schluchter
(1986), Gelfand, Hills, Racine-Poon and Smith (1990), Carter, Resnick, Ariet,
Shieh and Vonesh (1992)) and education (Raudenbush (1988)). Longitudinal
studies allow investigation of the properties of the growth or response curve,
such as the shape of the curve, the intervals in which it exceeds a threshold, or
the presence and amplitude of local extrema.

For example, Schwartz, Schaefer, Gober, Meyerhoff, Smekal, Massie and
Weiner (1990) studied myocardial reactive hyperemia by measuring phosphocre-
atine (PCr) concentration in the pig heart before, during, and after occlusion of
the coronary artery. The investigators were interested in the shape of the mean
response curve, especially during and immediately following occlusion. Figure 1
shows the PCR measurements for each of 12 pigs, and Figure 2 shows the means
at each time. Figure 2 also shows a regression spline estimate of the response
curve based on a fit of a linear model with autoregressive errors to the data in
Figure 1. The PCr measurements vary considerably between and within pigs,
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suggesting a large amount of uncertainty in the estimate of the true response
curve.

Although existing methods provide estimates of the response curve, and in-
ference concerning the parameters of the function used to describe the curve,
they provide no way to quantify the uncertainty in the estimate of the curve it-
self. This article presents a new method for constructing simultaneous confidence
bands (SCBs) for a portion of a growth or response curve when the estimated
curve is constructed from maximum likelihood (ML) or restricted maximum like-
lihood (REML) estimates of the parameters of a linear model with a structured
covariance matrix (Jennrich and Schluchter (1986)). Figure 3 shows an SCB for
the PCr response curve that is restricted to the interval that was of primary
interest to the investigators.

Related work on SCBs for a linear regression function goes back to Scheffé
(1959, p.68ff) where errors are independent and homoscedastic, and the predictor
space is unconstrained, i.e. the domain of interest (denoted by T throughout this
paper) is IRq+1, where q+1 is the dimension of the predictor space. Therefore any
bands using constraints on the domain should be narrower than Scheffé’s bands.
Previous publications that discussed bands defined on a constrained domain in-
clude Bohrer and Francis (1972), Casella and Strawderman (1980), Halperin,
Rastogi, Ho and Yang (1967), Wynn (1984), Uusipaikka (1983), Naiman (1987),
Hall and Titterington (1988), Härdle and Marron (1991) and Sun and Loader
(1994). Other motivations for informative or narrow SCBs can be found in Cox
(1965). Also see Seber (1977) for a survey of earlier methods and Gafarian (1978)
for fixed-width and hyperbolic bands. Faraway and Sun (1994) considered the
case in which errors are independent and heteroscedastic, and they developed
an adjustment to account for the extra variation introduced by estimation of
unknown weights in a weighted least squares regression.

In longitudinal data, the errors are correlated, and ML and REML are often
used, so a different formula for the SCB is needed. Elston and Grizzle (1962)
modified Scheffé’s bands to account for the correlation structure, and hence their
bands will be too wide when we are only interested in a nontrivial subset of
IRq+1. Steward (1987) considered line-segment bands so that he could reduce
the calculation of the coverage probability to a calculation at the two end points.
Here, we apply the tube method (Naiman (1987) and Sun and Loader (1994))
to constructing SCBs when the covariances are known, and then modify the
bands for the case when the covariance parameters are unknown (Section 3.1).
We develop a derivative method and a perturbation method for adjusting the
bands to account for the variation in ML and REML estimates of the covariance
parameters (Section 3.2). We evaluate the SCBs using simulated data from a
variety of linear models with structured covariance matrices (Section 4). We
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apply the SCB to magnetic resonance spectroscopy measurements of metabolites
in pig hearts (Section 5), and we compare our SCB to Scheffé-type bands and to
Bonferroni t intervals. The linear model is described in Section 2.

Our bands have width proportional to the estimated standard deviation of
the estimator of the response curve. Typically, this will mean that the area
bounded by our bands is smaller than the area bounded by fixed width confidence
bands. Our formula is applicable in principle to any linear smoothers (Sun and
Loader (1994)) and to a large class of domains T , for example, the domain can
be a union of finite intervals and/or points. Advantages of tube methods over
alternative methods in general can be found in Loader (1993).

2. The Linear Model for Growth and Response Curves

Based on earlier work of Harville (1977), Laird and Ware (1982) proposed
a linear mixed effects model for longitudinal data, and they discussed ML and
REML estimation using the EM algorithm. Jennrich and Schluchter (1986) dis-
cussed linear mixed effects models and other linear models with structured co-
variance matrices, and they considered estimation using the Newton-Raphson
algorithm. We consider a special case of these linear models in which the regres-
sion function depends only on time.

Suppose that longitudinal data are acquired from n individuals, and that
pi measurements are made on individual i. Let the response of individual i at
time tij be denoted by Yij, i = 1, . . . , n; j = 1, . . . , pi, and let x0(t), . . . , xq(t) be
specified smooth functions (such as powers of t), where x0 typically is set equal
to one. Then a reasonable linear model is

Yij = f(tij) + εij, i = 1, . . . , n; j = 1, . . . , pi, (1)

where f(t) =
∑q

k=0 βk xk(t). Our goal is to find SCBs for f(t), for all t ∈ T ,
a one-dimensional domain, for example, T = [a, b] or T = [a, b] ∪ [c, d]. We
consider only the one-dimensional case, but an extension to higher dimensional
T is possible.

Let εi = (εi1, . . . , εipi)
T . Assume that ε1, . . . , εn are independent and that εi

is multivariate normal with mean equal to the zero vector and covariance matrix
Σi = σ2Ri(θ), as in Jennrich and Schluchter (1986), where σ2 is an unknown
parameter, and the pi × pi matrix Ri(θ) may depend on an unknown r × 1
parameter vector θ. In mixed effects models, Ri(θ) has the form ZiDi(θ1)ZT

i +
Wi(θ2), where Zi is a specified matrix, Di is a specified matrix function of an
unknown vector θ1, Wi is a specified matrix function of an unknown vector θ2,
and θT = (θT

1 ,θT
2 ).

If we define Yi = (Yi1, . . . , Yipi)
T , β = (β0, . . . , βq)T , and the pi × (q + 1)

matrix Xi with elements xk(tij), then the model has the form of a linear model
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with a structured covariance matrix: Yi = Xiβ + εi, i = 1, . . . , n. Further, let
N =

∑n
i=1 pi, Y = (Y1, . . . ,Yn)T be an N -vector, XT = (XT

1 , . . . ,XT
n ) be an

N × (q + 1) matrix, and ε = (εT
1 , . . . , εT

n )T . Then the model can be written in
the usual matrix form: Y = Xβ + ε, where ε has an N -dimensional normal
distribution with zero mean and block diagonal covariance function

Σ = σ2R(θ) ≡ σ2diag{R1(θ), . . . ,Rn(θ)}.

Note that we consider only linear models of growth and response curves, but
many models of longitudinal data are nonlinear in the parameters (Lindstrom and
Bates (1990) and Vonesh and Carter (1992)). In the latter case, our confidence
bands might be generalized by constructing a linear approximation to the fitted
nonlinear model, with an additional correction for this approximation.

Our method requires that the estimators of β and σ2 be independent. Under
mild regularity conditions, this assumption is asymptotically satisfied by the
ML (Jennrich and Schluchter (1986), Miller (1977) and Harville (1977)) and
REML estimators (Jiang (1998)). These theoretical results are illustrated by our
simulation study.

3. Simultaneous Confidence Bands

3.1. Approximation formula

If θ were known, we could estimate β by a generalized least squares estima-
tor:

β̂ ≡ β̂(θ) = {XTR(θ)−1X}−1XTR(θ)−1Y,

and hence f(t) by

f̂(t) =
q∑

k=0

β̂k xk(t) = x(t)T β̂(θ) ≡ l(t,θ)T Y =
n∑

i=1

li(t,θ)T Yi,

where x(t) is a q+1-vector with elements xk(t), l(t,θ) is an N -vector, and li(t,θ)
is a pi-vector with l(t,θ)T = (l1(t,θ)T , . . . , ln(t,θ)T ) = x(t)T {XTR(θ)−1X}−1

XTR(θ)−1. Thus, Var {f̂(t)} = l(t,θ)T Σl(t,θ) = σ2||lR(t,θ)||2, where lR(t,θ) =
VT(θ)l(t,θ), V(θ)V(θ)T = R(θ) is the Cholesky decomposition of R, and

||lR(t,θ)||2 = l(t,θ)T R(θ)l(t,θ) = x(t)T {XTR(θ)−1X}−1x(t).

A reasonable simultaneous confidence interval is of the form[
f̂(t) − cσ‖lR(t,θ)‖, f̂(t) + cσ‖lR(t,θ)‖

]
, (2)

where c is such that the coverage probability of f(t) in the interval for all t ∈ T
equals a prescribed level, 1 − α.
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When σ2 and θ are unknown, it is natural to replace them by some good
estimators σ̂2 and θ̂, for example ML or REML estimators. Then we need to
study SCBs of the form[

f̂(t) − cσ̂‖lR(t, θ̂)‖, f̂(t) + cσ̂‖lR(t, θ̂)‖
]

for some c. (3)

We adjust the usual ML estimator, σ̃2, by setting σ̂2 = Nσ̃2/ν where ν = N−q−1
because this reduces the bias and produces superior results in our simulations.
REML estimators also were introduced to reduce the bias of ML estimators. The
σ̂2 below refers to either the adjusted ML estimator or the REML estimator.

The problem of finding a 1−α SCB for f(t),∀t ∈ T ⊆ IR, in the form (3) is
equivalent to choosing c such that

α = pr
{
|f̂(t) − f(t)| > cσ̂‖lR(t, θ̂)‖, for some t ∈ T

}

= pr
{

sup
t∈T

|f̂(t) − f(t)|
σ‖lR(t,θ)‖

‖lR(t,θ)‖
‖lR(t, θ̂)‖

> c
σ̂

σ

}
. (4)

Note that Zn(t) = |f̂(t) − f(t)|/{σ‖lR(t,θ)‖} is a different process from a
corresponding process in Faraway and Sun (1994). When the data are correlated,
the SCB must be corrected for the extra variation introduced by estimating θ.

Proposition 1. Suppose that σ2 and θ are estimated by some consistent esti-
mators, e.g. adjusted MLE or REML estimators. Define

S(t) =
lR(t,θ)

‖lR(t,θ)‖ =
V(θ)T l(t,θ)
‖lR(t,θ)‖ , a = inf

t∈T

‖lR(t, θ̂)‖
‖lR(t,θ)‖ , (5)

where R(θ) = V(θ)V(θ)T is the Cholesky decomposition of R. Suppose that a′

is a positive constant such that P (a < a′) = o(α) as n → ∞ and α → 0. Then
an approximation to (4) is

α ≈ E · P (|tν | > ca′) +
κ0

π

(
1 +

c2a′2

ν

)−ν/2

, (6)

where tν denotes a t-distributed random variable with ν degrees of freedom, κ0 =∫
t∈T ‖S′(t)‖dt, the volume of {S(t), t ∈ T }, and E is the Euler-Poincaré char-

acteristic of {S(t), t ∈ T }.

A derivation of (6) is in the Appendix.
The approximation (6) may be slightly conservative in the sense that the

resulting coverage probability is slightly higher than 1 − α, but the coverage
probability gets very close to 1 − α as N → ∞ and α → 0. For more discussion
on this issue, see the end of the Appendix.



684 JIAYANG SUN, JONATHAN RAZ AND JULIAN J. FARAWAY

The resulting SCBs depend on constants E, κ0, and a′, which must be
computed or estimated. The Euler-Poincaré characteristic E is equal to zero
if {S(t), t ∈ T } has no boundary, one if {S(t), t ∈ T } is a continuous curve with
two disjoint ends (as in most cases when T is an interval), and each extra disjoint
segment or point adds one to E if the disjoint points/ends are not too close to
each other. (Consult Kreyszig (1968) for details.) Two methods for estimating a′

are presented in the next section. A simple approximation to κ0 when T = [a, b]
is obtained by partitioning [a, b] into a = z0 < · · · < zm = b, and computing

κ0 =
m∑

i=1

∫ zi

zi−1

‖S′(x)‖dx ≈
m∑

i=1

‖S(zi) − S(zi−1)‖.

When θ is unknown, κ0 is estimated by substituting θ̂ in the definition of S.
Of course, the resulting coverage probability, based on c from (6) and the

estimated constants, is only approximately 1−α. However, it should get closer to
the nominal level as the sample size increases. Indeed, as shown in our simulation,
using estimated constants in our formula is quite satisfactory even for moderate
sample sizes.

3.2. Correction constant a′

In Faraway and Sun (1994), the correction constants were estimated by re-
placing the true unknown weights and regression function with non-parametric
estimators derived from a kernel regression with a small window width. In the
models with structured covariance matrices considered here, it is not clear how to
develop an analogous procedure for estimating the correction constant a′. As al-
ternatives, we propose two methods: the derivative method and the perturbation
method.

The derivative method is similar to the delta method. Recall that if θ̂ is the
ML estimator,

θ̂ − θ = Op(N−1/2), θ̂ − θ ∼ N (0, I−1(θ)),

where ∼ denotes “has approximately same distribution as, for large N”, and
I−1(θ) = Op(N−1) is the inverse of the Fisher information of θ from Y. Let
I(θ)−1 = U(θ)U(θ)T be the Cholesky decomposition of the inverse of the Fisher
information, so θ̂ − θ ∼ U(θ̂)e where e is an r dimensional standard normal
random vector and U = Op(N−1/2). Hence, with ∇ denoting the gradient with
respect to θ, we have

a2 = inf
t∈T

‖lR(t, θ̂)‖2

‖lR(t,θ)‖2
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≥ inf
t∈T

‖lR(t, θ̂)‖2

||lR(t, θ̂)||2 + |(θ̂ − θ)T∇||lR(t, θ̂)||2|

∼ inf
t∈T

‖lR(t, θ̂)‖2

||lR(t, θ̂)||2 + |eTU(θ̂)T∇||lR(t, θ̂)||2|
,

where the inequality is an approximate inequality, for large N . Note that for
a nonnegative constant d and vector A, E(d/(d + |eTA|) ≥ d/(d + E|eT A|) by
Jensen’s inequality. So, if N is large enough and dimension of θ is one, i.e. r = 1,
a reasonable estimate of a′ is

â′ =

{
inf
t∈T

||lR(t, θ̂)||2

||lR(t, θ̂)||2 + (2/π1/2)|U(θ̂)T∇||lR(t, θ̂)||2|

}1/2

. (7)

For example, in the compound symmetry model discussed in Section 4, (7) re-
duces to

â′ =
{
1 + 2/(πn)1/2

}−1/2
. (8)

For some covariance structures, it is difficult to compute the derivatives of
||lR(t,θ)||2. For this reason, we propose the perturbation method, which does not
use derivatives. As in the derivative method, we have, for some standard normal
vector e,

a2 = inf
t∈T

‖lR(t, θ̂)‖2

‖lR(t, θ̂ + θ − θ̂)‖2

∼ inf
t∈T

‖lR(t, θ̂)‖2

‖lR(t, θ̂ + U(θ̂)e)‖2

= inf
t∈T

‖lR(t, θ̂)‖2

‖lR(t, θ̂ + ||e||U(θ̂)e/||e||)‖2
,

where ||e||2 has a χ2 distribution with degrees of freedom q and ||e|| has mean

µq ≡ Γ(
q

2
+

1
2
)21/2{Γ(

q

2
)}−1.

In a small neighborhood of θ̂, ‖lR(t, θ)‖ is approximately linear in θ, and hence
its extreme values are approximately at vertices of the neighborhood. Hence, as

max
||d||=1

b′d = ||b||, for any vector b,

a reasonable estimate for a′ is

â′ =

{
aveu∈U inf

t∈T

‖lR(t, θ̂)‖2

‖lR(t, θ̂ + µqu)‖2

}1/2

. (9)
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Here ||b|| is the l2 norm of b, and

U = {u : u = (s1||v1||, . . . , sq||vq||)T , si = 1 or − 1, i = 1, . . . , q}

with vi being the ith row vector of U, and the average is over u ∈ U such that
R(θ̂) is positive definite.

4. Simulation

4.1. Compound symmetry

In this and the following subsection we take pi ≡ p and space the tij evenly
in the interval T . Let f(tij) = β0 +β1tij and set Zi = 1p in a mixed effects model
so that Σi = σ2Ip +σ2

a1p1T
p where σ2

a is the variance of the random intercept, 1p

is a vector of 1’s, Ip is a p× p identity matrix and set θ = σ2
a/σ

2. In this special
case, we may estimate the a′ directly by (8).

One hundred thousand replications were used and standard errors for the
empirical coverage rates are no more than 1 unit in the 3rd decimal place. The
standard case is n = 15, p = 5, σ = 1, θ = 1 and T = [−0.5, 0.5]. We vary
only one setting at a time from the standard setting in Table 1, which gives the
empirical coverage rates. We see that the actual levels at 95% are somewhat
conservative but then this is expected due to the nature of the approximating
formula. The 99% SCBs are all close to their nominal level.

Table 1. Empirical coverage rates for compound symmetry structure.

Standard Wider Range Larger θ Smaller θ Larger n Larger p

Nominal T = [−1.5, 1.5] θ = 2 θ = 0.5 n = 50 p = 10
0.95 0.961 0.967 0.960 0.962 0.962 0.962
0.99 0.991 0.992 0.990 0.991 0.992 0.991

4.2. Random slope and intercept

In this model, Ri(θ) = ZiDi(θ1)ZT
i + σ2I where Zi = (1, ti) and

Di =

(
θ1 θ3

θ3 θ2

)
. (10)

In this case, we could not compute the estimated a′ by (8), so the perturbation
method (9) was used. The standard model to which other cases will be compared
has (θ1, θ2, θ3) = (1, 1, 0.5) and σ = 1, n = 15, p = 5, and T = [−0.5, 0.5]. As
before, 100,000 replications were used and standard errors are no more than 1
unit in the 3rd decimal place. We vary only one setting at a time from the
standard setting in Table 2.
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We performed additional simulations using REML estimation as imple-
mented in SAS PROC MIXED (SAS Institute Inc. (1992)). Only 1,000 replica-
tions were used for the REML simulations due to the much less efficient calcu-
lations in the SAS macro as compared with the C program used to compute the
ML estimates. Thus, the standard errors for the REML results range between
0.0014 and 0.008. In this model, the correlation between the REML estimators
of θ and β is identical to that between the ML estimators.

Table 2. Empirical coverage rates for random slope and intercept structure.

Method Nominal Standard Wider Range Larger n Even larger n Larger p

Level T = [−1.5, 1.5] n = 50 n = 200 p = 10
ML 0.95 0.970 0.984 0.963 0.960 0.954

0.99 0.994 0.997 0.997 0.993 0.989
REML 0.95 0.982 0.990 0.969 0.935 0.963

0.99 0.997 0.998 0.998 0.989 0.992

The ML results are somewhat conservative, although if there is to be an
inaccuracy, better that it be this kind. Accuracy improves with increasing n

and p. The REML estimates of the random effects variance were consistently
larger than the ML estimates, and thus the REML confidence bands tended to
be wider, leading to the somewhat more conservative results. (In general, ML
estimates of variance components are biased downwards, and REML estimates
tend to be less biased or unbiased.)

5. Data Example and Further Simulation Results

Schwartz et al. (1990) measured PCr concentration in the pig heart using
phosphorus ( 31P) nuclear magnetic resonance spectroscopy. PCr concentration
was measured every 4.8 seconds for 24 seconds of no intervention (5 measure-
ments), 24 seconds during which the anterior descending coronary artery was
occluded (5 measurements), and 62 seconds of reactive hyperemia after release
of the occlusion (13 measurements). The design was unbalanced, since the inves-
tigators decided to acquire a few extra measurements per pig after all the data
had been collected from the first few pigs.

The pigs vary considerably in their baseline level of PCr, which has no scien-
tific importance. For this reason, the researchers normalized the data by averag-
ing the five control responses and dividing each response by the control average
for that pig. We found that this transformation also reduced the skewness and
stabilized the variance, so we analyzed the data in the same form as the re-
searchers did. Figures 1 and 2 show the data after normalization.
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One approach to analyzing these data would be to construct a parametric
model that explicitly includes parameters representing various features of the
response curve and to construct simultaneous confidence intervals for the model
parameters. However, this alternative approach would not provide inference
about the uncertainty in the shape of the curve except through the uncertainty in
the estimated parameters and would not be much more efficient than a confidence
band if the number of parameters were large. In contrast, SCBs applied to the
normalized data provide inference directly related to the shape of the response
curve.
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Figure 1. Plots of relative PCr concentration against time in seconds for
each of 12 pigs. The triangles indicate the start and end of coronary artery
occlusion.

We modeled the response curve using fixed knot quadratic B-splines with a
knot at the start of occlusion (24.0 seconds from the start of data acquisition), two
during occlusion (33.6 and 43.2 seconds), one at the start of reactive hyperemia
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(52.8 seconds), and two during hyperemia (62.4 and 81.6 seconds). This model
assumes a quadratic function before occlusion. The knot at 24 seconds reflects
possible sudden changes at the time of occlusion. The two knots during occlusion
are equally spaced between the end of occlusion and the start of hyperemia. The
two knots during hyperemia were chosen under the assumption that the response
function is less smooth near the beginning of this period and more smooth later
in the period.

•
•

•
•

•
•

•

• •

• •

•

•

• •
•

•

•
•

•
• • •

20 40 60 80 1000

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

time (secs)

re
la

ti
v
e

P
C

r
c
o
n
c
e
n
tr

a
ti

o
n

Figure 2. Mean relative PCr concentration against time with fitted regression
spline. The plot gives the mean of non-missing data points at each of the 23
times. The regression spline estimate was computed by fitting a linear model
with autoregressive errors to the data from 12 pigs. The triangles indicate
the start and end of coronary artery occlusion.

The investigators did not expect systematic changes before occlusion; we
chose to fit a general model that allowed for possible unanticipated changes in
the mean. We could have modified the B-spline model to enforce a constant
mean before occlusion. The procedure for constructing confidence bands would
be unchanged in this case.

Our quadratic spline model assumes that the response function is continuous
and has a continuous first derivative. At the suggestion of a referee, we compared
the fit of our model with that of a model that does not enforce the constraint
of a continuous first derivative at time 24 seconds. The two models gave very
similar estimated response curves.

Using SAS PROC MIXED (SAS Institute Inc. (1992)), we computed REML
estimates for models with several different covariance structures, including a
structure defined by assuming first order autoregressive (AR(1)) errors, several
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structures defined by including various spline coefficients as random effects, and
structures defined by combining random effects with AR(1) errors. Based on
Akaike’s Information Criterion (AIC) and Schwarz’s Bayesian Criterion (SBC)
(Schwartz, et al. (1990)), we selected the AR(1) model. This model implies
stationary errors, possibly incorrect because of the normalization.

Since the investigators were primarily interested in the response curve during
and immediately following occlusion, we defined the interval T to start at the
beginning of occlusion (24 seconds) and end at the measurement at which the
mean relative PCr concentration (Figure 2) appears to return to the baseline level
(76.8 seconds, which is the sixth measurement after release of occlusion). Then we
constructed an approximate 95 per cent SCB (Figure 3) with a correction factor
a′ that was computed using the perturbation method. This band indicates strong
evidence for a decrease in PCr concentration due to the occlusion, but suggests
considerable uncertainty about the shape of the response curve, time to minimum,
time to return to baseline, rate of decline, and other features.
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Figure 3. Scatterplot of PCr data from 12 pigs with fitted regression spline
(solid line), our 95 percent simultaneous confidence band (dashed lines) for
a finite interval, 95 percent Scheffé-type band (dotted lines). The analysis
assumed autoregressive errors within pigs and independence among pigs. The
decrease in PCr concentration during occlusion is significant based on the
simultaneous confidence band for a finite interval, but the band indicates
considerable uncertainty concerning the shape of the curve, time to minimum,
time to return to baseline, rate of decline, and other features. The triangles
indicate the start and end of coronary artery occlusion.
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Figure 3 also shows the wider Scheffé-type band that is not restricted to the
interval. This band was constructed using a generalization of a method proposed
by Elston and Grizzle (1962). Details are given in the Appendix. For comparison
with our bands defined on the interval T , Figure 3 shows the Scheffé-type bands
for the regression curve defined on this interval.

Simultaneous confidence intervals at the design points can be constructed
using Bonferroni’s inequality. Figure 4 shows the Bonferroni t intervals at the
12 time points between 24 and 76.8 seconds. These intervals were based on the
mean of non-missing values at each of the 12 times, and they do not depend on
the spline model. At most time points, the t intervals are noticeably wider than
the SCB, even though our SCB applies to the regression function evaluated at
every point on the real line between 24 and 76.8 seconds, while the t intervals
only apply to 12 discrete points.
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Figure 4. Mean relative PCr concentration (black dots) at 12 times with
our 95 percent simultaneous confidence band for a finite interval (dashed
lines), and 95 percent Bonferroni t confidence intervals. The endpoints of
the Bonferroni intervals are indicated by black diamonds. The open triangles
indicate the start and end of coronary artery occlusion.
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We also constructed an SCB based on an analysis of the unnormalized data
using a model that included both a random intercept and AR(1) errors. This
second band was much wider than the one shown in Figure 3, reflecting the
variability in the baseline PCr concentration and the consequent uncertainty in
the estimate of the fixed intercept.

Since the data and model in this application were more complicated than
those used in the simulation studies (Section 4), we performed additional simula-
tions using artificial data designed to resemble the real PCr data. The simulated
data were generated from the spline model with AR(1) errors, both with and
without a random intercept. The true parameter values in the simulation were
set equal to the estimates from the analysis of the real data after normalization
(for the simulations without a random intercept in the model) and the estimates
before normalization (for the simulations with a random intercept). Each sim-
ulated data value was defined to be missing with probability 10%. The value
of pi was 23 minus the number of missing responses for individual i, and n was
taken to be 12 (as in the real data), 50, and 100. For each of 1,000 simulated
data sets, both ML and REML estimates were computed and both 95% and 99%
bands were constructed. Tables 3 and 4 give the empirical coverage rates, which
are close to the nominal rates. The bands tend to be slightly too narrow when
n = 12, and somewhat conservative when n = 50.

In the n = 50 and n = 100 simulations, we saved the ML and REML esti-
mators in each replication, and computed the correlation between the estimators
of β and σ2. This correlation was small and decreased with increasing n.

Table 3. Empirical coverage rates for spline models with AR(1) errors.

Nominal
Method Level n = 12 n = 50 n = 100

ML 0.95 0.942 0.974 0.947
0.99 0.987 0.995 0.992

REML 0.95 0.950 0.974 0.947
0.99 0.990 0.995 0.992

Table 4. Empirical coverage rates for spline models with random intercept
and AR(1) errors.

Nominal
Method Level n = 12 n = 50 n = 100

ML 0.95 0.944 0.974 0.972
0.99 0.984 0.998 0.994

REML 0.95 0.946 0.976 0.973
0.99 0.985 0.998 0.994
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6. Discussion

We have derived SCBs for linear models with structured covariance matrices.
Our bands cover an infinite number of points in any compact interval. In the
application to pig metabolite data, the SCB captured the dip in the response
curve following occlusion, despite the small number of pigs. The simulation
results indicated that the bands perform reasonably well even in such difficult
applications.

SCBs might be useful in applications to many other types of longitudinal data
sets. For example, Guthrie and Buchwald (1991) suggested analyzing differences
between two electrophysiological time series using multiple t-tests at each time
point with a correction for multiple comparison under the assumption of AR(1)
errors. An alternative and possibly more informative approach would be to
construct an SCB based on the difference of the two series.
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Appendix

Derivation of (6). Denote the right hand side of (4) by P (c). Let l = l(t,θ),
l̂ = l(t, θ̂), lR = lR(t,θ), and δ(t) = |

〈
l− l̂,Y

〉
|. Further, let µ = Xβ, so that

Y = µ + ε. Under the model (1), f(t) = 〈l(t,θ),µ〉. So, the difference between
f(t) and its estimator can be bounded by two terms:

|f̂(t) − f(t)| = | 〈l, ε〉 + 〈l,µ〉 +
〈̂
l− l,Y

〉
− f | ≤ | 〈l(t,θ), ε〉 | + δ(t), (A.1)

The normalized first term in (A.1) is

Z(t) =
〈l(t,θ), ε〉
σ‖lR(t,θ)‖ =

〈
l

‖lR‖ ,
ε

σ

〉
,

which has the same distribution as
〈
l/‖lR‖,V(θ)e

〉
and as 〈S(t), e〉, where S(t)

is defined by (5) and e is an N dimensional standard normal random vector
independent of θ and t. Note that ||S(t)|| = 1 for all t ∈ T . So, Z(t) is
a Gaussian random field on T with zero mean, unit variance, and covariance
function S(t)T S(t′). Denote by a the minimum of the ratio of lR and l̂R (see (5)),
and let δ = supt∈T [δ(t)/{σ‖lR(t,θ)‖}], the difference in the regression estimator
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due to the variation in estimating θ. Then it is straightforward to see that

P (c) ≤ pr

(
sup
t∈T

[{
|Z(t)| + δ(t)/σ

‖lR(t,θ)‖

} ‖lR(t,θ)‖
‖lR(t, θ̂)‖

]
> c

σ̂

σ

)

≤ pr

{
sup
t∈T

|Z(t)| > c
σ̂

σ
a − δ

}
≤ 2pr

{
sup
t∈T

Z(t) > c
σ̂

σ
a − δ

}
.

Since both ML and REML estimators are consistent under some regularity
conditions, we have a = 1 + op(1), δ = op(1), as n → ∞. So we can bound a by a
positive constant a′ such that a ≥ a′ in probability as n → ∞ and

P (c) ≤ 2pr

{
sup
t∈T

Z(t) >
c

ν1/2

ν1/2σ̂

σ
a′
}

+ o(α) (A.2)

Faraway and Sun (1994) set a′ identically equal to one and used corrections γ′

(due to estimating σ2 when the weights are unknown) and δ′ (a positive constant
such that δ ≤ δ′ in probability as n → ∞). Our simulation results (Section 4 and
Section 5) confirm that the bias δ and the small finite-sample dependence between
σ̂2 and β̂ (which is related to γ′) are negligible, at least for the estimators and
models considered in this paper and for our estimators of a′. Other applications
may require an additional adjustment for estimating γ′ and δ′, which may be
carried out by combining results of Faraway and Sun (1994) with the estimators
of a′ given in Section 3.2.

When either adjusted ML or REML estimators are used, ν1/2σ̂/σ has approx-
imately a χ distribution with degrees of freedom ν, that is, it has a probability
density function f(y, ν) = yν−1 exp(−y2/2)/{2ν/2−1Γ(ν/2)}. It is also easy to
see from Equation (3.7) in Jiang (1998) that σ̂ is asymptotically independent of
Z(t). Thus, if the manifold {S(t), t ∈ T } has no boundary (e.g. a closed circle
in the right panel of Figure 5), an application of the tail approximation to the
maximum of a Gaussian random field gives

P (c)
·
≤ 2

∫ ∞

0
pr

{
sup
t∈T

Z(t) ≥ c′

ν1/2
y

}
f(y, ν)dy + o(α)

≈
∫ ∞

0
κ0

1
π

exp{−1
2
(

c′

ν1/2
y)2}f(y, ν) dy (A.3)

≈ κ0

π

(
1 +

c′2

ν

)−ν/2

(A.4)

where c′ = ca′, κ0 is defined in the proposition, and
·
≤ is an approximate in-

equality as α → 0. In the case that the manifold {S(t), t ∈ T } has a boundary
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there is an additional term in (A.3) and hence also in (A.4), described below.
Note the fact that the tail probability P{maxt∈T Z(t) > z} corresponds to a
probability computed on a tubular area about the manifold {S(t), t ∈ T } with a
radius depending on z (cf. Sun (1993)). So, in the case that T is a finite interval
and the two end points of S(t) are not equal, the tubular area has two half disks
(see the left panel of Figure 5 and compare this with the tubular area without
caps shown in the right panel). By (A.2) this results in the additional term

2P{Z(a) ≥ c′σ̂/σ} = P{|tν | > c′}, (A.5)

accounting for the coverage probability in the two half disks. Here a is one
of the two end points of T , different from the a considered earlier. In more
general cases, the additional term is E · P{|tν | > c′}, where E is Euler-Poincaré
characteristic of {S(t), t ∈ T } (cf. Sun and Loader (1994)). The constant E is
one if T is a finite interval and the end values of S(t) are not equal. (See Figure
5 and the discussion in Section 3.1.) This derivation is similar to the derivation
of the boundary correction term in Sun and Loader (1994).

S(t) in 2d with Boundary S(t) in 3d without Boundary

(t is 1-dimensional) (t is 1-dimensional)

Half disk Half disk

Tubular Area

Tubular Area

a b

The tubular area includes 2 caps (half disks) The tubular area has no cap(s)

Figure 5. Tubular Area of {S(t), t ∈ T }. If {S(t), t ∈ T } has two boundary
points a and b, then the tubular area includes two half disks. If {S(t), t ∈ T }
has no boundary, then the tubular area is the region without the two caps.

Although setting the right hand side of formula (A.4) (plus E · P{|tν | >

c′}) to α gives a conservative confidence band, the nominal level will be closely
approximated if a′ is close to a. Thus, the final (conservative) approximation



696 JIAYANG SUN, JONATHAN RAZ AND JULIAN J. FARAWAY

formula is

α ≈ E · P (|tν | > ca′) +
κ0

π

(
1 +

c2a′2

ν

)−ν/2

.

When T is reduced to one point, the second term of (6) is zero, E = 1, and (6)
reduces to the familiar t interval, approximately.

In other applications of the tube formula, the approximation “≈” in (A.4)
should be replaced by “≤” when the tube self-overlaps. So, this would definitely
produce a conservative formula. Fortunately, this cannot occur within the class
of regression functions we have chosen when α is not too large. See Sun and
Loader (1994) for more discussion on this point.

Derivation of the Scheffé-type bands shown in Figure 3. Define l, l̂, lR

as in the derivation of (6) and let ε = Ve where V is the Cholesky triangle of
R. Then we wish to determine c such that

α ≥ pr
{
|f̂(t) − f(t)| > cσ̂‖lR(t, θ̂)‖, for some t ∈ T

}
.

Let P (c) equal the right hand side. Suppose c satisfies

P (c) = pr

{
sup
t∈T

|̂lTY − l̂TXβ|
σ‖̂lR‖

> c
σ̂

σ

}

= pr

{
sup
t∈T

|̂lT ε|
σ‖̂lR‖

> c
σ̂

σ

}

= pr


sup

t∈T

|
〈̂
lR, e

〉
|

σ‖̂lR‖
> c

σ̂

σ


 .

Let L be the linear space spanned by the columns of V−1X and let L =
(VT )−1{XT R(θ)−1X}−1V−1 be the projection matrix to L. Since lR/‖lR‖ is a
unit vector in L, we have

P (c) ≤ pr

{
sup

u∈L,‖u‖=
| 〈u, e〉 |/σ > c

σ̂

σ

}

= pr

{
||Le||2/σ2

σ̂2/σ2
> c2

}

If θ is finite dimensional and E(e3) = 0, the denominator and numerator of the
last expression are asymptotically independent (Jiang (1998)), so ||Le||2/[σ̂2 (1+
q)] has an approximate F distribution with 1+q and n−q−1 degrees of freedom.
Thus c ≈

√
(1 + q)Fα

1+q,ν , where Fα is the upper α quantile of the F distribution.
To account for the additional variability due to estimation of θ, we use the

correction constant â′ described in Section 3.
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